

®

Java™ Programming

About the Author
Poornachandra Sarang (popularly known as Dr. Sarang) has been a Java
programmer since its inception way back in 1996. Over the last 15 years,
Dr. Sarang has conducted many train-the-trainer programs, instructor authorization
tests, and corporate training sessions based on Sun Microsystems’ official
curriculum. He has authored several books and journal articles on Java and
various other similar topics. He has been a regular speaker at many international
conferences, including the recent JavaOne 2011. He is also associated with the
University of Mumbai and a few other universities of repute as a visiting/adjunct
faculty and Ph.D. advisor in Computer Science. Dr. Sarang has been invited to
deliver keynote addresses and technical talks at many international research and
technology conferences. Besides Java coding, Dr. Sarang does some architecture
work and is also well recognized in the Enterprise Architecture space.

®

Java™ Programming

Poornachandra Sarang

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2012 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-163361-1

MHID: 0-07-163361-8

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163360-4,
MHID: 0-07-163360-X

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if
any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

mailto:bulksales@mcgraw-hill.com

A deep reverence to my beloved late father-in-law

Contents at a Glance

 1 Introduction to Java . 1

 2 Arrays . 17

 3 Classes . 41

 4 Inheritance . 67

 5 Object Creation and Member Visibility . 93

 6 Static Modifier and Interfaces . 121

 7 Nested Classes . 153

 8 Exception Handling . 169

 9 Java I/O . 199

 10 Advanced I/O . 225

 11 Enums, Autoboxing, and Annotations . 255

 12 Generics . 291

 13 Event Processing and GUI Building . 317

 14 Creating Layouts . 343

 15 Graphics and User Gestures Processing . 377

 16 Collections . 409

 17 Threads . 435

 18 Blocking Queues and Synchronizers . 473

 19 Callables, Futures, Executors, and Fork/Join . 509

 20 Network Programming . 543

 21 Utility Classes . 585

 Index . 617

vii

Contents

Foreword . xix
Acknowledgments . xxi
Introduction . xxiii

 1 Introduction to Java . 1
Why Java? . 2
So What Is Java? . 3
Java Virtual Machine . 3
Features of Java . 4

Small . 4
Simple . 5
Object Oriented . 5
Compiled and Interpreted . 5
Platform Independent . 6
Robust and Secure . 6
Multithreaded . 8
Dynamic . 8

Java’s Evolution . 9
JDK 1.0 (January 23, 1996): Codename Oak . 9
JDK 1.1 (February 19, 1997) . 10
J2SE 1.2 (December 8, 1998): Codename Playground 11
J2SE 1.3 (May 8, 2000): Codename Kestrel . 13
J2SE 1.4 (Feb 6, 2002): Codename Merlin . 13
J2SE 5.0 (Sept 30, 2004): Codename Tiger . 14
Java SE 6 (Dec 11, 2006): Codename Mustang . 15
Java SE 7 (July 7, 2011): Codename Dolphin . 15

Summary . 16

ix

x Java Programming

 2 Arrays . 17
Arrays . 18

Declaring Arrays . 19
Creating Arrays . 20
Accessing and Modifying Array Elements . 20

Initializing Arrays . 22
Initializing at Runtime . 22
Initializing Using Array Literals . 23

The for-each Loop . 26
Multidimensional Arrays . 28

Two-dimensional Arrays . 28
Initializing Two-dimensional Arrays . 29
Looping Using the for-each Construct . 33

N-dimensional Arrays . 33
Nonrectangular Arrays . 33

Runtime Initialization . 34
Initialization Using Array Literals . 35

A Few Goodies . 35
Determining the Array Length . 35
Cloning an Array . 37
Finding Out the Class of an Array . 38

Summary . 40

 3 Classes . 41
Object-Oriented Programming (OOP) Concepts . 42

OOP Features . 43
OOP Benefits . 45

The Class . 45
Defining a Class . 45
Declaring a Point Class . 46
Using Classes . 47
Accessing/Modifying Fields . 48
The Class Example Program . 48
Declaring Methods . 49
Memory Representation of Objects . 51

Information Hiding . 52
Encapsulation . 56
Declaring Constructors . 57

Default Constructor . 60
Rules for Defining a Constructor . 61

Source File Layout . 61
The package Statement . 62
The import Statement . 63

Directory Layout and Packages . 64
Summary . 65

Contents xi

 4 Inheritance . 67
Why Inheritance? . 68
What Is Inheritance? . 69
Defining Single-level Inheritance . 72

Capturing Multilevel Inheritance . 73
Writing a Multilevel Inheritance Program . 74

Polymorphism . 80
Creating a Heterogeneous Collection of Objects . 81
A Program That Demonstrates a Heterogeneous Collection 81
Detecting the Object Type . 88
Typecasting Rules on Inheritance Hierarchies . 90
Preventing Method Overriding . 90
Preventing Subclassing . 90

Summary . 91

 5 Object Creation and Member Visibility . 93
Instantiating a Subclass . 94

The Object-Creation Process . 95
Calling the super Constructor . 98
Method Overloading . 102
Rules of Method Overloading . 104

Creating a Copy Constructor . 104
Invoking Constructors: Summary . 105

The final Keyword . 105
The final Classes . 106
The final Methods . 106
The final Variables . 108
The final Variables of the Class Type . 109
Important Points Related to the final Keyword . 110

Understanding Member Visibility Rules . 111
The public Modifier . 113
The private Modifier . 114
The protected Modifier . 115
The Default Modifier . 117
A Few Rules on Inheriting . 119

Summary . 120

 6 Static Modifier and Interfaces . 121
The static Keyword . 122

The Static Fields . 122
The Static Methods . 126
The Static Initializers . 132

Interfaces . 135
A Real-life Example of an Interface . 137
Understanding Interface Syntax . 139
Understanding Interfaces Through an Example . 140

xii Java Programming

Extending Interfaces . 142
Implementing Multiple Interfaces . 145
Combining Interfaces . 149
A Few Important Points on Interfaces . 149

Abstract Classes . 149
Summary . 151

 7 Nested Classes . 153
Nested Classes . 154

Why Use Nested Classes? . 155
Classifications of Nested Classes . 155
Demonstrating the Use of Inner Classes . 156
Accessing an Inner Class from the Outside . 159
Accessing Shadowed Variables . 160
Important Points to Note . 162

Member Classes . 162
Local Classes . 162
Defining an Inner Class within Method Scope . 163
A Few Important Points on Local Classes . 164

Anonymous Classes . 165
Creating Anonymous Classes . 167
Restrictions on the Use of Anonymous Classes . 167
Compiled Anonymous Classes . 167
Guidelines on Using Anonymous Classes . 168

Summary . 168

 8 Exception Handling . 169
What Is an Exception? . 171

Error Types . 171
The Non-fatal Errors . 172
The try-catch Statements . 174
Classifying Exceptions . 175
Combining Exception Handlers . 179
How Runtime Matches catch Blocks . 180

The finally Statement . 180
Guidelines on the Use of the finally Block . 182
Rules for Using the try/catch/finally Block . 183
The try-with-resources Statement . 183

Checked/Unchecked Exceptions . 184
The throws Construct . 185
Throwing Multiple Exceptions . 188

User-defined Exceptions . 188
The throw Statement . 190
Re-throwing Exceptions . 190

Contents xiii

Difference Between the throw and throws Keywords . 192
The final Re-throw in Java SE 7 . 192

Declaring Exceptions in Overridden Methods . 192
Printing a Stack Trace . 195
Asynchronous Exceptions . 196
Guidelines for Using Exceptions . 197
Summary . 198

 9 Java I/O . 199
Input/Output Streams . 200
The I/O Class Hierarchy . 201

The Byte Streams . 201
Determining File Length . 202
The InputStream Methods . 206
The OutputStream Class . 207
File Copy Utility . 207
The OutputStream Methods . 210

Character Streams . 210
File Viewer Utility . 211
Buffered Readers/Writers . 213
Binary Versus Character Streams . 214
Chaining Streams . 215
The Line Count Program . 216
File Concatenation . 218

Accessing the Host File System . 220
The Directory Listing Program . 220
Filtering the Directory Listing . 221

Reading/Writing Objects . 222
Summary . 224

 10 Advanced I/O . 225
The Byte-Oriented Stream Classes . 227

The PushbackInputStream Class . 231
The SequenceInputStream Class . 234
The PrintStream Class . 238

The Character-Oriented Stream Classes . 239
The CharArray Reader/Writer Classes . 239
The Console Class . 239
The StreamTokenizer Class . 241

The Object-Oriented Streams . 243
The Externalizable Interface . 244
Nested Objects Serialization . 248
Versioning Objects . 250

Summary . 253

xiv Java Programming

 11 Enums, Autoboxing, and Annotations . 255
Typesafe Enumerations . 256

Creating Integer Patterns for Enumerations . 256
The enum Type . 257
Serializing enum Types . 263

Autoboxing . 264
Wrapper Classes . 264
A Few Additions in J2SE 5.0 . 268
Autoboxing/Unboxing . 271

Annotations . 273
Built-in Annotations . 273
Declaring Annotations . 277
Annotating an Annotation . 280

Summary . 289

 12 Generics . 291
Generics . 292

What Are Generics? . 292
Why Do We Need Generics? . 293
A Sample Generics Program . 295
Type Safety . 297

Creating a Parameterized Stack Type . 298
Declaration Syntax . 298
A Generic Stack Class . 299
Examining Intermediate Code . 300
Testing the Stack Class . 301

Bounded Types . 304
Using Wildcards . 305
Bounded Wildcards . 308
Raw Types . 310

More on Generic Types . 310
Class with Two Generic Parameters . 310
Casting Types . 312
Comparing and Assigning Generic Types . 313
Generic Methods . 314
Declaring Generic Interfaces . 314

Restrictions in Generics . 314
Creating Arrays . 314
Instantiating Type Parameters . 315
Use of the static Keyword . 315

Summary . 316

Contents xv

 13 Event Processing and GUI Building . 317
Event Processing Model . 319
Delegation Event Model . 321

The Event Source . 322
The Event Listener . 322
Event Processing Sequence . 323
Registering on Multiple Event Sources . 324
Multiple Event Types . 324

Building a GUI . 325
Creating the User Interface . 326
Demonstrating the Button Control . 326
Demonstrating the Edit Control . 330
Demonstrating the List Box Control . 335

Summary . 342

 14 Creating Layouts . 343
Layout Managers . 344

Types of Layout Managers . 344
Building the GUI . 345
How Do Layout Managers Work? . 346

Using Layout Managers . 346
BorderLayout . 346
Using NetBeans to Build the GUI . 347
FlowLayout . 354
CardLayout . 356
GridLayout . 360
GridBagLayout . 361
BoxLayout . 367

Tabbed Dialog Box . 372
Advanced Layout Managers . 375
Summary . 375

 15 Graphics and User Gestures Processing . 377
What Is an Applet? . 378

Creating Your First Applet . 379
Running the Applet . 380
Using AppletViewer . 381

Understanding Applet Life-cycle Methods . 382
Processing Mouse Events . 383
Creating Popup Menus . 390
Customizing the Drawing Color . 395
Processing Keyboard Events . 403

Summary . 407

xvi Java Programming

 16 Collections . 409
What Is the Java Collections Framework? . 410
Benefits of the Collections Framework . 411
What the Collections Framework Offers . 411
The Collections Framework Interfaces . 412
The Collections Framework Classes . 414

List . 414
Optional Operations of the List Interface . 417
Set . 418
Queue . 424
Map . 427

Algorithms . 430
Summary . 433

 17 Threads . 435
Processes and Threads . 437

Thread States . 438
JVM Threading Implementations . 440
Daemon Versus Non-Daemon Threads . 442

Creating Threads . 442
Creating Your First Threaded Application . 443
Creating Non-Daemon Threads . 447
Thread Class Constructors . 449
Static Methods of Thread . 449
Some Essential Operations on Thread . 450

Thread Synchronization . 457
Bucket Transfers . 458
Producer/Consumer Problem . 461
Object Locks . 465
When to Synchronize . 466
The Deadlock . 467
Solutions to Deadlock . 468

Summary . 471

 18 Blocking Queues and Synchronizers . 473
Blocking Queues . 475

Characteristics of Blocking Queues . 476
The BlockingQueue Interface . 477
Implementations of the BlockingQueue Interface . 477
Stock-trading System . 479
The LinkedTransferQueue Example . 484

Synchronizers . 486
Semaphores . 486
Barriers . 490
Countdown Latches . 493

Contents xvii

Phaser . 497
Exchangers . 501

Summary . 507

 19 Callables, Futures, Executors, and Fork/Join . 509
Callables and Futures . 510

The Callable Interface . 511
The Future Interface . 511
How Callable and Future Work . 511
Using Callables in Parallelizing Large Tasks . 512
The FutureTask Class . 518
Creating Cancellable Tasks . 518

Executors . 523
Creating a Thread Pool for Scheduled Executions . 524
The ScheduledExecutorService Class . 524
Demonstrating Scheduled Task Execution . 525
Obtaining the Results of the First Completed Execution 528
Demonstrating the ExecutorCompletionService Class . 529

Fork/Join Framework . 533
The ForkJoinPool Class . 534
The ForkJoinTask Class . 535
Sorting an Enormous Array of Floats . 535

Thread-safe Collections . 540
The ThreadLocalRandom Class . 541
Summary . 541

 20 Network Programming . 543
Networking . 544

Simple Home Page Reader . 547
The URL Class . 550
The URLConnection Class . 550
Webpage Reader . 551
The HttpCookie Class . 552
Spying for Cookies . 553

Echo Server Application . 556
Testing the Echo Server Application . 559

Serving Multiple Clients . 560
Serving Simultaneous Clients . 561
Running the EchoMultiServer Application . 563
Testing the EchoMultiServer Application . 564

Writing a File Storage Server Application . 566
A Cloud Storage Server . 566
A Cloud Store Client . 570
Testing the File Upload/Download Utility . 573

xviii Java Programming

The InetAddress Class . 574
Broadcasting Messages . 575

Writing a Stock Quotes Server . 576
Writing the Stock Trader Client . 579
Running the Server and Client . 581
Support for SCTP . 582

Summary . 583

 21 Utility Classes . 585
The String Class . 586

A Few Important Methods . 586
Practical Demonstration of String Methods . 588
Comparing Strings . 590
Creating Formatted Output . 591

The Calendar Class . 594
The GregorianCalendar Methods . 594
The Local Time Converter Application . 595

Introspection and Reflection . 600
The Class Class . 601
The Method Class . 603
The Class Browser Application . 604
The Introspection Test Application . 605
The Class Browser . 606
Disadvantages . 614

What’s Next? . 614
Summary . 615

 Index . 617

Foreword

Java has been a part of my career and my life nearly since its beginning. I started using
Java 1.0 in 1996, and joined the Java team at Sun later that year. It was a rocky beginning,
but something quite special happened: Many brilliant people brought together countless
ideas to create a platform that changed how people think about software. Many existing
companies adopted Java as a core technology, and many new companies were formed
either to add to the Java ecosystem or to leverage it in another arena.

Java isn’t just a language. It is a platform that consists of many parts, including the Java
language, the Java Virtual Machine (VM) core libraries, and many other components. These
components make for a flexible, powerful, and versatile technology that reaches into the
most diverse range of applications anywhere.

Java isn’t just a platform. It is its own ecosystem. Built on top of the Java platform are
IDEs, monitoring and management tools, libraries, application servers, test and debug tools,
development tools, and, of course, applications of almost every variety.

Developer usage has grown in the years I’ve worked on Java. In the late 1990s, developers
were counted in the tens and hundreds of thousands. Today, Oracle reports that over nine
million developers use Java. Deployments, including Java ME on consumer devices, measure
in the billions.

Java continues to improve. By some measures, Oracle JDK performance has nearly
tripled since JDK 5. These improvements reflect changes throughout the platform.

The improvements don’t stop with performance, but include a wide range of capabilities
and features added in every release. The evolution of Java is carefully shepherded by talented
technologists with a wide range of expertise who pay an enormous level of attention to
maintaining compatibility and uniformity.

Even with this, the scope of a major Java release, combined with its occasional obscure
characteristics, makes a book like Java Programming crucial for developers. Books like this
one were a huge influence on the adoption of Java by millions of developers, including
myself, and I am grateful that Poornachandra Sarang has the patience and skills needed,
and has taken the time to effectively communicate the intricate details of the Java platform.

John Pampuch
Director, Java VM Technology, Oracle

December 15, 2011

xix

Acknowledgments

Since embracing Java in 1996, I have conducted several train-the-trainer programs and
instruction authorization tests for Sun Microsystems (now Oracle). All these years, I always
wanted to write a book on Java programming that provides accurate and authentic knowledge
of the language to professionals who want to master Java. However, this goal always seemed
to be a low priority until, finally, my dream took concrete shape when McGraw-Hill became
interested in publishing this book. Naturally, my first thanks go to the acquisitions editors of
McGraw-Hill. But thanks also go to the editorial and production teams who painstakingly
helped me bring my idea for a book into a reality. I would like to specifically mention a few
names from the teams with whom I had direct interactions. I wish to thank Joya Anthony, Jane
Brownlow, and Megg Morin from the acquisitions department as well as Bart Reed, Harleen
Chopra, and Sapna Rastogi from the editorial and production teams. Also, many thanks to
Jody McKenzie, who helped in resolving several issues during production and creating this
beautiful and technically accurate book.

My thanks also go to the members of the Oracle family. Without their help, this book
would have never achieved the technical accuracy that it has today. I first wish to thank Pratik
Parekh, a good long-time friend and the current Director of Production Management for Fusion
Middleware at Oracle Corporation. Pratik helped in introducing and establishing contacts with
the right people at Oracle. I wish to thank John Pampuch (Director, Java VM Technology at
Oracle), who took immediate action on my request and provided me with the best person in
the world to technically review the manuscript. That reviewer was none other than Danny
Coward, Chief Architect of Client Software at Oracle. Danny’s review and comments were so
deep and insightful that I decided to rewrite the entire book. My special thanks go to Danny for
agreeing to do a second round of technical reviews on the revised manuscript. On several
occasions, he went out of his way to guide me and provide the accurate technical information
that the book needed. I must admit that in spite of my many years of Java coding experience,
I still had many misconceptions that were cleared up due to my constant interaction with
Danny during the writing of this book. Danny was very particular in his reviews, even insisting
on strictly following the naming conventions and observing the code formatting per JLS
standards, thus taking care of some minor details such as required line spaces and the spacing
between the characters. Without his critical reviews, I probably would have never achieved
the level of technical accuracy that I desired for this book. Once again, many, many thanks to
you, Danny. Whatever errors may have remained in the book are now solely mine.

xxi

xxii Java Programming

My special thanks also go to my students, especially Ishita Patel, who read the manuscript
with careful eyes, locating many errors and omissions. Ishita also helped in developing and
testing all the code examples in this book. I also want to thank Rashmi Singh, who provided me
with constructive feedback on several chapters. I must also mention Steven Suting, who helped
in correcting all Java Language Syntax specifications in the book.

I am also indebted to Vijay Jadhav, who helped create the illustrations for this book as well as
formatted, organized, and tracked the manuscript.

Finally, my sincere thanks go to John Pampuch, who readily agreed to provide the foreword
to this book.

Introduction

You are holding a book that has been written by a veteran Java programmer and technically
reviewed by none other than Sun Microsystems (now Oracle). This book provides in-depth
coverage of Java language features, including the latest additions introduced in Java SE 7.
So whether you are new to Java programming, a student studying for Java certification, or
a professional programmer in other languages, you will find this book extremely useful in
taking you into the Java domain.

How This Book Is Organized
The book consists of a total 24 chapters, with three initial chapters located on the Web
(www.oraclepressbooks.com). The conventional Hello World program and basic Java
syntax are covered in these three chapters. They have been placed on the Web because
most of the readers of this book are likely to be professional programmers who want to
jump directly into the more advanced topics of the language. After an initial introduction
to Java and its path toward the latest version in Chapter 1, we jump directly to Java arrays
in Chapter 2. Up to Chapter 9, you’ll find an in-depth treatment of the Java language,
focusing mainly on object orientation in Java and dealing with many intricacies such as
the object-creation process; creating inheritance hierarchies; appropriate usage of final,
static modifiers; effectively using public, protected, and private modifiers; defining nested,
local, and anonymous classes; and, finally, how to effectively handle exceptions in your
Java applications.

From here, we take a break from the Java language syntax and move into discussing Java
libraries, covering I/O programming with several practical coding examples. Then we cover
some more advanced syntax topics such as enums, autoboxing, annotations, and generics.
The remainder of the book focuses on real-world application development, including GUI
building, event and user gesture processing, understanding data structures, thread and
network programming, and assorted important Java classes.

xxiii

http://www.oraclepressbooks.com

xxiv Java Programming

All the chapters of this book have been structured carefully to avoid forward references.
Therefore, the book is meant to be read chapter by chapter. Those who know Java and want to
get in-depth and accurate information on a particular topic can just read the relevant chapter
of interest.

The Chapters
The book consists of 21 carefully organized chapters, with three additional chapters on Java syntax
available at www.oraclepressbooks.com. Here’s a rundown of the chapters in this book:

Chapter 1 gives a brief history of Java, tells you why Java was created, what Java is, and ■
what its prominent features are.

Chapter 2 discusses how to declare and use both single- and multidimensional arrays. ■

Chapter 3 begins your study of object-oriented language by discussing what a class is. This ■
chapter covers the major features of an object-oriented language, such as encapsulation,
inheritance, and polymorphism.

Chapter 4 provides an in-depth treatment of the inheritance feature in regard to Java’s ■
object orientation. This chapter teaches you how to create single- and multilevel
inheritance hierarchies.

Chapter 5 explains the object-creation process and how superclass objects are constructed ■
during object creation.

Chapter 6 takes you further into the realm of object-oriented programming by discussing ■
static fields, methods, and initializers.

Chapter 7 provides a grand finale to Java’s classes and covers nested, local, and anonymous ■
classes.

Chapter 8 talks about exception handling in Java. You may find this to be a nice change of ■
pace after a heavy dose of the intricacies of the Java language in the previous two chapters.

Chapters 9 and 10 cover I/O programming in Java, including the new java.nio package. ■

Chapter 11 takes you further into Java language syntax and introduces enums, autoboxing, ■
and annotations.

Chapter 12 covers generics, giving you a deep technical understanding of its many features. ■

Chapter 13 is a move toward practical application development in Java. It deals with GUI ■
building and how events are processed in such GUI applications.

Chapter 14 provides an in-depth treatment of the various layout managers used in creating ■
sophisticated screen layouts.

Chapter 15 shows you how to draw graphics and process user gestures. ■

Chapter 16 is all about the Collections API—an important API for organizing your data. ■

Chapter 17 is the first of three chapters on thread programming. It provides in-depth ■
knowledge on how threading is implemented in JVMs and discusses the basic
synchronization mechanism.

http://www.oraclepressbooks.com

Introduction xxv

Chapter 18 discusses blocking queues and synchronizers such as countdown latches, ■
semaphores, and more.

Chapter 19 covers callables, futures, executors, and the latest fork/join framework ■
introduced in Java SE 7.

Chapter 20 is on network programming, a very vital facet of Java applications. ■

Chapter 21 provides the grand finale by discussing a few assorted classes and APIs that ■
set a path for you to learn the rich repertoire of classes in Java.

NOTE
Syntax Reference 1, Syntax Reference 2, and Syntax Reference 3
discuss basic Java syntax and are available at www.oraclepressbooks
.com. These three web chapters start with a discussion of the
conventional Hello World program and walk you through basic
constructs, operators, and control flow statements. The three
web chapters are up to date with all the additions made to basic
Java syntax up through Java SE 7. Many features that are easily missed
are discussed in these chapters.

http://www.oraclepressbooks.com
http://www.oraclepressbooks.com

Chapter
1

Introduction to Java

1

2 Java Programming

ince its release in 1996, Java has been a popular language among developers
worldwide. As of this writing, official sources (namely Oracle) claim that there are
about 9 million active Java developers worldwide. Java has been widely accepted as
the language of choice for developing almost every kind of application, ranging
from small web-based Java applets to large distributed enterprise applications. You

will also find Java being used in small-embedded devices as well as very large mission-critical
applications. You will find Java being used in colleges by students doing their projects, in industries
by developers for their commercial projects, in government for their scalable applications, in banks
for their time-critical reliable applications, and in militaries for their robust mission-critical
applications. You will find that Java is used in almost every corner of the world.

So what is it that has made Java so popular? Is Java merely a programming language like
Pascal, C, or C++? Is it a tool for creating applications of various sizes and complexities? Is it a
platform for running applications right from embedded to enterprise level? In this chapter, I will
try to answer these questions and many more. You will learn what is so special about Java that
has made it so popular. In particular you will learn the following:

Why Java was created■■

What Java is ■

The features of Java ■

Java’s evolution■■

Why Java?
Java was publicly released in 1996. At that time, C++ substantially dominated the market and was
widely used for creating many kinds of software applications. With C++ having such a stronghold in
the market, almost nobody would have thought of bringing a new programming language into the
world of computing—but Sun Microsystems did. When they came out with Java, they had specific
reasons for developing a new language at that time. One of the primary goals for developing a new
language was the need for an appropriate language in developing embedded device applications.

There were many issues with then existing languages. C++ has always been known as “resource
hungry.” C++ developers are required to manage memory themselves. A typical “Hello World”
program written in C++ with, say, Microsoft’s Visual Studio requires several megabytes of memory
to run the code. Though C++ generates highly optimized code, the runtime requirements to run it
are typically very high. This was also true for other development and runtime systems available in
the market at that time, such as Borland C++ and Turbo Pascal—thus the strong need for a language
that would generate small code and use a runtime environment that would not occupy a lot of
memory space on the target device.

Programming for embedded devices also demands portability, and these devices typically use a
wide variety of CPUs and different architectures. Each architecture made C++ applications behave
differently and typically needed to be rewritten for new devices. The complexity of managing
multiple build environments and codebases was the biggest challenge in supporting multidevice
development. Java was an attempt to create a higher-level language that eliminated these problems—
and it largely succeeded in its attempt. It eliminated the multidevice development problems with the
introduction of a virtual machine (VM) and portable bytecode architecture. Sun Microsystems aptly
came up with the marketing slogan “Write Once, Run Anywhere.”

S

Chapter 1: Introduction to Java 3

So What Is Java?
The previous section described why Java was created. It started out as a programming language that
had a lot of similarities to C++ and Smalltalk, and it was designed to appeal to C++ developers.
Java was created as a simpler, higher-level language that removes complexities such as memory
management and security and relegates them to tasks managed by the VM.

NOTe
Today, Java is much more than a simple programming language.
It is a platform as well as a development and runtime environment.
By the end of this chapter, you will understand what Java is from the
perspective of today’s computing environment.

The creators of Java wanted to establish an easy migration path for developers, most of whom
were quite strong in C++ at that time. Although Java had lots of similarities to C++, such as being
an object-oriented language, the creators eliminated the drawbacks and not commonly used
features of C++ from their new language. This made Java not only small, but offered several side
benefits, such as making it more robust, simple, and portable.

Before we cover Java’s language features, let’s look at its architecture and the concept of a
“virtual machine.”

Java Virtual Machine
A Java compiler translates the Java source program into what is known as bytecode, which is similar
to the OBJ code generated by a C++ compiler or any other language compiler. The only difference is
that most of these compilers generate the object code for a real CPU, whereas the bytecode
generated by a Java compiler consists of the instructions for a “pseudo CPU.” In other words,
whereas C++ OBJ code consists of the instruction set for, say, an Intel 80x86 CPU or Motorola 68xxx
CPU, or maybe even a SPARC workstation, Java bytecode represents an instruction set for a CPU that
does not exist in reality. What Sun Microsystems did was to create a virtual CPU in memory, and
they designed an instruction set for this virtual CPU, which itself is emulated in memory at runtime.

A Java virtual machine (JVM) emulates the aforementioned virtual CPU. The JVM provides
the runtime environment for a Java executable (bytecode). It also provides a bytecode interpreter
and a verifier that confirms the bytecode’s validity before translating and running it on a real
CPU. In addition, it has several more modules for security, memory and thread management,
and other purposes. A JVM is essentially a machine (as its name suggests) that is capable of
running a Java executable. The JVM and its essential components that are relevant to us at this
time are shown in Figure 1-1.

The Java compiler stores the generated bytecode in a file with the extension .class. Your
program will also use several .class files supplied by the Java Development Kit (JDK). The class
loader in JVM loads these .class files in memory. Along with your .class files, JVM also loads
other library files required by your application at the runtime. The JVM subjects the loaded
classes to verification to ensure that they do not contain any undefined instructions for the
pseudo CPU. The internal .class files need not go through such verifications. If the bytecode of
your application program contains an invalid instruction, the JVM rejects its execution and
unloads it from memory. After the code is verified, a built-in interpreter converts it to machine
code. Now, the code is handed over to the execution unit to be run on the host.

Based on this understanding of Java’s architecture, you will now be able to appreciate its features.

4 Java Programming

Features of Java
Java offers several benefits over other programming languages. It is small and simple, and it is
object oriented. It may be treated as both a compiled and interpreted language. The executables
generated by the Java compiler run on any platform that provides a JVM. The Java platform itself
is robust and secure. Like many other languages, it supports multithreading, albeit in a much
simpler form. And lastly, like a few other languages, it is dynamic in nature. We will now look at
each of these features in more detail.

Small
As stated previously, the main motive behind creating Java was to develop a language for embedded
systems programming. The executable code generated by Java is very small; typically, a Hello World
application translates into just a few bytes. Compare this with similar code generated by a C++
compiler, which is easily a few kilobytes in size and additionally requires lot of memory for its
runtime. The runtime environment required to run Java compiled code typically takes less than 1MB
of memory space. Again, contrast this with the runtime required to run a C++ application, which
involves not only hundreds of megabytes of code embedded in MFC (Microsoft Foundation Classes)
or OWL (Borland’s Object Windowing Library) but also requires a sophisticated operating system

Class loader

Java program
.class file

Java API
.class file

Bytecode
verifier

Bytecode
interpreter

Execution
engine

Host system

FIGURe 1-1. Java Virtual Machine

Chapter 1: Introduction to Java 5

and hardware to deploy it. Although this was true for both stand-alone and GUI-based applications
during the previous decade, Microsoft’s current .NET platform provides an architecture similar to Java
and its executables, and runtime environment requirements are comparable to those of Java’s.

NOTe
Both MFC and OWL were the popular libraries at the time
Java was introduced.

Simple
Being object oriented, Java is simple to learn. It has often been said that people who never learned
procedure-oriented languages such as C and Pascal will always leap-frog those who have when it
comes to learning an object-oriented language. Those who have learned procedural-oriented
languages typically find the migration to object-oriented languages difficult because it may require
some undoing of what they have learned previously. Java is simple enough to be introduced as a
first programming language in any computer science curriculums.

Object Oriented
The next important feature of Java is that it is object oriented. C++, which originated from C,
allows global variable declarations, which means that the variables can be declared outside the
scope of any object—to be more precise, outside of any class definition. This violates the rules
of encapsulation—one of the important features of an object-oriented language (the features of
object-oriented programming are covered in Chapter 3). Java does not allow global declarations.
Similarly, in Java, there are no structures and unions like in C and C++ that break the rules of
object orientation by making all their members public by default. The absence of these features
in the Java language has made it a better object-oriented language.

In Java, the entire code consists of only fully encapsulated classes. You’re probably wondering
about the primitive data types. Are these, too, represented as objects in Java? To maintain efficiency,
Java declares primitive data types as non-objects; however, it also provides wrapper classes for
these primitive data types should you prefer to use objects holding the primitive data type items.

Compiled and Interpreted
Here lies the major difference between Java and languages such as C++, Pascal, and many others.
These languages compile their source program into object code (an .obj file). The linker converts the
generated object code into an executable (.exe file) by combining object code with the desired
libraries. When you run the EXE, the loader in the operating system loads the executable code in
memory, resolves the function references with the absolute memory addresses, and executes the code.

Compiling and running a Java program differs substantially from the preceding procedure. As
explained earlier, a Java compiler translates the Java source program into what is known as
bytecode, which is the set of instructions for a virtual CPU. No linker process is involved when you
create an executable from a Java source program. In fact, the only executable that is created from a
Java source program is the bytecode. So how does this bytecode run on a real CPU? When you run
a Java executable (bytecode) on your machine, an interpreter converts each bytecode instruction
into a real CPU instruction. This instruction then executes on the real CPU, so compiling and
running a Java program involves both compilation and interpretation processes. Thus, Java is
considered both compiled and interpreted.

6 Java Programming

As Java bytecode is interpreted into machine language instructions at runtime, Java code
execution suffers in performance. To overcome this performance limitation, most JVMs implement a
number of code optimization techniques, one of which is the use of a Just-in-Time (JIT) compiler
that translates the bytecode into machine language code before the real CPU begins the program
execution. Obviously, the JIT compiler cannot perform as many optimizations as an offline compiler
such as the C++ compiler, because it has to translate the bytecode into machine language code in
real time. If the JIT compiler were to attempt to do so, it would take a long time to start the program
after the user fires it up from the command line. You have to consider the tradeoff between startup
time and throughput. VMs employ a variety of optimization techniques these days. Most of them
can be tuned to prefer startup over throughput, or how quickly they adapt the optimizations. There’s
a whole body of expertise on tuning VMs for performance, and for many apps, the Java version is as
quick as (and sometimes quicker than) the C++ counterpart.

Platform Independent
A major benefit that is derived out of the introduction of a JVM is the resulting platform
independence for a Java executable. As seen in the previous section, the JVM provides a runtime
environment for Java executables. Also, you have seen that the JVM is a software program that runs
on a target environment. Thus, as long as you have a JVM for a desired machine, your compiled
Java code (bytecode) will run on that machine without requiring any changes in the binary or the
source program. This way, a Java program becomes platform independent at the binary level. Any
compiled Java application would run on any platform without any changes as long as the target
platform provides a Java virtual machine. This turned out to be a great boon for application
developers who could now easily create a portable application that would run on several
operating systems without any code modifications. In the days before the introduction of Java,
creating portable applications was a painstaking task for many developers. These developers lost
important revenue if they were unable to port their popular applications onto other platforms—and
those who were able still had to rewrite them for new devices. The platform independence of a
Java application is illustrated in Figure 1-2.

As seen in Figure 1-2, a Java compiler compiles the given source program into machine-
independent bytecode. Each of the three machines shown in the figure run a different operating
system—that is, UNIX, Windows, and Mac OS. Each of these machines could be running on
totally different hardware. For example, UNIX could be running on a Sparc workstation, Windows
could be running on an Intel 80xx architecture, and Mac OS could be running on an architecture
such as 68xxx or Intel 80xx. However, what is common among all three machines is the JVM.
Note that the JVM, which is a software application itself, is not portable. Rather, every JVM is
written for a particular target platform. The bytecode is portable across different JVMs and thus
across different platforms that support the JVMs.

Robust and Secure
The introduction of the JVM in the architecture also helped developers in creating robust and
secure Java applications. So what is meant by “robust and secure”? As described earlier, bytecode
is interpreted by a JVM, and a JVM contains a bytecode verifier. The bytecode verifier not only
verifies the validity of the bytecode, but also maintains the integrity of the memory space used by
each application running on it. If the bytecode is invalid, JVM simply refuses to run the code.
Similarly, if the bytecode tries to access a memory location that does not belong to the memory
space of the current application, the JVM rejects the code.

Chapter 1: Introduction to Java 7

Now, in the first place, how can you have invalid bytecode or an invalid memory reference in
a compiled Java application? The bytecode may be modified by a malicious hacker by opening the
code in a binary editor, or it may simply get modified due to noise as it is transmitted over a
network. Accordingly, even the memory references may get modified in the executable before it is
referenced by the JVM at runtime. Fortunately, the JVM traps such intentional and nonintentional
errors before the code is executed on a real CPU, resulting in a very robust application that won’t
crash your operating system.

Java code is highly secure in the sense that it cannot be used to spread a virus on a target
machine. Java code that runs under the tight surveillance of the JVM does not have direct access
to the operating system resources. Such access is made through the JVM, which ensures all the
necessary security for the operating system.

Java has omitted one of the important features of C++, and that is pointer arithmetic. Java does
not support the declaration of pointers and pointer arithmetic.

NOTe
Java supports object references that are essentially pointers. However,
user-level pointer arithmetic is not supported.

The lack of pointers also makes Java programs more robust and secure. Pointers are notorious
for allowing malicious access to locations outside the executing program’s memory space. They can
also be used for spreading viruses on the system. The elimination of pointers has helped developers
in creating robust and secure applications in Java.

FIGURe 1-2. Demonstrating Java Portability

Program.java

UNIX Windows

Compiler

Mac

JVMJVMJVM

Class …{
 … main{

 …
 }

}

8 Java Programming

Java is both a statically and strongly typed language. The term static refers to compile time or
the source code, whereas dynamic refers to the runtime or the bytecode. A programming language
is said to use static typing when type checking is performed during compile time as opposed to
runtime. In static typing, all expressions have their types determined at compile time, prior to when
the program is executed. The word strong in the context of typing means that rules about the
typesystem are enforced prior to the code being run. Thus, Java is considered to be both statically
and strongly typed.

Another important consideration in making an application robust is the proper allocation and
deallocation of memory and other system resources at runtime. In C++, memory allocation and
deallocation are the responsibility of the programmer. A developer may sometimes forget to
deallocate a memory resource after it has been used. The worst case is when he deallocates
memory that is still in use by some other part of the application. This results in chaos and hard-to-
track runtime errors. Java eliminates this issue totally by providing automatic garbage collection.
The Java runtime assumes the responsibility of tracking the allocations and freeing memory
resources when they are no longer referenced by any part of the application. This automatic
garbage collection makes Java applications very robust.

Another reason behind why Java programs are so robust is the exception-handling mechanism.
Whenever an error occurs in your running program, it will be handled by an exception handler in
your code, provided you have one. As a developer, you are required to provide exception handlers
at all appropriate places in your program. Java has an exception mechanism with two types of
exceptions—checked and unchecked. The compiler makes the developer provide code to handle
the checked exceptions, but not the runtime (unchecked) ones. This mandatory requirement for
processing checked exceptions results in more robust applications with fewer application crashes.

Multithreaded
The fact that Java was a multithreaded language was one of the key features hyped when the
language was introduced in 1996 (…as if other languages did not support multithreading).
Although most other languages do support threading, what Java provided was simpler semantics
for threading. Creating threads in C++ is as easy as creating threads in Java. The difference lies in
the management of shared resources. To share a resource among multiple running threads, C++
uses several constructs, including critical sections and semaphores. These are low-level constructs
provided by the operating system itself. Coding for these constructs is typically very complex. Java
hides the use of all these constructs underneath a newly designed keyword called synchronized.
You just declare a block of code or a class as synchronized and the Java runtime takes care of the
thread concurrency in accessing the shared resources. This makes thread programming in Java
very simple.

NOTe
What was obscured from developers in early version of Java has been
made available in its newer versions. The typical synchronization
constructs such as semaphores, CountDownLatch, and many more
are now accessible to programmers.

Dynamic
Another important feature introduced in Java is its dynamic nature. As we have seen, a Java
source program compiles into bytecode. This bytecode is stored in a file with the extension .class.

Chapter 1: Introduction to Java 9

A running Java application can load a compile-time unknown .class file, understand the defined
class, instantiate it, and use it for its own purpose. This process is called “introspection and
reflection” in Java. A running Java program can introspect an unknown class, understand the
attributes and operations defined in it, create an instance of the class, set the attributes of the
created object, and invoke the member functions on the created object. It can also create an array
of objects of this unknown type at runtime. This is the dynamic nature of Java.

NOTe
Smalltalk had this dynamic feature since the 1970s, Objective-C from
the 1980s, and so do modern languages such as C#.

Java’s evolution
So far, we have discussed the features of Java referring to its first version, JDK 1.0. Over time, Java
has expanded a lot and has had many new features added to its repertoire. You will learn several
new features in this book. In this section, we discuss the way Java has evolved over the last
decade and a half.

As mentioned earlier, although Java started as a programming language for embedded
devices, it has evolved into a full-fledged platform. We will look at the major milestones in Java’s
evolution to its current state. Java is distributed in the form of a Java Development Kit (JDK). The
several milestones in Java’s evolution are identified by the version number assigned to this JDK.
The following subsections list the major releases of the JDK and the features introduced therein.

JDK 1.0 (January 23, 1996): Codename Oak
This was the first version of Java, released officially in January 1996. Prior to that Java was known
as “Oak” and was mainly used internally by Sun for the development of embedded software.
Embedded devices demanded portability across a wide variety of hardware and a small footprint;
Java carries both these capabilities. JDK 1.0 itself was really small, with about 212 classes and
eight user packages, with one additional Sun package for debugging.

NOTe
A Java package provides a logical grouping of classes and interfaces.

Thus, this version of Java had very limited capabilities and was no match for the libraries
provided in other languages at that time. The user interface provided in the java.awt (Abstract
Windowing Toolkit) package was too primitive and did not even provide a printing facility. In
spite of a small feature set, Java usage picked up early in the market and within one year of its
introduction Java became extremely popular.

The success behind Java at that time was due to the increasing popularity of the Internet.
Web pages back then did not possess dynamic capabilities; the web pages were only static. Java
applets provided dynamic content generation and interactive capabilities for web pages. Every
copy of the Netscape browser provided a Java runtime. Thus, developers were able to reach a
massive user base very easily by writing Java applets. This resulted in the enormous popularity
and quick acceptance of Java. JDK 1.0 also provided classes for network programming, and Java
was hyped at that time as a network programming language.

10 Java Programming

NOTe
An applet is a small Internet-based program, written in Java, that can
be downloaded by any computer.

JDK 1.1 (February 19, 1997)
The next major release for Java was in February of 1997. As you can see, this major release came
just one year after its original release. One can imagine the popularity that Java must have gained
in this short period of time. So what major additions were made to Java in this release? The number
of classes in JDK 1.1 was 504 and the number of packages was 23. These figures speak to the
number of additions made to the Java APIs. Thus, although the change in release number was
minor, this was in fact a major change.

The major change in the Java language at this time was the new event-processing model.
JDK 1.0 used the hierarchical event model used by Windows operating systems. JDK 1.1 and
above use the delegation event model, which is more efficient compared to the older model. This
helped improve Java’s performance, which was highly desired because Java in those days lacked
in performance due to its compiled and interpreted nature, as explained earlier. Programming for
the delegation event model may employ the newly added anonymous and inner classes for
improved efficiency.

JDK 1.1 had many minor releases over next two years, until its last release, which was JDK 1.1.8
in April 1999. Each release added new classes and interfaces to the library, and thus Java was
growing every day. Some of the major milestones in these minor releases are detailed next.

Java Beans
The JavaBeans API was introduced during this period for component development in Java. Java
Beans are reusable software components, written in Java, that can be manipulated visually in a
builder tool. Thus, you could build sophisticated GUIs (graphical user interfaces) visually by using
third-party components based on the JavaBeans API.

Remote Method Invocation
JDK 1.1 also introduced Remote Method Invocation (RMI), which allows a client to invoke a
method on an application running on a remote server. RMI used a proprietary binary protocol
called the Java Remote Method Protocol (JRMP). Later on, a newer protocol, called the Internet
InterORB Protocol (IIOP), was widely accepted by the industry and became preferred over JRMP.
IIOP was designed as part of the Common Object Request Broker Architecture (CORBA). To
bridge the gap between the two protocols, Java also introduced RMI over IIOP.

The JAR File Format
A Java applet may consist of many source files. When such applet code is compiled, it generates
a separate object code (.class) file for each public class or interface. When the applet code is
downloaded to the client machine, all such .class files must be downloaded before the applet
can begin its execution. The HTTP 1.0 protocol required the creation of a separate socket
connection for each file download. Typically, each .class file is a few hundred bytes in size. The
time required to make a connection and disconnection was much longer than the time required
for each file download. To resolve this problem, JDK 1.1 introduced the JAR concept, whereby
all applet .class files were archived in one single file using the PKZIP algorithm. The resultant
JAR file was referenced in the APPLeT tag of the HTML code. The client would now download

Chapter 1: Introduction to Java 11

one single JAR file using a single socket connection. This resulted in faster download and a
much better application startup time on the client’s end.

Digital Signatures
Another major change provided in JDK 1.1 was the introduction of digital signing. In JDK 1.0, a
Java applet would run in a sandbox with several security restrictions and limited access to system
resources; conversely, a stand-alone Java application runs outside the sandbox with full access to
all the system resources. With digital signing, applets that were generally deployed on remote
servers could now be trusted after their signatures were verified. The client would grant full
privileges of a stand-alone application to such verified signed applets.

AWT enhancements
The AWT, which contains the interfaces and classes for building the GUI, provided several
enhancements in JDK 1.1. The most noticeable change was the new event model mentioned
earlier. Besides this, several other additions were made to the AWT package. The GUI now
supported data transfer using the clipboard so that you could cut/copy/paste the contents of your
documents from even a native application to a Java application, and vice versa. You could set
and use desktop colors in your Java applications. You could also define shortcut keys for menu
items. It also became possible to create pop-up menus like the ones in applications running on
Microsoft Windows.

Finally, AWT classes added printing support. Printing was not at all possible in JDK 1.0. AWT
also added a ScrollPane container for displaying large documents in windows with scrollbars.
Note that even such basic facilities were not available in JDK 1.0, and it received wide acceptance
in the very short period of one year. Thus, Java had a promising future, as was proved by now.

Other Changes
Some of the other noticeable changes in JDK 1.1 included the introduction of object serialization
classes, the Introspection and Reflection API, and the facility to define Inner classes. In addition,
general performance improvements were made in several places.

J2Se 1.2 (December 8, 1998): Codename Playground
The next milestone for Java came in December 1998. This version had 1,520 classes and
59 packages. You can clearly see how fast Java grew in just three years. During this time, Sun
also introduced a new terminology to describe Java technology—Java SE (Standard Edition). The
name JDK is still used to describe an implementation of this technology.

The Introduction of Swing
The major feature introduced in Java 2 was Swing—the new Java-based GUI classes. This made
the earlier AWT classes somewhat obsolete, except that Swing extended those classes. AWT
components are considered heavyweight because they use many native operating system calls.
The new Swing-based GUI classes are totally Java based and therefore are lightweight. These Java-
based classes provided the advantage of on-demand installation in browsers that refused to add
support to the new JDK versions; this was the case with Microsoft’s Internet Explorer (readers may
be aware of the famous legal suit between Microsoft and Sun Microsystems during this period).
Swing classes also permitted the “pluggable look and feel” (PLAF) that allowed developers to
change the look and feel of their applications to whatever they would like. Swing supported
Windows, Motif, and Java native platforms.

12 Java Programming

NOTe
The Java platform at that time was commonly known as Java 2, even
though the official name was J2SE 1.2.

The 2D API
The JDK now included classes for the 2D API to allow the user to create two-dimensional charts
and graphs easily with the help of several predefined classes and interfaces. The 2D API is the
basis for all the drawing in the Java SE platform, not just for charts and graphs.

Drag-and-Drop
J2SE 1.2 introduced the drag-and-drop facility for selecting contents in a Java application and
then dragging and dropping them into a native application, and vice versa. Thus, you could now
drag and drop the contents of a Microsoft Word document into a Java application, as well as the
other way around. This is done without copying and pasting the contents to a clipboard.

Audio enhancements
The JDK now provided classes for playing back MIDI files and a full range of .wav, .aiff, and .au
files. It also provided much higher sound quality.

Java IDL
Java IDL is CORBA’S ORB (Object Request Broker) implemented on the Java platform. This
facilitated integration of Java applications with existing CORBA clients and servers. Java provided
both CORBA IDL (Interface Definition Language) to Java Interfaces mapping and Java to CORBA
IDL reverse mapping. This made it possible to protect the investments in both existing Java Client
and RMI-based Java applications.

Security enhancements
Java security is now policy based. Digital signing was introduced in JDK 1.1. This allowed the
identification of the applet source; however, it was not possible to assign different privileges,
depending on the source of the applet. In other words, there was no differentiation between two
different trusted applets or between a trusted applet and a stand-alone application. All would
acquire the same privileges. J2SE 1.2 resolved this issue by creating policy-based security. One can
now define a security policy based on the source of the applet. In this way, different applets would
be subject to different policies defined by their user and thus acquire different sets of privileges.
This also applies to stand-alone Java applications that were also subject to user-defined policies.
The policy files are text based and easily configurable. Java also provided a policy tool to create
and maintain policies. The policies enabled the fine-grain access control to system resources.

Other enhancements
In addition to the aforementioned major changes, several enhancements were made to improve
performance in general. The loaded classes now had better memory compression. The memory
allocation and garbage collection had improved algorithms for faster allocations and deallocations.
The Just-in-Time (JIT) compiler mentioned earlier was introduced in this version of Java. New
classes such as ArrayList and BufferedImage and APIs such as Collections were added. DSA code
signing was also added.

Chapter 1: Introduction to Java 13

NOTe
At the time the Java 2 platform was introduced, Java ventured into
another arena, known as server-side Java. A separate bundle of Java
classes was introduced for this purpose and was called J2EE (Java 2
Enterprise Edition). This included classes for server-side component
developments such as Servlets. J2EE has also gone through several
major revisions and now includes classes for creating server-side
components such as Enterprise Java Beans (EJBs), Java Server Pages
(JSPs), Java Database Connectivity (JDBC), J2EE connectors, and more.
By this time, Java was clearly split into two areas: the server-side Java
(J2EE, now called Java EE) and the standard edition of Java (J2SE).
Because this book focuses only on the standard edition of Java, we
will not discuss J2EE further.

J2Se 1.3 (May 8, 2000): Codename Kestrel
The next major release of Java, known by this time as J2SE (Java 2 Standard Edition), came in May
of 2000. It was codenamed Kestrel and was also called Java 2, Release 1.3. This version did not
make lots of additions to its predecessor. The number of classes increased from 1,520 to 1,840,
and the number of packages increased from 59 to 76. The notable changes included the bundling
of the HotSpot JVM (first released in April 1999 for J2SE 1.2 JVM), JavaSound, Java Naming and
Directory Interface (JNDI), and Java Platform Debugger Architecture (JPDA). JNDI provides Java-
platform-based applications with a unified interface to multiple naming and directory services in
the enterprise, including Lightweight Directory Access Protocol (LDAP), Domain Name System
(DNS), Network Information Service (NIS), Common Object Request Broker Architecture (CORBA),
and file systems. Like all Java APIs, JNDI is independent of the underlying platform. The service
provider interface (SPI) allows directory service implementations to be plugged into the framework,
which may make use of a server, a flat file, or a database.

The RMI API had several enhancements—strings longer than 64K could now be serialized,
and rmid now required a security policy file, to name a couple. Two new methods were added in
the DataFlavor class of the drag-and-drop API. Several additions were made to the Java 2D API,
including support for Portable Network Graphics (PNG) format. Besides these, many changes
were made to Swing, AWT, Security, and Object Serialization APIs. The java.math package was
enhanced, and some classes were added, including the Timer class, the StrictMath class, the
print class, and the java.media.sound class. This API introduced Hotspot and RMI over IIOP
(discussed earlier). The RSA code signing was also added.

The next minor release was J2SE 1.3.1, codenamed Ladybird, which was released on
May 17, 2001.

J2Se 1.4 (Feb 6, 2002): Codename Merlin
This was the first release of the Java platform developed under the Java Community Process (JCP) as
Java Specification Request (JSR) 59. It consisted of 2,991 classes in 135 packages. Major changes
included regular expressions modeled after Perl, exception chaining, an integrated XML parser, an
XSLT processor (JAXP), and Java Web Start. To support regular expressions, a new package called
java.util.regex was added that contained classes for matching character sequences against patterns
specified by regular expressions. You will learn about exception chaining in Chapter 8. The JAXP

14 Java Programming

(Java API for XML processing) provides basic support for processing XML documents though a
standardized set of Java Platform APIs. Java Web Start software provides a flexible and robust
deployment solution for Java-technology-based applications.

NOTe
The JCP is the mechanism for developing standard technical
specifications for Java technology. The JSR is the actual description
of proposed and final specifications for the Java platform.

Besides these, several changes came in the AWT package to improve the robustness, behavior,
and performance of GUI-based programs. Likewise, many new features were added to Swing,
including a new spinner and formatted text field components as well as support for drag-and-drop.
The Popup and PopupFactory classes were exposed to programmers, thus allowing them to create
their own pop-ups. JDBC, which provides universal data access from the Java programming
language, was enhanced to JDBC 3.0 API. The new features included the ability to set savepoints
in a transaction, to keep result sets open after a transaction is committed, to reuse prepared
statements, to get metadata about the parameters to a prepared statement, to retrieve keys that are
automatically generated, and to have multiple result sets open at one time. It also included two
new JDBC data types: BOOLEAN and DATALINK. The DATALINK data type makes it possible to
manage data outside of a data source. The new I/O (NIO) APIs provided new features and
improved performance. Besides these changes, additions were made to RMI, Math, Collections
Framework, Accessibility, and the Java Native Interface (JNI).

The other minor releases that followed were J2SE 1.4.1 (September 16, 2002), codenamed
Hopper, and J2SE 1.4.2 (June 26, 2003), codenamed Mantis.

J2Se 5.0 (Sept 30, 2004): Codename Tiger
Developed under JSR 176, Tiger added a number of significant language features, including the
for-each loop, generics, autoboxing, and var-args. Because this book focuses on J2SE, we cover
most of the additions made in this release. This release had 3,562 classes in 166 packages.

Generics allow a type or method to operate on objects of various types while providing
compile-time type safety. This was added to all the classes in the Collections Framework. You
learn about generics in Chapter 12. The enhanced for loop eliminates the drudgery and error-
proneness of iterators and index variables when iterating over collections and arrays. (You can
learn about this enhanced for loop in Syntax Reference 3, one of the three web chapters.) The
autoboxing/unboxing feature eliminates the drudgery of manual conversion between primitive
types and wrapper types. Chapter 11 fully covers this feature. The var-args allow you to specify a
variable number of arguments on program invocation. This is covered in Chapter 9. Besides these,
typesafe enums were introduced in this version, which are covered in Chapter 11. The newly
added static import facility lets you avoid qualifying static members with class names without the
shortcomings of the “Constant Interface anti-pattern.” Additionally, changes and enhancements
were made to Internationalization APIs. Internationalization is the process of designing an
application so that it can be adapted to various languages and regions without engineering
changes. Sometimes the term internationalization is abbreviated “i18n,” because there are 18 letters
between the first letter (i) and the last (n). Besides these, the following APIs were enhanced:
JavaSound and Java 2D technologies, Image I/O, AWT, and Swing. The java.lang and java.util
packages had several enhancements, including the new Formatter and Scanner classes, which

Chapter 1: Introduction to Java 15

you will be using in several programming examples in this book. There were lots of enhancements
to Concurrency Utilities and the Collections Framework. We cover all major enhancements to
Concurrency Utilities in Chapter 19 and those in the Collections Framework in Chapter 16. On the
hardware front, AMD Opteron processors are now supported by the server VM on SUSE Linux and
on Windows 2003.

Java Se 6 (Dec 11, 2006): Codename Mustang
This release facilitated the use of scripting languages (JavaScript using Mozilla’s Rhino engine)
with the JVM and provided Visual Basic language support. As of this version, Sun replaced the
name “J2SE” with Java SE and dropped the “.0” from the version number. This release introduced
several changes and additions to the Collections Framework. New interfaces, named Deque,
BlockingDeque, NavigableSet, NavigableMap, and ConcurrentNavigableMap, were added.
A few concrete implementation classes were added, and the existing classes were retrofitted to
implement new interfaces. We discuss the Collections Framework in Chapter 16. Several
enhancements were made in the java.lang.instrument package. The Instrumentation API provides
services that allow Java programming language agents to instrument programs running on the
JVM. We do not cover instrumentation in this book. The java.io package introduced a new class
called Console, which will be covered in Chapter 9. This class contains methods to access a
character-based console device; its readPassword method allows input of sensitive data such
as passwords by disabling echoing of characters on the console. The File class now has several
methods to retrieve disk usage information as well as setting and querying file permissions.
We discuss this class in Chapter 9. The JAR and ZIP API was also enhanced. In addition,
enhancements were made in Java Web Start and the Java Network Launching Protocol (JNLP),
which provides a browser-independent architecture for deploying Java 2 technology-based
applications to the client desktop.

Other major changes included support for pluggable annotations (JSR 269), lots of GUI
improvements, including native UI enhancements to support the look and feel of Windows Vista,
and improvements to the JPDA and JVM Tool Interface for better monitoring and troubleshooting.

Java Se 7 (July 7, 2011): Codename Dolphin
Java SE 7 is the major release to the Java SE platform, which came a long time after its previous
release. It introduced many enhancements to the Java language. Integral types can now be
expressed using the binary number system. Numerical literals can contain underscore characters
for better readability. You can use strings in switch statements. A diamond operator is introduced
in generics instance creation syntax. A new try-with-resources statement has been added.
Multiple exception types may now be included in a single catch block. A new compiler option
and two annotations are added to give you improved compiler warnings and errors when using
nonreifiable formal parameters with var-args methods. Many of these features are covered in the
relevant chapters in this book.

Java SE 7 introduced the NIO.2 API, which offers the ability to develop a custom file system
provider for managing file system objects. The new additions to this API provide comprehensive
support for file I/O and for accessing the file system. We cover this in Chapter 9. The JDBC 4.1 API
enables you to use try-with-resources syntax to automatically close resources of type Connection,
Resultset, and Statement. Additions have been made to RowSet that enable you to create all types
of row sets supported by your JDBC driver. Java SE 7 adds support for Stream Control Transmission
Protocol (SCTP) on Solaris and Sockets Direct Protocol (SDP), which is a wire protocol to support
stream connections over InfiniBand fabric. This, at the time of this writing, was available for the

16 Java Programming

Solaris and Linux platforms. You can now develop and deploy Rich Internet Applications as
applets or Java Web Start applications. Because this is an altogether different domain of
applications that would require another book to describe, we do not cover these APIs in this book.
The Java SE platform now supports the implementation of dynamically typed programming
languages on the JVM; for this, a new instruction called invokedynamic was added to the JVM.
Although the Introspection and Reflection API is covered thoroughly in Chapter 21, we do
not cover the use of this instruction because it is not at all relevant to the context of this book.
A lightweight fork/join framework is now added to the Concurrency API. This is covered fully in
Chapter 19. On the client side, Java SE 7 adds a next-generation cross-platform look and feel for
Swing—called Nimbus look-and-feel. This is used in several applications in this book. Besides
these, there are several other enhancements that are not relevant to the context of this book. For
example, the XML stack has been updated to support the most recent versions of XML processing,
binding, and Web Services APIs. The MBeans API is enhanced to add more management
functionality. In the Security and Cryptography API, a portable implementation of the standard
Elliptic Curve Cryptographic (ECC) algorithms has been added. The Internationalization API is
enhanced to support the 6.0 version of Unicode. The Locale class has been upgraded, and the
handling of locales has been upgraded to separate formatting locales from user interface language
locales. The reader is encouraged to visit the openjdk site (http://openjdk.java.net/projects/jdk7/
features/) to look at the rest of the changes that came in the Java SE 7 platform.

Summary
Java, since its public introduction in 1996, has become extremely popular among developers
worldwide—mostly because of its cross-platform nature. Today it has evolved into a full-fledged
platform for creating, deploying, and running a wide variety of applications. To achieve portability,
Java uses the concept of a virtual machine (VM). A Java source file compiles into bytecode
consisting of an instruction set of a pseudo CPU. This CPU is emulated in memory by a running
process, and the compiled bytecode runs on the emulator. This allows Java executables to run on
any platform that has a JVM (Java Virtual Machine). Java’s major features of note are that it is small,
simple, object oriented, compiled and interpreted, platform independent, robust and secure,
multithreaded, and dynamic. We discussed each of these features in depth in this chapter.

Java has undergone several revisions over the last 15 years. These revisions are marked by the
versioning of the Java Development Kit. JDK 1.0 was introduced in 1996, and the next major
release, JDK 1.1, came about just one year later. Over next several years, Java evolved into several
distinct platforms: Java SE (Java Platform, Standard Edition), Java EE (Java Platform, Enterprise
Edition), Java ME (Java Platform, Micro Edition), and Java Card technology. We discussed the
important features and additions in all the major releases of the Java SE platform in this chapter.

With this brief introduction to the exciting Java platform, let’s start learning it.

http://openjdk.java.net/projects/jdk7/features/
http://openjdk.java.net/projects/jdk7/features/

Chapter
2

Arrays

17

18 Java Programming

he previous chapter presented an overview of Java technology and its various
stages of development. Now it’s time to jump into coding. Most programming
books start with a Hello World example, and I do not want to make an exception
to this rule. However, there’s not enough space in this book to cover basic syntax,
so the publisher and I have decided to move that material to the Web (go to www.

oraclepressbooks.com). There are a total of three Syntax Reference chapters that address language
constructs, operators, and control flow statements. These chapters cover the latest additions and
inclusions in Java 7, so I encourage you to read these online chapters. If you already have a good
familiarity with other programming languages or know some Java, you may prefer to skim through
the material merely to identify changes to Java 7.

Leaving the basic syntax to the three online chapters, we will now start with an important
construct called arrays. Arrays facilitate the easy creation and access of several elements of the
same data type. You learn how to create arrays and use them in your programs. You also learn to
create arrays of single and multiple dimensions. In particular, you will learn the following:

Declaring arrays■■

Accessing/modifying array elements ■

Runtime initialization of arrays ■

Using array literals for initializations ■

Multidimensional arrays ■

Nonrectangular arrays ■

Determining array length ■

Copying arrays ■

Understanding the class representation of an array■■

Arrays
You create arrays when you want to operate on a collection of variables of the same data type or
pass them all around together. An array is essentially a collection of elements of the same data
type. The elements are also called components of the array. Each element of the array is accessed
using a unique index value, also called a subscript. For example, an array of integers contains
several elements, each of type int, and an array of floating-point numbers contains several
elements, each of type float. Because array elements are accessed using a single variable name
coupled with a subscript, you do not need to create several unique variable names in your
program code to store and access many variables having the same data type. A typical integer
array is shown in Figure 2-1.

The array in Figure 2-1 stores five integer variables. Each variable will be accessed using the
single name numbers, along with a unique index in the array. Each variable will hold an integer
value that is independent of the values held by other elements. Each element can be accessed
and modified individually. You will learn how to declare an array and access the array elements
in the sections that follow.

T

http://www.oraclepressbooks.com
http://www.T
http://www.oraclepressbooks.com

Chapter 2: Arrays 19

Declaring Arrays
The general syntax for declaring an array is as follows:

type arrayName [];

Java allows another syntax for array declaration, as follows:

type [] arrayName;

NOTe
Though Java supports both types of declarations, convention
discourages the first form. The square brackets indicate that the
variable you want to declare is of the array type, and type indicates
the type of element it is going to hold. It makes more sense to have
the brackets appear with the type designation. Therefore, the latter
is the preferred form of declaration and is used throughout this book.

The square brackets in this syntax are also called the indexing operator because they specify
the index of an element in an array. The type specifies the type of element that the array is going
to store. The arrayName specifies the name by which the elements of the array are addressed in
the program code. Note that like in many other languages, the declaration does not allow you to
specify the size of the array.

To declare an array of integers, you would use the following declaration:

int[] numbers;

The name of the array in this declaration is numbers. Thus, each element of the array would
be accessed using this name along with an appropriate index value.

To declare an array of float, you use the following declaration:

float[] floatNumbers;

The name of the array is floatNumbers, and each element of the array holds a floating-point
number.

FIGure 2-1. An array of five integer variables

100

150

49

3

225

Numbers

20 Java Programming

NOTe
These declarations simply create a variable of the array type. They do
not create an actual array, and no memory space is yet allocated for
storing the array elements.

Creating Arrays
Now that you know how to declare an array variable, the next task is to allocate space for the
array elements. To allocate space, you use new keyword. For example, to create an array of 10
integers, you would use the following code:

int[] numbers;
numbers = new int[10];

The first statement declares a variable called numbers of the array type, with each element of
type int. The second statement allocates contiguous memory for holding 10 integers and assigns
the memory address of the first element to the variable numbers. An array initializer provides
initial values for all its components. You may assign different values to these variables somewhere
in your code, as explained in the next section.

To create an array of 20 floating-point numbers, you use the following code fragment:

float[] floatNumbers;
floatNumbers = new float[20];

The first statement declares a variable called floatNumbers of the array type. Each element
of the array is of the floating-point type. The second statement allocates space for holding 20
floating-point-type elements and assigns the address of the first element to the array variable.

Accessing and Modifying Array elements
Now that you know how to create an array, our next task is to access the array elements. You use
an index to access the elements of an array. Each element of the array has a unique index value.
An element of an array is accessed by using the array name followed by its index value written in
square brackets. The general syntax of accessing an array element is as follows:

arrayName [indexValue] ;

For example, consider the following declaration of an array of integers:

int[] numbers = new int[5];

Note how the declaration and allocation are done in the same program statement.
In this declaration, there is a total of five elements in the numbers array. The array index starts

with a value of zero. Thus, the first element of the array is accessed using the following syntax:

numbers[0]

This is illustrated in Figure 2-2.

Chapter 2: Arrays 21

The subsequent elements will be accessed using syntax numbers[1], numbers[2], and so on.
The last element is accessed using syntax numbers[4]. Note that using an index value of 5 will be
illegal because numbers[5] will try to access the sixth element—which is out of bounds for the
given array.

TIp
Trying to access an element that is outside of the array’s bounds
results in the generation of an ArrayIndexOutOfBounds exception,
which is explained in Chapter 8.

TIp
Whenever you come across a new class such as
ArrayIndexOutOfBounds, it is strongly recommended that you open
javadocs (http://docs.oracle.com/javase/7/docs/api/) and learn more
about the class.

The array elements are always stored in a block of contiguous memory. Figure 2-3 shows
the memory allocation for an integer array consisting of five elements declared using the
following statements:

int[] numbers;
numbers = new int[5];

Because an int takes 4 bytes of memory, you will notice in Figure 2-3 that each element of the
array occupies 4 bytes. Therefore, the total allocation is 20 bytes of memory space. Usually, you
will not have to worry about this memory allocation while accessing or modifying the elements of
the array.

To modify the value of an array element, you use the following syntax:

arrayName [index_value] = data;

FIGure 2-2. Accessing array elements using a subscript

100

150

49

3

225

[0]

[1]

[2]

[3]

[4]

Numbers

http://docs.oracle.com/javase/7/docs/api/

22 Java Programming

For example, in the numbers array declared previously, you can set the value of the element
at index 3 to 100 using the following statement:

numbers[3] = 100;

Note that the index value of 3 refers to the fourth element of the array.

Initializing Arrays
At this point, you have learned how to declare an array, allocate the space for its elements, and
access its elements. Now you will learn to initialize the entire array to a desired state before its
elements are used.

CAuTION
Although Java provides a default initialization for array elements, with
arrays of objects, the default initialization results in object references
set to null. This may result in runtime exceptions in the code if the
elements are not initialized to proper object references.

There are two techniques for initializing the array elements. The elements of the array may be
initialized at runtime via value assignment, as shown earlier, or initialized via array literals.

Initializing at runtime
An array element may be initialized at runtime using its index value, as discussed in the previous
section. Consider the following declaration for an array of integers:

int[] numbers = new int[10];

FIGure 2-3. Displaying the memory map of an integer array

15

Memory Map

0x00000
…
…

0x20000

2

9

200

18

0x20004

0x20008

0x2000C

0x20010

…
…

Chapter 2: Arrays 23

Each element may now be initialized to a desired value by using a block of code such as the
following:

numbers[0] = 10;
numbers[1] = 5;
numbers[2] = 145;
...
numbers[9] = 24;

If you decide to initialize all the elements of the array to the same value, you may use one
of the loop constructs discussed in Syntax Reference 3. For example, the following for loop will
initialize all the elements of the preceding array to zero:

for (int i = 0; i < 10; i++) {
 numbers[i] = 0;
}

Initializing using Array Literals
Array literals provide a shorter and more readable syntax while initializing an array. For example,
consider the following program statement:

int[] numbers = {15, 2, 9, 200, 18};

This statement declares an array of integers containing five elements. The compiler determines
the size of the array based on the number of initializers specified in curly braces. When the JVM
loads this code in memory, it will initialize those memory locations allocated to the array with the
values specified in the curly braces.

This type of initialization is sometimes called aggregate initialization and is a much safer
method of initializing an array. If you perform runtime initialization, as discussed earlier, the code
is error-prone because you might accidentally specify a wrong value for the index while modifying
an element. Using an array literal centralizes the entire code for initialization, and adding/removing
elements is error-free. For example, to add one more element, you just need to write a new
initializer in the list, and to remove an element, you simply delete one from the list. This cannot
result in an array out-of-bounds error and is therefore safer to use.

It is also important to understand that the Java Virtual Machine architecture does not support
any kind of efficient array initialization. As a matter of fact, array literals are created and initialized
when the program is run, not when the program is compiled. For example, consider our earlier
declaration of an array literal:

int[] numbers = {15, 2, 9, 200, 18};

This gets compiled into the equivalent of the following code:

int[] numbers = new int[5];
numbers[0] = 15;
numbers[1] = 2;
numbers[2] = 9;
numbers[3] = 200;
numbers[4] = 18;

Thus, array literals are just a shorthand for writing the runtime initialization code discussed earlier.

24 Java Programming

CAuTION
If you want to include a large amount of data in a Java program, do
not use array literals, because the Java compiler will create lots of Java
bytecode to initialize the array. The better way is to store the data in
an external file, read its contents at runtime, and initialize the array
elements using these values.

NOTe
Consider the following declaration:

long[] times = {System.nanoTime(), 0};

The element at subscript 0 in the times array will hold the long value
of the current time when the program is run, and not the time when
the code is compiled.

CAuTION
Like C++, Java does not allow you to specify the array size in square
brackets. It determines the array size from the number of values specified
in the RHS (right-hand side) of the expression. It is illegal to specify the
array size. Thus, even if you specify the size equal to the exact number
of values specified on the RHS, the program statement will not compile.

The memory representation of the preceding declaration is shown in Figure 2-4.
Let’s now look at the use of arrays using a simple program. Listing 2-1 declares and uses an

array of integers for storing the marks (scores) of students on a mathematics test. The program
prompts the user to enter the mark obtained by each student. The input data is stored in an
integer array. After accepting the scores of all students, the program computes the class average
by accessing the scores stored in the array.

FIGure 2-4. Displaying the memory map of an integer array

15

2

9

200

18

numbers [0]

numbers [1]

numbers [2]

numbers [3]

numbers [4]

Memory Map

0x00000
…
…

0x20000

0x20004

0x20008

0x2000C

0x20010

…
…

Chapter 2: Arrays 25

Listing 2-1 Program to Illustrate the Use of an Array

import java.io.*;

public class TestScoreAverage {

 public static void main(String[] args) {
 final int NUMBER_OF_STUDENTS = 5;
 int[] marks = new int[NUMBER_OF_STUDENTS];
 try {
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));
 for (int i = 0; i < NUMBER_OF_STUDENTS; i++) {
 System.out.print("Enter marks for student #" + (i + 1) + ": ");
 String str = reader.readLine();
 marks[i] = Integer.parseInt(str);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 int total = 0;
 for (int i = 0; i < NUMBER_OF_STUDENTS; i++) {
 total += marks[i];
 }
 System.out.println("Average Marks " + (float) total / NUMBER_OF_STUDENTS);
 }
}

In the main method, we first create a constant for defining the number of students in the class:

final int NUMBER_OF_STUDENTS = 5;

TIp
Use the final keyword to create constants in your program. The
variables declared with final can be initialized only once. After
initialization, their values cannot be modified throughout the life
of the program.

It is always a good practice to create a constant in such situations; if the number of students in
the class changes, we would need to modify only one statement and the rest of the program
would remain unaffected (or at least would require minimal changes).

We then declare and create an array of integers called marks that has a size equal to
NuMBer_OF_STuDeNTS, as follows:

int[] marks = new int[NUMBER_OF_STUDENTS];

We now read the mark for each student by prompting the user to enter it on the terminal. To
read input from the terminal, we create a Bufferedreader on the System.in object, as follows:

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

The use of the Bufferredreader and InputStreamreader classes for accepting a string from
the user was briefly explained in Syntax Reference 3.

26 Java Programming

The program now reads the marks by setting up a loop:

for (int i = 0; i < NUMBER_OF_STUDENTS; i++) {

For each student, we prompt the user using a System.out.print statement:

System.out.print("Enter marks for student #" + (i + 1) + ": ");

The user input is read by calling the readLine method of the reader object:

String str = reader.readLine();

The marks entered will be in the String format. We need to convert this string to an integer
before assigning it to the array element. To convert a string into an integer, we use the parseInt
method of the Integer class:

marks[i] = Integer.parseInt(str);

Because both readLine and parseInt methods can generate a runtime error, these are
enclosed in a try-catch block. The exception handler prints a trace of the stack by calling the
printStackTrace method on the exception object:

e.printStackTrace();

After reading the marks from the user input and copying them into the array elements, we
now set up a for loop for determining the total of all the marks:

int total = 0;
for (int i = 0; i < NUMBER_OF_STUDENTS; i++) {
 total += marks[i];
}

Finally, we print the average marks of the class on the user console using the following statement:

System.out.println("Average Marks " + (float) total / NUMBER_OF_STUDENTS);

Note that while computing the average, we convert the variable total to type float. If we do
not do this, the compiler will perform an integer division on the two operands and the result will
not be accurate.

This simple program illustrates the declaration of a single-dimensional array, initializing the
array elements, and accessing the elements in the program code.

Now that you know a bit more about arrays, we can take a short break and return to our
discussion on control flow for a moment. As you learned in Syntax Reference 3, Java provides yet
another looping construct to iterate through the elements of an array: the for-each loop. This
construct was introduced in J2SE 5.0, and we discuss it next.

The for-each Loop
The for-each construct allows you to iterate through an entire array without using the index
values of the elements. The general form of the for-each loop is as follows:

for (type variableName : collection) {
 loopBody
}

Chapter 2: Arrays 27

NOTe
The for-each construct was introduced in J2SE 5.0. The official
sources use several names for the construct. It is called the “Enhanced
for” loop, “For-Each” loop, and “foreach” statement.

The variableName specifies the type of variable and its name. The collection represents the
name of the array. For each iteration of the for loop, the loopBody is executed once. The iterations
continue until the last element of the array is processed. Using this construct, you will iterate
through the marks array, declared in the previous section, as follows:

for (int m : marks) {
 System.out.println (m);
}

In each iteration of the for loop, the value of an element of the marks array is printed. After
each iteration, the index in the array is automatically incremented to retrieve the next element. The
for loop continues until the last element is retrieved. The for-each construct is very useful if you
want to traverse all the elements of the array. Specifically, it allows you to iterate over collections
and arrays without using iterators or index variables. (Collections are discussed in Chapter 16.)
Although the for statement is quite powerful, it is not optimized for collection iteration.

TIp
The for-each construct can be easily used to dump all the elements of
an array on the user console. However, the same thing can be easily
achieved by using the toString method of the Arrays class. The Arrays
class is discussed later in this chapter.

Though a powerful construct, for-each has certain restrictions. It can be used for accessing
the array elements but not for modifying them. It is not usable for loops that must iterate over
multiple collections in parallel—for example, to compare the elements of two arrays. It can be
used only for a single element access and cannot be used to compare successive elements in an
array. It is a forward-only iterator. If you want to access only a few elements of the array, you
would need to use the traditional for loop.

Before we close this discussion on the for-each loop, you may like to know why the designers
did not opt for introducing the new keyword foreach like in C# (Microsoft’s .NET language). By
not introducing the new foreach keyword, the designers ensured backward compatibility with
any pre–J2SE 5.0 code that might use the keyword as an identifier. The general syntax for a
foreach loop in other languages is as follows:

foreach (element in collection)

Using this syntax would also make the code incompatible with the previous versions because
in is a keyword (for example, as in System.in).

Going back to our discussion on arrays, so far we have discussed single-dimensional arrays.
Now we will discuss multidimensional arrays.

28 Java Programming

Multidimensional Arrays
Multidimensional arrays, as the name suggests, contain more than one dimension. You can create
two-dimensional, three-dimensional, and n-dimensional arrays in Java (where n is any natural
number). The number of dimensions may be any large number, subject to the restrictions imposed
by the compiler. The JDK compiler puts this limit at 255, which is so large that developers need
not worry about it.

Let’s first discuss two-dimensional arrays.

Two-dimensional Arrays
A two-dimensional array can be visualized as a table consisting of rows and columns. Each cell
of the table denotes an array element.

The general syntax for declaring a two-dimensional array is as follows:

type arrayName [] [] ;

or

type [] [] arrayName ;

TIp
Although both syntaxes are valid, the preferred one is the second
syntax, where the square brackets are placed immediately after the
data type.

The type specifies the type of data that each array element will hold. The arrayName specifies
the name for the array. The two square brackets indicate that the current array variable declaration
refers to a two-dimensional array.

Suppose you have to write a program to store marks obtained by each student in a class in
various subjects. Let’s assume that each student takes five subjects and that 50 students are in
the class. You will need to create a two-dimensional array to store this data. You would write
the following block of code to create such an array:

final int NUMBER_OF_SUBJECTS = 5;
final int NUMBER_OF_STUDENTS = 50;
int[][] marks;
marks = new int[NUMBER_OF_SUBJECTS][NUMBER_OF_STUDENTS];

The first dimension of the array (that is, the row) specifies the subject ID, and the second
dimension (that is, the column) specifies the student ID. You could easily interchange rows and
columns in the preceding declaration by changing their order of declaration as shown in the
following statement:

marks = new int[NUMBER_OF_STUDENTS][NUMBER_OF_SUBJECTS];

In this case, the first dimension specifies the student ID and the second dimension specifies the
subject ID. The memory layout in tabular format for this second declaration is shown in Figure 2-5.

Chapter 2: Arrays 29

The tabular map displayed in Figure 2-5 shows both student and subject IDs starting with 1.
(Generally, a student and a subject will not be assigned an ID equal to zero.) When you store
the student marks in this array, you will need to adjust both indices by 1 to comply with Java’s
requirements of array indexing. For example, to assign the marks obtained by student with ID 6
in subject 4, you will use the following syntax:

marks[5][3] = 78;

Note that a row-index value of 5 indicates the sixth row in the table because the index always
starts with zero. Similarly, a column-index value of 3 indicates the fourth column in the table.

As another example, the syntax marks[0][0] would denote the marks obtained by a student with
ID 1 in the subject designated by subject ID 1. (Again, remember that the student IDs and subject
numbers start with 1 in our notation.) Similarly, marks[49][4] would denote the marks obtained by
the last student in the class (student ID 50) in the last subject (subject ID 5).

Initializing Two-dimensional Arrays
Just like you initialize a single-dimensional array by using runtime initialization or an array literal,
you can initialize a two-dimensional array by using both techniques. Let’s discuss both methods.

Initializing at runtime
To initialize an element of a two-dimensional array, you use the syntax discussed earlier for
accessing the element and then use an assignment statement to initialize it:

arrayName [row] [col] = data ;

FIGure 2-5. Displaying the memory map of a two-dimensional array

subject
ID 1

…

…

~

…

…

~

…

…

~

…

…

~

…

…

~

…

…

~

student ID 1

student ID 2

student ID 3

student ID 4

student ID 50

marks

subject
ID 2

subject
ID 3

subject
ID 4

subject
ID 5

30 Java Programming

For example, consider the following declaration for a two-dimensional array of integers:

int[][] marks;
marks = new int[5][50];

The individual elements of this array may be initialized using following program statements:

marks[0][5] = 78;
marks[2][10] = 56;

The first statement initializes the value of the array element addressed by the first row and the
sixth column to 78. The second statement initializes the array element addressed by the third row
and eleventh column to a value of 56.

You may use a nested for loop to initialize each element of a two-dimensional array to a specific
value. Using the following nested for loop, you initialize each element of the array to a value of 0:

final int MAX_ROWS = 5, MAX_COLS = 50;
for (int row = 0; row < MAX_ROWS; row++) {
 for (int col = 0; col < MAX_COLS; col++) {
 marks[row][col] = 0;
 }
}

Initializing using Array Literals
You may define the values of individual array elements in curly braces on the right side of the
assignment operator during the array declaration. The general syntax for initializing elements of
a two-dimensional array using this method is shown here:

int[][] subjectMarks = {
 {1, 98},
 {2, 58},
 {3, 78},
 {4, 89}
};

Note the use of nested curly braces to separate out the different rows of the data declarations.
The Java compiler will generate the bytecode for the preceding declaration that is the equivalent
of the following:

subjectMarks = new int[][];
subjectMarks[0][0] = 1;
subjectMarks[0][1] = 98;
subjectMarks[1][0] = 2;
...

As mentioned earlier, the array literals are just a shorthand for initializing an array element
by element.

Chapter 2: Arrays 31

CAuTION
Unlike other languages such as C++, Java does not allow you to omit
the inner curly braces that mark each row of a two-dimensional array.
Therefore, the following declaration is invalid in Java:

int[][] subMarks = {1, 98, 2, 58, 3, 78, 4, 89};

This is because Java does not allow you to specify the dimensions of
the array in the declaration statement.

We will now discuss the use of two-dimensional arrays with the help of a program. We will
develop a program for storing and displaying the marks obtained by all the students in a class across
all their subjects. As explained in the previous section, we will need to create a two-dimensional
array for this purpose.

The program shown in Listing 2-2 demonstrates how to declare, initialize, and access a
two-dimensional array.

Listing 2-2 Program to Illustrate the Use of a Two-dimensional Array

public class MultiDimArrayApp {

 public static void main(String[] args) {
 final int MAX_STUDENTS = 50, MAX_SUBJECTS = 3;
 int[][] marks = new int[MAX_STUDENTS][MAX_SUBJECTS];
 // Adding data to the array
 for (int id = 0; id < MAX_STUDENTS; id++) {
 for (int subject = 0; subject < MAX_SUBJECTS; subject++) {
 marks[id][subject] = (int) (Math.random() * 100);
 }
 }
 // Printing Array
 System.out.print("Student\t");
 for (int subject = 0; subject < MAX_SUBJECTS; subject++) {
 System.out.print("\t" + "Subject " + subject + "\t");
 }
 System.out.println();
 for (int id = 0; id < MAX_STUDENTS; id++) {
 System.out.print("Student " + (id + 1) + '\t');
 for (int subject = 0; subject < MAX_SUBJECTS; subject++) {
 System.out.print("\t" + marks[id][subject] + "\t");
 }
 System.out.println();
 }
 }
}

32 Java Programming

The program first creates two constants for defining the array sizes:

final int MAX_STUDENTS = 50, MAX_SUBJECTS = 3;

In practice, both constants may contain larger values than used here for simplicity. Next, we
declare a two-dimensional array of integers using these constants:

int[][] marks = new int[MAX_STUDENTS][MAX_SUBJECTS];

Note that the first dimension is used for tracking students—each row will correspond to a
unique student ID. The second dimension tracks subjects—each column will correspond to
a unique subject number.

We will now add some data to the array. Rather than asking the program user to input the
scores for each subject and each student, we will enter values in the array programmatically.
We first set up a loop to iterate through all student IDs, as follows:

for (int id = 0; id < MAX_STUDENTS; id++) {

For each student ID, we will iterate through all subject IDs by setting up an inner for loop:

for (int subject = 0; subject < MAX_SUBJECTS; subject++) {
 marks[id][subject] = (int) (Math.random() * 100);
}

We initialize the individual array elements by assigning a random number in the range 0 to 99.
The random method of the Math class generates a double value in the range 0 to 1.0 (excluding
1.0). This is multiplied by 100, the result is typecast to an int, and finally it is assigned to the
element of the marks array.

Note that to access an [i, j]th element of the array, we use the syntax marks[i][j]. The nested
for loops ensure that we visit each row and column of the array and initialize each individual
element of the array. Once the entire array is filled with some values, we print the array values
on the user console.

Once again, we set up the nested for loops to iterate through all the rows and columns. The
individual array elements are accessed and printed on the console using following statement:

System.out.print("\t" + marks[id][subject] + "\t");

We print a tab character after each cell value to separate out the columns. The program prints
tabs at the appropriate places to format the output. Partial output is shown here:

Student Subject 0 Subject 1 Subject 2
Student 1 23 41 17
Student 2 72 44 46
Student 3 65 65 56
Student 4 12 11 76
Student 5 49 53 36

Chapter 2: Arrays 33

Looping using the for-each Construct
You can easily use the for-each construct, discussed earlier, to loop through all the elements of a
two-dimensional array. For example, to loop through the elements of the marks array declared in
the previous example, use the following block of code:

int i = 0;
for (int[] student : marks) {
 System.out.print("Student " + i++ + '\t');
 for (int value : student) {
 System.out.print("\t" + value + "\t");
 }
 System.out.println();
}

The outer for loop iterates through each row of the array. The inner for loop visits each
column of the array. The value variable holds the value of the array element. Thus, all the array
elements are dumped on the console in a tabular format. Note that to print the student ID, we use
another variable, i. This is because the outer for loop now refers to an integer array rather than an
integer ID, as in the previous case.

N-dimensional Arrays
So far, we have discussed single- and two-dimensional arrays. The same concepts may be extended
to represent and access n-dimensional arrays. For example, to declare a three-dimensional array,
you will use following syntax:

type [] [] [] arrayName= new type [size] [size] [size] ;

An example follows:

int[][][] matrix = new int[5][15][10];

This declaration creates a three-dimensional array; the size of the first dimension is 5, the
size of the second dimension is 15, and the size of the third dimension is 10. Each element of
the array will store an integer value. The total number of elements for this array is 5 × 15 × 10
(that is, 750). The memory allocations for the entire array will be 750 multiplied by the size of
int data type. Because the size of int data type is 4, the byte allocation will be 3000.

To access the [i, j, k]th element, you use the syntax matrix[i][j][k]. The array elements may be
initialized by using either runtime initialization or array literals, as discussed earlier. The concepts
may be extended further to create and access arrays having more than three dimensions.

Nonrectangular Arrays
So far you have seen the declaration and use of rectangular arrays. Java allows you to create
nonrectangular arrays. A nonrectangular array is an array in which each row of the array may
have a different number of columns. The memory layout for a nonrectangular array is illustrated
in Figure 2-6.

34 Java Programming

As shown in Figure 2-6, Array A is a nonrectangular array having four rows. When allocated in
memory, the variable A will refer to a contiguous memory allocation of four cells, where each cell
holds a reference to another single-dimensional array. In our case, the first cell holds a reference to
an array having five elements, the second row holds a reference to an array having two elements,
the third row holds a reference to an array having three rows, and finally the fourth cell holds a
reference to an array having four rows.

runtime Initialization
Consider a two-dimensional array whose first dimension is, let’s say, 5. Therefore, the array will
contain five rows. You may now declare different column sizes for each row. For example, the
first row may contain four columns; the second row may contain three columns, and so on. Such
a declaration is shown here:

int[][] jaggedArray = new int[5][];
jaggedArray[0] = new int[4];
jaggedArray[1] = new int[3];
jaggedArray[2] = new int[5];
jaggedArray[3] = new int[2];
jaggedArray[4] = new int[4];

The jaggedArray is a two-dimensional array, as declared in the first statement. During the
declaration, you initialize the first dimension of the array to 5, indicating that the array would
contain five rows. Here, you do not specify the value for the second dimension.

FIGure 2-6. Memory layout of a nonrectangular array

–9–41201

5–3

A:

A:

–9

–4

12

0

1

6

4

–1

–8

7

0

–1

–3

5

Array A is a nonrectangular array.

Array A has four rows; each row refers
to another single-dimensional array.

–1

A [0]

A [1]

A [2]

A [3]

07

–14 –86

Chapter 2: Arrays 35

On the next line, you initialize the first row of the jaggedArray. Each row consists of a certain
number of cells of type int. The number of cells in each row is the column length of the array.
You initialize this to 4. Thus, the first row (that is, the row with ID 0) would contain four columns.
For the second row (row ID 1), you declare the column size 3. The second row therefore contains
three columns. Likewise, for third row, you set a column size of 5; for the fourth row the column
size is 2, and for the fifth row the column size is 4.

To access the elements of this array, you would use the syntax jaggedArray[i][j], as in the
case of the earlier examples. You will have to ensure that i, j values are within the range of the
array declaration. For example, jaggedArray[0][3] is valid, whereas jaggedArray[1][3] is invalid
because the second row contains only three columns.

This type of nonrectangular array is also called a “jagged” or “ragged” array. Sometimes, it is
also called an “array of arrays.” Note that like rectangular arrays (that is, arrays having the same
number of columns in each row), each element of the nonrectangular array must be of the same
data type.

Initialization using Array Literals
The same way you initialize single-dimensional and other rectangular arrays using array literals,
you can initialize a nonrectangular array. Consider the following declaration:

int[][] myArray = {
 {3, 4, 5},
 {1, 2}
};

Here, myArray is a two-dimensional array of integers. The first row of the array consists of three
elements, whereas the second row consists of only two elements. Thus, this is a nonrectangular
array. While accessing the elements of this array, you will have to take care to ensure that both
indices lie within the bounds of the array for each row.

CAuTION
The material that follows requires knowledge of object-oriented
programming and also contains some advanced concepts on classes.
If you are a beginner in this field, skip the rest of this chapter and
revisit it after studying classes in Chapter 3.

A Few Goodies
When you declare an array in Java, it is treated as an object of an internal class that defines useful
attributes and methods. Using these, you will be able to determine the length of the array and
make a copy of its contents, in addition to other useful operations. You will now learn how to
perform these operations.

Determining the Array Length
The length field of the internal array class specifies the length of an array. The program in Listing 2-3
illustrates how to use this field.

36 Java Programming

Listing 2-3 Determining the Length of an Array

public class ArrayLengthApp {

 public static void main(String[] args) {
 final int SIZE = 5;
 int[] integerArray = new int[SIZE];
 float[] floatArray = {5.0f, 3.0f, 2.0f, 1.5f};
 String[] weekDays = {"Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday"};
 int[][] jaggedArray = {
 {5, 4},
 {10, 15, 12, 15, 18},
 {6, 9, 10},
 {12, 5, 8, 11}
 };
 System.out.println("integerArray length: " + integerArray.length);
 System.out.println("floatArray length: " + floatArray.length);
 System.out.println("Number of days in a week: " + weekDays.length);
 System.out.println("Length of jaggedArray: " + jaggedArray.length);
 int row = 0;
 for (int[] memberRow : jaggedArray) {
 System.out.println("\tArray length for row "
 + ++row + ": " + memberRow.length);
 }
 }
}

In the main method, the program declares several arrays. integerArray is a single-dimensional
array consisting of five elements with default initial values. floatArray is an array of floating-point
numbers containing four initialized elements. weekDays is an array of String objects initialized to
the values of the days of the week. jaggedArray is a nonrectangular initialized array. To determine
the length of each of these arrays, we use the syntax arrayName.length. The program output is
shown here:

integerArray length: 5
floatArray length: 4
Number of days in a week: 7
Length of jaggedArray: 4
Array length for row 1: 2
Array length for row 2: 5
Array length for row 3: 3
Array length for row 4: 4

Note the length of integerArray, where the elements are not explicitly initialized, is printed
as 5; the length of floatArray, where the elements are initialized using literals, is printed as 4;
and the length of array of Strings called weekDays, which is also initialized using literals, is
printed as 7. The interesting case here is determining the length of the jaggedArray. The expression
jaggedArray.length returns the number of rows in this two-dimensional array. Each row is treated

Chapter 2: Arrays 37

as an array; therefore, to determine the length of each row, we use the for-each loop discussed
earlier to iterate through all the rows:

for (int[] memberRow : jaggedArray) {

Note how each element of the jaggedArray is considered an array of integers. The length of
each row is obtained using the expression memberrow.length.

Cloning an Array
To make a copy of an array, you call the clone method on the array object. This is illustrated in
Listing 2-4.

Listing 2-4 Making an Array Clone

import java.util.Arrays;

public class ArrayCopyApp {

 public static void main(String[] args) {
 float[] floatArray = {5.0f, 3.0f, 2.0f, 1.5f};
 float[] floatArrayCopy = floatArray.clone();
 System.out.println(Arrays.toString(floatArray) + " - Original");
 System.out.println(Arrays.toString(floatArrayCopy) + " - Copy");
 System.out.println();
 System.out.println("Modifying the second element of the original array");
 floatArray[1] = 20;
 System.out.println(Arrays.toString(floatArray)
 + " - Original after modification");
 System.out.println(Arrays.toString(floatArrayCopy) + " - Copy");
 System.out.println();
 System.out.println("Modifying the third element of the copy array");
 floatArrayCopy[2] = 30;
 System.out.println(Arrays.toString(floatArray) + " - Original");
 System.out.println(Arrays.toString(floatArrayCopy)
 + " - Copy array after modification");
 }
}

In the main method, we declare an array of floating-point numbers called floatArray with its
elements initialized to some value. To make a copy of this array, we use the following statement:

float[] floatArrayCopy = floatArray.clone();

The clone method copies all the elements of the floatArray into a new array called
floatArrayCopy. To confirm that a new copy is made, we will try modifying an element of each
of the two arrays, printing both each time. To print the contents of an array, we use the expression
Arrays.toString(floatArray), where Arrays is a Java-supplied class available since Java 2.

38 Java Programming

The toString method of this class takes an argument of the array type and converts its contents to
a string. Another approach to print the elements of an array would be to use a traditional loop to
iterate through all the array elements, printing each in the iteration cycle. The program first
modifies the element at index 1 of the original array and then it modifies the element at index 2
of the copied array. Each time, both arrays are printed after modifications. The program output is
shown here:

[5.0, 3.0, 2.0, 1.5] - Original
[5.0, 3.0, 2.0, 1.5] – Copy

Modifying the second element of the original array
[5.0, 20.0, 2.0, 1.5] - Original after modification
[5.0, 3.0, 2.0, 1.5] – Copy

Modifying the third element of the copy array
[5.0, 20.0, 2.0, 1.5] - Original
[5.0, 3.0, 30.0, 1.5] - Copy array after modification

I printed the legend after printing the array contents so that the elements of the two arrays
appear one below the other for ease of comparison.

NOTe
The clone method performs a shallow copy and not a deep copy.
A shallow copy copies only the “surface” portion of an object. The
actual object consists of this “surface,” plus all the objects that the
references are pointing to, plus all the objects those objects are pointing
to, and so on. Copying this entire web of objects is called a deep copy.

Finding Out the Class of an Array
As mentioned earlier, the material presented so far is considered advanced, requiring you to
have a working knowledge of object-oriented programming. The material presented in this
section is considered more advanced still. However, it is presented here for those advanced
users who might be curious to know what the class of an array is. The program in Listing 2-5
answers this question.

Listing 2-5 Finding Out the Class Representation of an Array

public class ArrayClassNameApp {

 public static void main(String[] args) {
 final int SIZE = 5;
 int[] integerArray = new int[SIZE];
 float[] floatArray = {5.0f, 3.0f, 2.0f, 1.5f};
 String[] weekDays = {"Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday"};
 int[][] jaggedArray = {
 {5, 4},
 {10, 15, 12, 15, 18},

Chapter 2: Arrays 39

 {6, 9, 10},
 {12, 5, 8, 11}
 };
 Class cls = integerArray.getClass();
 System.out.println("The class name of integerArray: " + cls.getName());
 cls = floatArray.getClass();
 System.out.println("The class name of floatArray: " + cls.getName());
 cls = weekDays.getClass();
 System.out.println("The class name of weekDays: " + cls.getName());
 cls = jaggedArray.getClass();
 System.out.println("The class name of jaggedArray: " + cls.getName());
 System.out.println();
 cls = cls.getSuperclass();
 System.out.println("The super class of an array object: "
 + cls.getName());
 }
}

The main method declares four arrays of different data types, as in our earlier example from
Listing 2-3. To obtain the class represented by an array object, we use the expression arrayName
.getClass(). The getClass method is a method of the Object class that returns a class representation
of the given object. Java defines a class called Class that provides (presents) this class representation
(refer to Chapter 21 for more on Class). We obtain this class object in the following statement:

Class cls = integerArray.getClass();

Now, to print the name of the obtained class, we call the getName method of the Class class
on the object cls. The following statement prints this name to the console:

System.out.println("The class name of integerArray: " + cls.getName());

Now, study the following program output:

The class name of integerArray: [I
The class name of floatArray: [F
The class name of weekDays: [Ljava.lang.String;
The class name of jaggedArray: [[I
The super class of an array object: java.lang.Object

The class name of the single-dimensional integer array is [I. The class name of the two-
dimensional integer array is [[I. The name of the floating-point array class is [F, and finally the
name of the local String type array class is [Ljava.lang.String. Although it is not explicitly stated
anywhere in the Java language specifications, we can observe that the dimensions of the
represented array object are indicated by the number of open square brackets and that the type of
element is indicated by a trailing single character in the case of primitive types. In the case of a
local class, the fully qualified name of the class is appended after the square bracket. For an array
of the Object class, the name is [Ljava.lang.Object, and for an array of the ArrayClassNameApp
class, the name is [LArrayClassNameApp.

40 Java Programming

Summary
In this chapter, we covered arrays in Java. When you want to perform common operations on a
collection of items of the same data type, you use arrays. An array allows you to use a single
variable name to access a large collection of variables. The elements of the array are accessed
using the array name, followed by the array index enclosed in square brackets. Arrays may
consist of a single or multiple dimensions. Java allows you to create both rectangular and
nonrectangular arrays. After we covered the basic material on array creation and manipulation,
some advanced concepts on arrays were presented. We talked about the internal representation
of an array in Java and covered the techniques of determining the length of an array, making its
copy, and getting its class representation.

The next chapter teaches you the most important feature of object-oriented programming—
the class.

Chapter
3

Classes

41

42 Java Programming

he main motive behind using object-oriented programming is the code reuse. Java
is an object-oriented programming language and therefore allows you to reuse
your code. A typical Java application contains many objects. An object is an
instance of a class. A program may contain many classes. In this chapter, you learn
what a class is, what an instance of a class is, and how to use classes in your Java

programs. We have looked at several Java programs in earlier chapters; however, all these
programs used only one class. Therefore, object orientation was not really exploited in earlier
chapters. This chapter introduces you to the concepts behind object-oriented programming and
its features. We’ll also talk more about classes. The chapter covers several features of a class and
its use in Java programming.

In particular, you will learn the following:

The template for class creation■■

How to declare class attributes and methods ■

How to define a class member’s visibility ■

How to define class constructors ■

The layout of the source program ■

The significance of the ■ package statement

How to import external classes■■

Object-Oriented Programming (OOP) Concepts
In nature, we see numerous objects—birds, animals, plants, and so on. Each object possesses
certain characteristics that are unique to it. For example, a bird can fly, an animal has four legs,
and a plant cannot move (unless you help it move to another location). The wings of a bird can
be considered a characteristic that is unique to it. In object-oriented programming, we call this an
attribute of an object. An object in nature, which is a real-world entity, exhibits unique behavior.
For example, a bird can fly with the help of its wings. Flying may be described as an operation
that an object performs. We call this as a method of an object. Our object-oriented programming
derives several of its concepts from nature.

In object-oriented programming, we talk about objects—just as nature has various kinds of
objects. Suppose we want to write a program for computing the monthly payroll for the
employees in our company. We can immediately think of “employee” as one of the objects in
such a system. Each employee object will have a unique ID, name, and gender, which are
publicly declared characteristics of the employee object. The employee object will also contain
some additional characteristics, such as basic salary, 401(k) plan account, leave travel allowance,
and so on. Naturally, we would not want this data to be globally accessible to every other person
in the company. This is sensitive data and should therefore be protected from the eyes of other
employees. Also, when we define functionality such as computing the monthly salary of each
employee, we consider that such functionality will be implemented in functions that operate on
the data belonging to the particular employee under consideration.

Every employee object in our payroll system will hold data similar to every other employee
object in the system, and every employee object will also exhibit functionality that is exactly
identical to the functionality exhibited by every other employee object in the system. Naturally, we

T

Chapter 3: Classes 43

would want to create some template on which to base our employee object. In word processing,
we create templates for various purposes, such as writing a resume, invoice, a memo, and so on.
An applicant would create her resume to give to a prospective employer using a resume template.
Every applicant could use the same template for writing the resume. In object-oriented
programming, we create templates to define or to represent objects having common behavior.
Such templates are called classes in object-oriented programming. A class is really the heart of
object-oriented programming, the basis on which the entire system is built. By the end of this
chapter, you will understand a class’s various features.

First, however, let’s look at the important features of object-oriented programming.

OOP Features
The three major features of object-oriented programming are encapsulation, inheritance, and
polymorphism. We discuss each of these features in detail in this section.

Encapsulation
As described in the previous section, it is a good practice to provide a coupling between the data
and the methods that operate on the data (method is another name for a function or a procedure,
also called an operation). Such data should be hidden from the outside world; this means it
should be inaccessible to code outside the current context (to be more precise, the current
object). This process of information hiding and combining data and methods in a single logical
unit is called encapsulation. We say that the data and the methods that operate on this data are
encapsulated into a single unit called a class.

A class consists of data (more precisely called attributes) and methods. These are called the
members of the class. The attributes of the class should be considered “private” to an instance of
a class; only the class methods would have access to these attributes. When you define a class,
you can set the visibility access to these attributes. They may be made visible to the code outside
the current class definition. We talk more on this later in the chapter when we discuss classes in
depth. Right now, just know that we encapsulate the data and the related methods in a logical
unit called a class.

Inheritance
You know from earlier that a class contains attributes and the methods that operate on them.
A class acts like a template. It is the basis on which different objects are created. Each object
possesses data unique to it; however, all the objects of the same class type possess the same
characteristics. For example, when we create an Employee class, each Employee object will
contain the same data attributes, such as ID, name, base salary, 401(k) plan, leave travel
allowance, and so on. The values assigned to these attributes will vary from employee to
employee. Each Employee object exhibits the same functionality that is defined by the methods
of the Employee class. At some later time, we may want to represent a manager in our software.
For this, we would create a Manager class that inherits the characteristics of the Employee class;
after all, a manager is also an employee.

In nature, we observe that children inherit some traits from their parents. We find various
families of classes in nature, such as birds, animals, mammals, and so on. Each family consists of
several objects. All objects in a given family share common characteristics (or in the context of
object-oriented programming, a common functionality). The children in the family inherit these
characteristics from their parents. A child may also exhibit characteristics (functionality) in addition
to what it has inherited from its parents.

44 Java Programming

In software engineering, when we develop software, we search for the presence of a family of
classes similar to what we observe in nature. For example, to represent different types of cars in a
software application, we may design a parent class called Vehicle. The class Vehicle defines
functionality that is common to all automobiles. We can further define classes based on this
parent class (Vehicle), such as Car, Truck, and so on. Each such class adds some functionality to
the functionality inherited from the Vehicle class. The added functionality is unique to the
defining class. This means that a Car and a Truck will add some functionality to Vehicle that is
different from the functionality of the other classes in the same family. For example, a Car may
describe the passenger capacity as its characteristic, whereas a Truck may define the maximum
load capacity as one of its added characteristics.

A Car may be further classified as a sports car, a passenger car, a sports utility vehicle (SUV),
and so on. We can define classes for these classifications. An SUV class will inherit from the Car
class, which in turn inherits from the Vehicle class. Thus, SUV exhibits the functionality of not
only the Car class but also the Vehicle class. This class hierarchy is depicted in Figure 3-1.

The concept of inheritance helps preserve our investment in existing code by allowing us to
extend the functionality of existing classes.

Polymorphism
In our classification of automobiles, we have different classes in our class hierarchy for the Car
object. Each such Car object exhibits several common functionalities. For example, a “drive”
method could be defined in each class that is applicable to all the Car objects. Because this is a
common functionality, we should define this in our parent class. The child class will also define
a “drive” method and may modify the inherited “drive” method. Both methods may use the
same name (that is, drive). Driving a truck is different from driving a sports car or an SUV.
However, we may say, “we drive the vehicle” with regard to both the vehicles. Thus, the name
of the functionality remains the same, even though the implementation varies across objects.
This feature is called polymorphism in object-oriented terminology. Polymorphism originates
from the Greek word polymorph, meaning having different faces to the same object.

FIGUrE 3-1. Class hierarchy

Vehicle

TruckCar

Sports Passenger SUV

Chapter 3: Classes 45

Polymorphism is an important feature of object-oriented languages and will be explained in
depth in Chapter 4.

OOP Benefits
Now that we have examined the three main features of object-oriented programming, you can
see how OOP helps us in creating well-structured programs where the code, once developed, is
easily reusable. Programs can be easily extended with little effort, allowing us to reuse the
existing code (which has been previously tested) and thereby reducing the maintenance cost for
the software.

The Class
A class is a template that encapsulates data and the methods that operate on this data, as in the
Employee or Automobile class described earlier. A class is a user-defined data type that embeds
methods to operate on the enclosed data. You create objects based on this template, and you use
the new keyword in Java to create an object (in which case, we say that the class is instantiated).
You can create many objects from one single class. All these objects have the same type with a
predefined set of data members. The values held in these data members vary from object to
object. Although each object is similar to another object of the same type, each object has its
own unique identity. For example, two cars of the same type and color will have two different
vehicle identification numbers (VINs) as their unique identifiers.

Defining a Class
The general form for defining a class is as follows:

Modifiers
opt
 class ClassName{

 classbody
opt

}

NOTE
The notation used here is a pseudo notation. The Java Language
Specification (JLS) defines the full grammar in JLS notation. Here is a
partial definition of a class definition in JLS form:

ClassModifiers

opt
 class Identifier ClassBody

JLS is complex. For more information, you can download the Java
Language Specification from http://java.sun.com/docs/books/jls/.

To define a class, you use the class keyword. The ClassName is a valid identifier that defines a
unique name for a class. This name should be unique within the entire application. However, you
may use the same name for classes belonging to two independent applications or Java packages.

http://java.sun.com/docs/books/jls/

46 Java Programming

NOTE
Every class has a fully qualified name that has the form
packagename.ClassName. The ClassName may be repeated
if the packagename differs. This is explained in detail in Chapter 5,
which describes Java packages.

The modifier in front of the class keyword defines the visibility of the class. Do not worry
about this modifier right now. We discuss it in great detail later in this chapter as well as in
subsequent chapters.

A typical class declaration looks like this:

class MyClass {

 // attributes
 // constructors
 // methods
 }

NOTE
A class declaration may contain a declaration of another class, which
is then called a member class of the outer declaring class.

The class definition is enclosed in opening and closing braces. Within the body of the class
definition, you define zero or more attributes, zero or more constructors, and zero or more
methods. The attributes of a class are its data members. These are also called fields. The fields
provide the state of the class and its objects. For example, for an Employee class, as described
earlier, ID is its field. A class constructor is a special method of the class that we use while
initializing new objects. A class may contain other methods that define the behavior of the class
and its objects.

NOTE
The Java Language Specifications uses the term fields in place
of attributes. Henceforth, the term field will be used to refer to
a class attribute.

We’ll now turn our attention to defining the fields, constructors, and methods of a class. We’ll
start with a very simple class that holds only the fields and no methods. Later on, we’ll add more
functionality to this base class template.

Declaring a Point Class
The following code snippet shows a declaration for the Point class.

class Point {

 int x;
 int y;
}

Chapter 3: Classes 47

The class is defined using the keyword class followed by its name, Point. The modifier field is
optional and is not applied in this definition. The modifier defines the class visibility, and the
possible values for this modifier are discussed later. The body of the class is enclosed in braces.
The body of this class consists only of fields.

NOTE
C++ requires a class definition to be terminated with a semicolon.
In Java, the use of a semicolon is not mandatory.

Our Point class declaration contains two fields, x and y, of type int. This simple Point class
definition does not contain any methods. As mentioned earlier, methods define the functionality
of a class. Our Point class currently does not exhibit any functionality.

As shown in this example, it is possible to create a class that does not contain any methods
and has only fields. It is also possible to create a class that has an empty body—meaning no
fields, no constructors, and no methods. However, creating such a class is usually meaningless,
except for the name and/or whether it inherits from another one.

NOTE
A top-level class such as Vehicle or Employee (discussed earlier) may
have an empty body. The classes that inherit from these top-level
classes will have the fields and methods added to their definitions.

Using Classes
A class definition serves as a template from which you create objects for the use of your application
code. For example, by using our class definition of Point, we can create several Point objects. Each
Point object will be characterized by two distinct fields, x and y, which specify the x-coordinate
and y-coordinate of the point, respectively. Each Point object will have its own copy of the data
members x and y. These members are called instance variables of an object because they belong to
a particular instance of the class. The process of creating an object from a class definition is called
class instantiation. We say that a class has been instantiated when we create an object.

To create an object, we use the following declaration:

Point p = new Point();

We use the new keyword to instantiate a class. We specify the class name after the new
keyword, followed by opening and closing parentheses. The opening and closing parentheses
indicate a method call—a call to a class constructor. We discuss class constructors later in the
chapter. Once a class is instantiated, memory will be allocated for the object of the class to hold
its data. The reference to this memory allocation must be copied and saved somewhere so that the
created object can be accessed at a later time in your program code. In the preceding statement,
we copy this memory reference to the variable p declared on the left-hand side of the assignment
operator. The type of variable p is Point, indicating that p holds a reference to a Point-type object.

When the preceding program statement is executed, an object of type Point is created at
runtime. This Point object contains two fields: x and y. The object will be referred to by the
variable p later in the program. The two fields, x and y, take a default integer value of 0. The
default value assigned to a field depends on its type.

48 Java Programming

Accessing/Modifying Fields
Accessing the fields declared in the preceding example is simple. To access the x-coordinate of
the point p, you use the syntax p.x, and to access the y-coordinate, you use the syntax p.y. The
general form for accessing a field is objectReference.fieldName. With respect to our example,
objectReference is p and fieldname is y or x.

The Class Example Program
We’ll now write a Java program to declare a Point class, instantiate it, and use it in the
application. Listing 3-1 gives the full program for declaring and using a Point class.

Listing 3-1 The Class Example Program

class Point {

 int x;
 int y;
}

class TestPoint {

 public static void main(String[] args) {
 System.out.println("Creating a Point object ... ");
 Point p = new Point();
 System.out.println("Initializing data members ...");
 p.x = 4;
 p.y = 5;
 System.out.println("Printing object");
 System.out.println("Point p (" + p.x + ", " + p.y + ")");
 }
}

The program output is shown here:

C:\360\ch03>java TestPoint
Creating a Point object ...
Initializing data members ...
Printing object
Point p (4, 5)

NOTE
To run the code, you need to specify TestPoint on the command line
because the main method is defined in TestPoint.

The Point class definition in Listing 3-1 is the same as the one we discussed earlier. To test the
Point class, you need to write another class. The preceding program defines this other class, called
TestPoint. The TestPoint class declares a main method where the program execution begins. In the
main method body, we create an instance of the Point class using the following program statement:

Point p = new Point();

Chapter 3: Classes 49

We access the fields x and y of the created object using following statements:

p.x = 4;
p.y = 5;

These statements set the values of the two data members (that is, the fields). As stated earlier,
these members are also called instance variables because they belong to a particular instance of
the class; in this case, the instance is p. If we create another instance (say, p2), it will have its own
copy of the x and y fields. Here, we use the syntax objectReference.fieldName to access a field.
The two statements assign values to the two fields. We verify this assignment by printing the object
contents in the next two lines of the program code:

System.out.println("Printing object");
System.out.println("Point p (" + p.x + ", " + p.y + ")");

Here, we use the same syntax, p.x and p.y, as in the earlier case for retrieving the instance
variables.

Declaring Methods
Our Point class declared in the previous section contains only fields. Now, we will add a method
to the Point class to help you understand the method declaration and calling syntax. The purpose
of adding a method to the class definition is to provide some functionality to it. The functionality
we are going to add to our Point class involves determining the distance of the point from the
origin. Therefore, we will add a method called getDistance that returns the distance between the
point and the origin.

The modified program is given in Listing 3-2.

Listing 3-2 Program Illustrating How to Declare Methods in a Class

import java.util.*;

class Point {

 int x;
 int y;

 double getDistance() {
 return (Math.sqrt(x * x + y * y));
 }
}

class TestPoint {

 public static void main(String[] args) {
 System.out.println("Creating a Point object ... ");
 Point p1 = new Point();
 System.out.println("Initializing object ...");
 p1.x = 3;
 p1.y = 4;
 double distance = p1.getDistance();

50 Java Programming

 StringBuilder sb = new StringBuilder();
 Formatter formatter = new Formatter(sb, Locale.US);
 formatter.format("Distance of Point p1(" + p1.x + "," + p1.y
 + ") from origin is %.02f", distance);
 System.out.println(sb);
 System.out.println();
 sb.delete(0, sb.length());
 System.out.println("Creating another Point object ... ");
 Point p2 = new Point();
 System.out.println("Initializing object ...");
 p2.x = 8;
 p2.y = 9;
 distance = p2.getDistance();
 formatter.format("Distance of Point p2(" + p2.x + ","
 + p2.y + ") from origin is %.02f", distance);
 System.out.println(sb);
 }
}

When we compile and run this program, we see the following output:

C:\360\ch03>java TestPoint
Creating a Point object ...
Initializing object ...
Distance of Point p1(3,4) from origin is 5.00

Creating another Point object ...
Initializing object ...
Distance of Point p2(8,9) from origin is 12.04

The Point class now has a method added to its definition. The method getDistance computes
the point’s distance from the origin and returns a double value to the caller:

double getDistance() {
 return (Math.sqrt(x * x + y * y));
}

The distance is computed using the sqrt method of the built-in Math class. You will learn to
use many such built-in classes throughout this book.

In the main method of the TestPoint class, we first create an instance, p1, of the Point class
and then initialize its data members using the syntax we used in our earlier example. Next, we
call the getDistance method to determine the point’s distance from the origin:

double distance = p1.getDistance();

To invoke a method, we use the syntax objectReference.methodName. In our case,
objectReference is the reference to the Point object (that is, p1) and methodName is getDistance.
To dump the object’s contents along with the distance, we use the StringBuilder class (you used
this in Syntax Reference 2):

StringBuilder sb = new StringBuilder();
Formatter formatter = new Formatter(sb, Locale.US);

Chapter 3: Classes 51

formatter.format("Distance of Point p(" + p1.x + ","
 + p1.y + ") from origin is %.02f", distance);
System.out.println (sb);

NOTE
You could also use the printf method on System.out, as described in
an earlier chapter, instead of the Formatter class used here.

After building the string, we print it to the console. To illustrate that we can create more than
one Point object in our application using the same class definition, we have created another
instance of the Point class called p2. The program initializes its fields to some values, computes
its distance from the origin by calling the getDistance method, and dumps it along with the
object’s contents to the console. As you can see, the same functionality (getDistance) is exhibited
by both objects of the Point class. Thus, the methods allow us to define a common functionality
for all objects belonging to the same class type.

NOTE
The delete method of the StringBuilder class clears the contents of
its object, starting at an index specified by its first parameter and the
number of characters specified by the second parameter.

CAUTION
C++ allows you to define method bodies outside the class declaration.
In Java, you must define the method body in the class declaration itself.

Memory representation of Objects
The Point object contains two fields, x and y, of type int. The space for storing these fields is
allocated within the object’s memory space. An object occupies more space than the space
occupied by its fields because it also holds some hidden information in its footprint to indicate
its type. The memory representation of the Point object is shown in Figure 3-2.

You may create multiple Point objects by declaring several variables of the Point class type
and assigning instances of the Point class type to each one of them. The following code fragment
creates three Point objects:

Point p1 = new Point();
Point p2 = new Point();
Point p3 = new Point();

FIGUrE 3-2. Memory allocation of an object

x

Point Object
p

y

52 Java Programming

For each variable declaration, an independent memory block is allocated, as shown in
Figure 3-3.

Note that each Point variable declaration receives its own copy of instance variables x and y.

CAUTION
Although the memory layout in Figure 3-3 indicates the contiguous
allocation for the three objects, this may not always be the case.

Information Hiding
In our everyday life, many of us oftentimes try to hide information from other people. In many
situations, the information hiding is an essential part of our life. For example, when you go grocery
shopping, do you allow the store clerk to withdraw money from your wallet? The wallet (which is
an object in object-oriented terms) hides money (which is the information or attribute/field of an
object) from outsiders. A wallet may provide a method called “pull out X dollars” that, when
executed by an outside object, results in handing over X dollars to the caller without disclosing
how much money is in it. This is called information hiding in object-oriented programming.

Let’s now put these concepts to work via a practical example. The program shown in Listing 3-3
contains classes for the wallet and a person who pulls money out of a wallet object.

Listing 3-3 Program to Illustrate the Concept of Information Hiding

class Wallet {

 private float money;

 public void setMoney(float money) {
 this.money = money;
 }

FIGUrE 3-3. Memory allocation for multiple objects

x

Point Object
p

y

x
p1

y

x
p2

y

Chapter 3: Classes 53

 public boolean pullOutMoney(float amount) {
 if (money >= amount) {
 money -= amount;
 return true;
 }
 return false;
 }
}

class Person {

 public static void main(String[] args) {
 Wallet wallet = new Wallet();
 System.out.println("Putting $500 in the wallet\n");
 wallet.setMoney(500);
 System.out.println("Pulling out $100 ...");
 boolean isMoneyInWallet = wallet.pullOutMoney(100);
 if (isMoneyInWallet) {
 System.out.println("Got it!");
 } else {
 System.out.println("Nope, not enough money");
 }
 System.out.println("\nPulling out $300 ...");
 isMoneyInWallet = wallet.pullOutMoney(300);
 if (isMoneyInWallet) {
 System.out.println("Got it!");
 } else {
 System.out.println("Nope, not enough money");
 }
 System.out.println("\nPulling out $200 ...");
 isMoneyInWallet = wallet.pullOutMoney(200);
 if (isMoneyInWallet) {
 System.out.println("Got it!");
 } else {
 System.out.println("Nope, not enough money");
 }
 }
}

When we compile and run this program, we see the following output:

C:\360\ch03>java Person
Putting $500 in the wallet
Pulling out $100 ...
Got it!
Pulling out $300 ...
Got it!
Pulling out $200 ...
Nope, not enough money

54 Java Programming

The Wallet class declares one field called money, as you would expect it to do. Naturally, the
type of this field is set to float so that we can keep our small change in the wallet:

class Wallet {

 private float money;

Notice the private keyword in front of this field declaration. This is the access modifier
mentioned earlier. This access modifier controls the visibility of the declaration to which it is
attached. In this case, it is attached to a field declaration. You can also apply access modifiers to
class and method declarations. One such method we have used so far is the main method in our
earlier programs. This main method has a public modifier attached to it. In Syntax Reference 1,
when we used this method for the first time, we discussed that the main method is declared public
so that it can be invoked by the JVM—or to be more precise, by an external object. It is mandatory
for the main method to be declared public. The other methods we create in our class definition
need not be public; for example, the getDistance method in our earlier example of the Point class
is not public. (Note that when you do not specify the modifier, the visibility is package-private,
which has a lesser scope than a public visibility.) We also apply the access modifiers to the class
declarations. You will learn more about these two access modifiers—private and public—as you
read the rest of this chapter.

Coming back to our definition of the Wallet class, the class defines a method called setMoney,
as follows:

public void setMoney(float money) {
 this.money = money;
}

The method takes a float argument and does not return a value to the caller. The method is
declared public and therefore can be invoked by the code in an external object, as you will soon
see (obviously, you want to load the wallet with some money when you go shopping).

Inside the method’s body, we copy the value of money received as the method parameter to
the instance variable with the same name, money. Because the method parameter and the instance
variable use the same name, we need to differentiate between them in our code. This is done with
the help of the this keyword. The this keyword is a reference to the current object, and thus the
syntax “this.” A dot following the object reference refers to some variable or a method within the
object. The syntax this.money refers to the money field of the current object. We set this field to
the value passed in the method parameter. This method helps in loading our wallet with some
money. Incidentally, this method is called a setter or a mutator method because it sets the value
of a field. Setter methods, by convention, start with the word set, followed by the name of the field
on which they operate, with the first letter of the field capitalized. Similar to the setter methods,
there are getter methods that start with the word get and return the value of a field to the caller.
We will use getter methods in some of our upcoming programs.

Let’s now look at the next method defined in our Wallet class. The pullOutMoney method
takes a float value as a parameter and returns a boolean to the caller:

public boolean pullOutMoney(float amt) {

Chapter 3: Classes 55

In this method’s implementation, we check whether the requested amount is less than the
current balance in the wallet; if so, we subtract the requested amount from the balance amount
and return the amount to the caller:

if (money >= amount) {
 money -= amount;
 return true;
}

In case of insufficient funds, we return false to the caller.
Note that the pullOutMoney method declaration contains a public access modifier, indicating

that this method is accessible to an external object.
Now we turn our attention to the Person class that uses this Wallet. In the main method of the

Person class, we first create an object of the Wallet class:

Wallet wallet = new Wallet();

We load the wallet by calling the setMoney method:

wallet.setMoney(500);

This sets the money variable of the wallet object to 500. Because the method setMoney is
declared public, it can be called from the code within the Person class. Had this been declared
with a private modifier, the compiler would have complained with an “illegal access” error while
compiling the Person class.

Now, let’s try withdrawing some money from the wallet. We call the public method
pullOutMoney on the wallet object. Because this method is declared public like the setMoney
method, it can be invoked from the code in an external class:

boolean isMoneyInWallet = wallet.pullOutMoney(100);

 Depending on the returned value, we print an appropriate message to the user’s console.
Note that the pullOutMoney method does not reveal what the current balance is (thus
implementing information hiding). Next, we withdraw money for a second and third time.
The second time we withdraw $300, and third time we withdraw $200. Note that none of
these withdraw operations reveal the balance amount in the wallet. In fact, in the last withdrawal,
when the operation fails, it still does not reveal how much can be withdrawn—an effective
implementation of information hiding.

Now, what if we really want to know what the current balance in the wallet is? If so, we
would provide a public getter method to read the field value. The getter method declaration is
shown in the following code fragment:

public float getMoney() {
 return money;
}

NOTE
The getter methods are also called accessor methods because they are
used for accessing attribute values.

56 Java Programming

The method getMoney uses the standard convention for a getter method—the get followed by
the attribute’s name, with its first letter capitalized. The method does not take any arguments and
returns a float value to the caller. The implementation simply returns the current value of the
money attribute. The method is declared public so that it can be invoked by an external object.
To read the current balance in our code now, we use the syntax wallet.getMoney().

TIP
According to the principles of object-oriented programming and good
design practice, all fields in a class definition should be declared
private and you should provide the required getter/setter public
methods to access them.

Now the question is, why do we need to apply access modifiers to our declarations? So far,
you have seen two access modifiers—private and public. The private modifier makes the
corresponding field, method, or class declaration truly private to the code to which it belongs.
In our example, the variable money is declared private and is therefore visible only to the code
within the Wallet class. Therefore, using the earlier dot syntax (wallet.money) will result in a
compilation error. The only way to access the money field is to use the public getter/setter
methods that operate on this attribute. Making money private also helps in protecting it from
any accidental modifications by an external code because one cannot use the objectReference.
fieldName syntax to access it.

Encapsulation
In the previous section, you saw the importance of information hiding. Another big concept
associated with object-oriented programming is encapsulation. Every class contains some data in
its fields. We hide these fields by declaring them private. We define getter/setter methods to
access them. When we assign a value to a field, do we validate the value before assigning it? By
providing a setter method, we get an opportunity to provide such a validation. As an example,
consider the definition of a Date class declared as follows:

class Date {

 public int day;
 public int month;
 public int year;
}

This class declares three public fields.
 Although it is against the object-oriented programming best practices, these fields are

declared public to illustrate the problems associated with public declarations.
If d is an object of the Date class, we could use the following statement to set its month value:

d.month = 13;

The code is syntactically correct and will execute without any errors. However, this is
obviously a wrong assignment, which may be due to a simple typing error. To protect from
such not-so-inevitable errors, be sure to make your fields private, define a setter method to

Chapter 3: Classes 57

assign values to them, and provide the validation in the setter methods before making an
assignment. Thus, we could write the setter method for the month field as follows:

public void setMonth(int month) {
 if (month >= 1 && month <= 12) {
 this.month = month;
 } else {
 // print an error message to the user
 }
}

This implementation checks whether the value we are trying to assign is within the bounds
of a calendar month. This ensures that an invalid value cannot be assigned to the month field.
Similar validations can be performed in the setter methods for the day and year fields.

The process of putting the data and the methods that operate on this data together in the class
definition is called encapsulation. As you saw, encapsulating getter/setter methods helps in
creating robust objects. When we talk about encapsulation, we are not just referring to the getter/
setter methods. There could be other methods in the class that logically belong to it. For example,
let’s take a method called printDate that prints the values of the date attributes in some predefined
date format. It makes perfect sense to declare and define the printDate method in the Date class
itself. This is exactly what encapsulation is. You encapsulate the methods in a class definition that
operate on the class’s fields and make logical sense being in the class definition. The Date class,
for example, could provide several methods, such as for the addition of dates, determining
whether the current date is in a leap year, and so on. These should be defined in methods that
belong to the Date class.

Here’s something else to consider about using encapsulation: If you do not encapsulate the
appropriate methods in a class definition, you will have to provide error-checking code in several
places within your application. For example, if you do not provide the validations in the setter
methods of the Date class, you will need to repeat the validation code in several places in your
application, and if this validation ever changes, you will have the big task of ensuring that it
occurs in every place you have set the field values.

NOTE
As a designer of an object-oriented system, it is your duty to identify
and provide the encapsulation of appropriate data and methods in all
your class definitions.

Declaring Constructors
A constructor is a special method that the runtime executes during the object-creation process. In
an earlier section, you saw that the following statement calls the class constructor:

Point p = new Point();

When you instantiate a class using the declaration shown here, an object is created with
some default values assigned to its fields. However, you may want to create an object with an
initial state that is different from the default state set by the compiler. For example, you might
want to create a Point object with its initial values x and y set to 4 and 5, respectively. This can

58 Java Programming

be achieved with the help of a constructor. To create a constructor, you write a method as
shown here:

public Point() {
 x = 4;
 y = 5;
}

This method has a name that is the same as the class name. This is one of the rules for
defining a constructor. Also, note that the method does not declare any return type, not even
void. This is the second rule for defining the constructor—a constructor does not have a return
type. The rules for constructor declaration are summarized later in this section.

Now, let’s look at the other features of the constructor. The constructor in this case does not
take any arguments. In general, a constructor can accept zero or more arguments. If the
constructor does not specify an argument, it is called a no-argument constructor. Sometimes, this
is also referred to as a default or a parameterless constructor.

In the constructor body, we put two assignment statements that initialize the values of the x
and y fields to the desired values. You may assign any values you choose. When the object is
created, it will have those values.

Once you write a constructor like this in the class definition, any time you instantiate the
class, your constructor is called. This is demonstrated in the program shown in Listing 3-4.

Listing 3-4 A Program Illustrating a Class with a Constructor

class Point {

 private int x;
 private int y;

 public Point() {
 x = 10;
 y = 10;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }
}

class CustomConstructorApp {

 public static void main(String[] args) {
 System.out.println("Creating a Point object ... ");
 Point p = new Point();
 System.out.println("\nPrinting Point object");

Chapter 3: Classes 59

 System.out.println("Point p (" + p.getX() + ", " + p.getY() + ")");
 }
}

The class Point, just like in our earlier examples, declares two fields, x and y, of type int. The
class also declares a constructor, as follows:

public Point() {
 x = 10;
 y = 10;
}

The constructor initializes both fields to a common value of 10. This is a no-argument
constructor. The class also declares two getter methods for accessing the values of the two fields.
Note that we do not define any setter methods here because our program does not need to set the
values of these fields to anything other than the default values set in the constructor.

In the main method of the CustomConstructorApp class, we instantiate the Point class,
as follows:

Point p = new Point();

The execution of this statement results in calling the constructor we defined in the class
definition. The constructor sets the values of both x and y fields to 10. We can verify this by
dumping the object’s contents via the following statement:

System.out.println("Point p (" + p.getX() + ", " + p.getY() + ")");

Note the use of getter methods for obtaining the x and y values. When we run the program,
we get the following output:

Creating a Point object ...
Printing Point object
Point p (10, 10)

After the object is constructed, we may still call its setter methods (provided we defined them
in the class definition) to change the value of data members to any other value. By providing a
no-argument constructor, we ensure that any newly created object will have its data members set
to the default values specified in the constructor.

Now, what if we want to set the data members to a different value each time we create an
object? For this, we need to pass the values as parameters to the constructor. Therefore, we need
to declare a constructor that takes parameters. Such a constructor is shown in the following code
fragment:

public Point(int x, int y) {
 this.x = x;
 this.y = y;
}

We assign the values specified by the two parameters to the two instance variables using
this as a reference to the current object. To call this constructor in our program code, we use
the following statement:

Point p = new Point(4, 5);

60 Java Programming

When we call the constructor, we set the values for its arguments. The instance variables will
now be initialized using these values. We can verify this by dumping the object’s contents as
illustrated in the previous example.

Sometimes, we may want to initialize only one of the instance variables while letting the
other variable have some default value. In such a case, we declare another constructor for our
Point class, as follows:

public Point(int x) {
 this.x = x;
 y = 10;
}

This constructor takes only one argument, the value of which is assigned to the x field. The
other instance variable, y, is set to a value of 10. If we do not assign a value to the variable y, it
will take a default value of 0, which is provided by the compiler. We can now call the constructor
with the following statement:

Point p = new Point(5);

This creates the Point object (5, 10), which can be verified by printing the object’s contents.

NOTE
You cannot write two constructors that have the same number and
type of arguments for the same class because the platform would not
be able to differentiate between them. Doing so causes a compile-
time error.

A class may declare more than one constructor in its definition. If this is the case, how do you
know which constructor is called when the class is instantiated? The compiler decides which
constructor to call depending on the number of parameters and their types. Look at the following
code fragment:

Point p1 = new Point();
Point p2 = new Point(15);
Point p3 = new Point(5, 10);

The first statement calls the no-argument constructor and creates the object p1(10, 10). The
second statement creates the object p2(15, 10), and the third statement creates the object p3(5,
10). Thus, the compiler has decided which constructor to call depending on the number of
parameters passed to it.

Default Constructor
In the previous section, you learned to write your own constructor. In all our previous examples,
we hadn’t written any constructors. So is there any constructor provided by default? Yes, there is.
If you do not write a constructor, the Java compiler provides a constructor with no arguments.
This is called the default constructor, and the implementation of the default constructor is null,
which means it does not contain any code.

Chapter 3: Classes 61

CAUTION
If you provide a constructor of your own—either a no-argument one
or one with the arguments in the class definition—the compiler will
not provide a default constructor.

NOTE
Like C++, Java does not provide destructors. Java relies on its garbage
collector to clean up the resources held by unused objects.

For further details on constructors and how they are called, see Chapter 5.

rules for Defining a Constructor
The rules for constructor creation can be summarized as follows:

A constructor must have the same name as the class name.■■

A constructor does not return anything, not even a ■ void type.

A constructor may take zero or more arguments. ■

By default, the compiler provides a no-argument constructor. ■

If you provide any constructor—either a no-argument constructor or a constructor with ■■
arguments—the compiler does not provide a default constructor.

Source File Layout
You have learned enough from the examples given thus far to get started writing Java programs.
Now, let’s discuss the complete structure of a Java source file. When you write a Java source
program, it needs to follow a certain structure or template. This template is shown in Listing 3-5.

Listing 3-5 Layout of a Java Source File

/**

 * NewClass.java

 */

package javaapplication;

import classes;

public class NewClass {

 public NewClass() {
 }
}

62 Java Programming

The import statement makes the declarations of external classes available to the current Java
source program at the time of compilation.

As stated earlier in the book, you may use any text editor for writing a Java source program.
The entire program may consist of more than one source file. Each Java source file must have the
same name as a public class that it declares. Each Java source file can contain only one public
class declaration. The file extension must be .java. The filename is case-sensitive. Therefore, the
preceding source code must be stored in a file named NewClass.java. The source file may contain
more than one class declaration; however, not more than one such declaration can be public.

The source consists of three major sections—the package, import, and class definition—besides
the comments, which you may embed anywhere in the source. A multiline comment is shown at
the top of Listing 3-5, which shows the name of the file under which this code must be saved. We
discussed the class declaration earlier, so let’s turn our attention to the package and import sections.

The package Statement
The package statement allows you to group logically related classes into a single unit. In our
earlier programs, we have used import statements such as the following:

import java.io.*;
import java.util.*;

Both java.io and java.util in these statements are packages. All I/O-related classes are grouped
together and put under the package java.io. Similarly, all the utility classes are grouped together
under the java.util package. The Java Development Kit defines many such packages, grouping the
various classes in different logical units depending on their functionality. When you develop
several classes in your application or when you create several applications, you may also want to
arrange your classes into logical units. You do so by creating packages in your application. To
create a package, you need to use a package statement. The basic syntax of the package statement
is shown here:

package packagename;

A package name may consist of zero or more subpackage names, each separated by a dot.
Here are a few valid package declarations:

package mypackage;
package mypackage.reports;
package mypackage.reports.accounts.salary;

The first statement declares a top-level package called mypackage. The second statement
declares a subpackage called reports within mypackage. The third statement declares a package
hierarchy where mypackage is the top-level package, with the reports package within it, the
accounts package within reports, and finally the salary package within accounts.

When you declare a package, the declaration must follow certain rules:

The package must be declared at the beginning of the source file before any other ■■
statement.

NOTE
A comment may precede the package statement because it is not
treated as a program statement.

Chapter 3: Classes 63

Only one package declaration per source file is permitted. ■

Package names must be hierarchical and separated by dots. ■

If no package is declared, the compiler creates a default package and all classes that do ■■
not have a package declaration will be grouped under this default package.

As the first rule states, a package declaration must be a top-level statement in your source
file. Writing a package declaration statement anywhere else in the source program results in a
compile-time error.

As the second rule states, you cannot have more than one package declaration in a single
source file. Note that a source file may contain multiple class declarations; however, it can
contain only one package declaration. All classes defined in the source file will be grouped
together in a package declared at the top of the source file.

As the third rule states, if you decide to use subpackages, the entire name must be hierarchical
and the subnames must be separated by a dot. Imagine the hierarchical package name as a
directory structure containing a main directory, followed by a subdirectory in each, until the end
of the full package name. A class belonging to the package will be put under this last subdirectory
following the entire directory structure. The directory layout for a source containing a package
statement is described in the next section.

Finally, the last rule states that if the source file does not contain a package declaration, all
classes defined in the source file will be grouped together in a default package. The directory for
this default package is the current directory itself. Thus, all classes defined in this source file will
be put in the current folder when compiled.

NOTE
The package statement carries more meaning to it than just the
logical grouping of classes. It controls the visibility of the classes,
as well as the fields and methods defined in its source program.
We discuss these visibility rules when we cover inheritance and
visibility in Chapter 5.

The import Statement
Immediately following the package declaration, you have import declarations. You use the import
statement to tell the compiler where to find the external classes required by the source program
under compilation. The full syntax of the import statement is as follows:

import packagename;

or

import packagename.* ;

Here are a few examples of the import statement:

import mypackage.MyClass;
import mypackage.reports.accounts.salary.EmployeeClass;
import java.io.BufferedWriter;
import java.awt.*;

64 Java Programming

The first statement imports the definition of the MyClass class that is defined in the mypackage
package. The second statement imports the definition of EmployeeClass belonging to the
mypackage.reports.accounts.salary package. The third statement imports the JDK-supplied
BuffferedWriter class belonging to the java.io package. The fourth statement imports all the classes
belonging to the java.awt package. Note that the asterisk (*) in the fourth statement indicates that
all classes are included.

As the syntax suggests, you may import a single class or all the classes belonging to a package.
To import a single class, you specify the name of the class, and to import all classes you specify *.

NOTE
The import statement specifies the path for the compiler to find the
specified class. It does not actually load the code, as is the case with
an #include statement in C or C++. Therefore, the import statement
with * does not affect the application’s runtime performance.

Directory Layout and Packages
You have learned how to create Java packages and how to import the classes defined in those
packages. Now, let’s look at the package hierarchies. As mentioned earlier, packages follow a
hierarchical structure. When you compile your source program, the compiler generates a folder
structure defined in your package and creates a .class file for your program in the innermost
subfolder. To instruct the compiler to generate the folder hierarchy, you need to specify the –d
option on the compiler command line. For example, let’s say your source program called
Employee.java contains the following package statement:

package mypackage.reports.accounts.salary;

 When you compile this source program, use the following command line:

C:\360\ch03>javac -d . Employee.java

The -d option tells the compiler to create the folder hierarchy in the directory specified on the
command line following the -d option. In this example, the starting directory is a dot (.), indicating
that this is the current working directory. Therefore, when the compiler compiles the program, it
creates a folder hierarchy, as shown in Figure 3-4, in the current working directory and creates a
.class file in the salary subfolder, as shown.

mypackage

reports

accounts

salary

Employee.class

FIGUrE 3-4. Folder hierarchy for the compiled code

Chapter 3: Classes 65

If you do not specify the -d option during compilation, the compiler will generate the
Employee.class file in the current folder. You will then need to create the folder structure yourself
and copy the .class file in the salary folder. To run this .class file (assuming it contains a main
method) from the command line, use the following command:

C:\360\ch03>java mypackage.reports.accounts.salary.Employee

Note that you need to mention the full folder structure while running the .class file. This is
because the fully qualified name of Employee.class is packagename.ClassName. If you try
running the Employee class without the package name, as shown next, you will get a “class not
found” error at the runtime:

C:\360\ch03>java Employee // generates runtime error

If you navigate to the Salary folder and try to run the Employee class from within the salary
subfolder, as shown next, the runtime still generates an error:

C:\360\ch03\MyPackage\Reports\Accounts\Salary>java Employee //error

CAUTION
If you use a package statement in your Java source file to access the
created .class file, you must use the fully qualified class name.

TIP
When you reference a class defined using a package, its fully qualified
path must be available with respect to the current folder, assuming
that the current folder is defined in your CLASSPATH environment
variable. You may edit the CLASSPATH environment using the tools
provided by your operating system. Alternatively, you may specify the
CLASSPATH on the command line when you run the application.

Summary
Java is object oriented. A Java program consists of classes. A class is a template for object
creation. A running Java program contains several objects. You create an object by instantiating a
class. A class may contain data members and methods that operate on this data. A class may be
defined having a null implementation, in which case it does not have any data and method
declarations. Each member of the class is declared with an access modifier that defines its
visibility in the entire application. You used two types of modifiers in this chapter: public and
private. It is recommended that all data members of the class be declared using the private
modifier. A data member declared with a private modifier cannot be accessed by code external
to the class definition using dot syntax. You need to define getter and setter methods, also called
accessor and mutator methods, respectively, to access private variables from external code. This
is known as information hiding. Defining setter methods for mutuating fields also helps in validating
data input before it is assigned to the variables.

66 Java Programming

To instantiate a class, you use the new keyword. The instantiation results in calling a class
constructor. A constructor is a special method defined in a class that is used for initializing the
state of the created object. The compiler provides a default constructor with a null body. You
may write your own constructors. A constructor can take arguments, which you can use to
supply the initial values to the fields of the newly created object. A class may contain multiple
constructors having different sets of arguments. A constructor declaration must obey a set of
predefined rules. The compiler decides which constructor to call based on the number of
parameters and their types.

A Java source program follows a predefined layout. It consists of package, import, and class
definition sections. The package statement helps in grouping the logically related classes to
control their visibility in the entire application. A package may create a hierarchical structure for
logical organization of the classes. When a source program declares the package statement, the
compiler generates a folder hierarchy defined in the package declaration. You must use the -d
option on the compiler command prompt to enable the compiler to generate this hierarchy. You
use the import statement to import the external classes in your source program. The import
statement must specify the fully qualified name of the imported class.

In the next chapter, you will learn a very important principle of object-oriented programming—
inheritance.

Chapter
4

Inheritance

67

68 Java Programming

ne of the major benefits of object-oriented programming is code reuse. Programmers
develop lot of code over time. If this code can be reused, they can save time and
effort in developing and testing a new project. In structured programming, if the code
is arranged in appropriate independent functions, it can be reused in future
applications. For object-oriented programming, the inheritance feature you’ll learn
about helps achieve code reuse. In the previous chapter, you learned to define

classes. In this chapter, you learn how to write classes that extend the functionality of classes that
already exist. You generally do so because you have already developed a few classes and you want
to add some functionality to them without breaking the existing code or rewriting them entirely
again. In some situations, you may even like to reuse the code developed by others and add more
functionality. This is achieved with the inheritance feature of object-oriented programming, and that
is what you are going to learn here.

In particular, you will learn the following:

What inheritance is■■

Implementing single-level inheritance in Java ■

Creating multilevel inheritance hierarchy ■

Accessing fields and methods of parent classes ■

Overriding base class methods ■

Understanding compile-time and runtime polymorphism ■

Creating and traversing a heterogeneous collection of objects ■

Learning typecasting rules for accessing a heterogeneous collection ■

Preventing method overriding and subclassing ■

Using the ■■ super keyword to access shadowed fields and methods

Why Inheritance?
Before you learn what inheritance is and how to implement it in your code, let me first give you a
brief introduction to the importance of having inheritance. The major advantage of inheritance is
code reuse. You will be able to use your tested code in your new applications, with desired
additions, without really touching it. Even if the code has been distributed, you are able to add
more functionality to your new applications without breaking the distributed code. For example,
you may have been using OpenOffice for the last several years. Haven’t you upgraded it several
times during this period? When an application such as OpenOffice is upgraded, the developers
do not rewrite the full code for every new version. They use the code of the existing version in
terms of the classes they have defined and simply add more functionality to it without touching
the source program of the existing code. This is what inheritance permits you to do. Besides this,
by using inheritance, you will be able to model the real-world hierarchies. For example, to
develop a payroll system, you could define classes such as Person, Employee, Staff, Manager,
Director, and so on, that perfectly fit into an inheritance hierarchy. Because such classes have a
lot of commonality, putting them in an inheritance hierarchy will make your code more
maintainable in the future. The inheritance also allows you to create a set of pluggable items with
the same “look and feel”. As an example, consider the various GUI (graphical user interface)

O

Chapter 4: Inheritance 69

controls you use in dialog boxes of your daily applications. Most of these controls, such as text
boxes, list boxes, buttons, labels, and so on, have lot of commonality in terms of their functions
and their look and feel. The inheritance feature of object-oriented programming facilitates
creating a set of such controls. As you read this chapter, you will learn these and several other
benefits offered by inheritance. So let’s start by discussing what inheritance is.

What Is Inheritance?
All of us have observed inheritance in nature. For example, a baby inherits the characteristics of
her parents, a child plant inherits the characteristics of its parent plant, and so on. We attempt to
bring this feature into our software by inheriting the characteristics of the existing classes and then
extending their functionality. To identify the classes, which have some commonality and thus are
probable candidates for creating inheritance hierarchies, object-oriented analysis techniques
provide some rules. You will learn some of these as you read this section.

Let me illustrate inheritance with a concrete real-life example. Suppose we are asked to write
some assets management software. Now, what are the classifications of assets a person may
possess? A person might have a bank account, a few investments in securities, and a home in
which to live. There may be many more types of assets, but we will restrict our discussion to the
few mentioned here. We would like to represent these assets in our software, so let’s start creating
classes to represent them. The first thing that comes to mind is an Asset class, which is a common
term for all the assets previously mentioned. We represent the Asset class as shown in Figure 4-1.

Note that this figure uses Unified Modeling Language (UML) notation to represent an Asset
class. Each asset has a unique identifier represented by the id field in the class definition.
Similarly, each asset has a certain type, such as bank account, security, real estate, and so on. We
represent this type using the type field. The prefix in the definition of each field indicates its
visibility within our program code. The hyphen (-) prefix indicates the private visibility, the plus
sign (+) prefix indicates a public visibility, and so on. The variables declared with private visibility
are accessible only to the methods defined in the class and are not visible to the code defined in
other classes. The Asset class declares a method called printDescription. The method returns a
void and its name is prefixed with a + sign, indicating that the method is publicly accessible.

NOTe
UML defines a widely accepted notation for creating artifacts
of object-oriented design.

Next, we want to add classes to represent our real-world assets. Let’s define a class to
represent a bank account. As mentioned earlier, a bank account is a type of asset and would have
an id and type associated with it. Each account is held with a particular bank; this information

FIGure 4-1. The Asset class

Asset

–id : int
–type : string

+printDescription() : void

70 Java Programming

will be captured in an attribute that represents the bank name. Let’s call this field bankName.
Each bank account will also contain a balance at any given time. We capture this by creating a
field called balance. Thus, our BankAccount class will look like what is shown in Figure 4-2.

You can easily see that the BankAccount and Asset classes have certain characteristics in
common. Because the id and type attributes (fields) are common to both classes, we will create a
hierarchy such that the BankAccount class inherits these fields from the Asset class. This is
represented in the UML notation shown in Figure 4-3.

We call this operation of extending the class functionality subclassing. We say that the
BankAccount is a “subclass” of the Asset class. Alternatively, we say that BankAccount “extends”
the Asset class. Another way of putting it is that BankAccount is “derived from” the Asset class.
The class from which a subclass is created is called a superclass. Thus, Asset is a superclass of
BankAccount. Alternatively, we say that Asset is a “base class” of BankAccount.

In Java, subclassing is achieved with the help of the extends keyword. UML notation has been
used thus far to explain class inheritance. Now, you will see the class declarations for these classes
(see Listing 4-1).

FIGure 4-2. BankAccount class

–id : int
–type : string
–bankName : string
–balance : float

+printDescription() : void

FIGure 4-3. Inheriting BankAccount from the Asset class

–id : int
–type : string

+printDescription() : void

–bankName : string
–balance : float

Chapter 4: Inheritance 71

Listing 4-1 Program Snippet to Demonstrate Subclassing

class Asset {

 private int id;
 private String type;

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public void printDescription() {
 System.out.println("Asset ID: " + id);
 System.out.println("Asset type: " + type);
 }
}

class BankAccount extends Asset {

 private String bankName;
 private int accountNumber;
 private float balance;

 public int getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(int accountNumber) {
 this.accountNumber = accountNumber;
 }

 public float getBalance() {
 return balance;
 }

 public void setBalance(float balance) {
 this.balance = balance;
 }

72 Java Programming

 public String getBankName() {
 return bankName;
 }

 public void setBankName(String bankName) {
 this.bankName = bankName;
 }

 public void printDescription() {
 super.printDescription();
 System.out.println("Name: " + bankName);
 System.out.printf("Account #: %d%n", accountNumber);
 System.out.printf("Current balance: $%.02f%n", balance);
 }
}

Note that the BankAccount class definition does not contain any of the fields defined in the
Asset class. These characteristics (fields and methods) are automatically made available to an
object of BankAccount type. Note that the id and type fields of the Asset class are declared
private. As stated earlier, private fields are not visible to the code outside the class definition.
Therefore, to access these private fields, we create getter/setter methods for each field. These
methods are declared public and can be called from the code outside the current class definition.
To initialize these fields, we can use class constructors. How to do this is detailed in the next
chapter, where we discuss the class constructors in depth.

NOTe
With use of the extends keyword, the subclasses will be able to inherit
all the properties of the superclass except for its private properties.

TIp
The inheritance is captured by an “is a” relationship. After all, a
BankAccount “is a” type of Asset. Examples are “BankAccount is an
Asset,” “Security is an Asset,” “RealEstate is an Asset,” and so on.
While designing your classes, if you find the relationship between two
classes can be represented by an “is a” relationship, then these classes
are good candidates for creating an inheritance hierarchy.

Defining Single-level Inheritance
When a class inherits from a single class, as in the case of BankAccount inheriting from Asset, it
is called single-level inheritance or simply single inheritance. In single inheritance, you create a
class that inherits the properties of another single class. You may create multiple classes that
inherit from a single class. This was stated earlier when I said that bank account, security, and
real estate are types of assets. Thus, all these can be represented as classes inheriting from the
Asset class, as shown in Figure 4-4.

Note that the newly defined classes Security and realestate both extend the Asset class and
define the fields unique to each. Just like the BankAccount class, both the Security and realestate
classes will have access to the base class fields and methods. You will learn more about this as
you read the rest of the chapter.

Chapter 4: Inheritance 73

When a class inherits from a single class, known as the parent class, as in the case of the
BankAccount, Security, and realestate classes inheriting from Asset, it is called single inheritance.
If the class itself does not inherit from any other class, we call it a top-level class.

NOTe
In Java, every class inherits from the Object class. Thus, Object is a
top-level class.

CAuTION
You may be wondering whether it is possible to inherit from multiple
classes. C++ allows you to inherit from multiple classes. However,
Java does not support multiple inheritance. This means a Java class
cannot simultaneously inherit the characteristics of two or more
Java classes. Java has interfaces, which provide a sort of multiple
inheritance. Interfaces are discussed in Chapter 6.

Capturing Multilevel Inheritance
We will now extend our single-level class hierarchy to multiple levels. A BankAccount inherits
from Asset. A bank account can be one of two types: savings or checking. Therefore, we can say
the following:

A bank account “is an” asset.■■

A savings account “is a” type of bank account. ■

A checking account “is a” type of bank account.■■

Thus, we could add two more classes, called SavingsAccount and CheckingAccount, to our
class hierarchy to represent these additional real-life entities. This is shown in the UML diagram
given in Figure 4-5.

FIGure 4-4. Multiple classes inheriting the Asset class

–id : int
–type : string

+printDescription() : void

–tradeExchangeName : string –builtUpArea : float
–bankName : string
–balance : float

74 Java Programming

The savings account draws monthly interest, but the bank does not pay any interest on the
checking account. Thus, the SavingsAccount class defines a field called interestrate, whereas the
CheckingAccount does not. Likewise, CheckingAccount has a unique field or attribute called
overdraftLimit, which is missing in the SavingsAccount class. To get a better grasp of these inheritance
hierarchies, we will now discuss a small program that illustrates the various concepts covered so far.

Writing a Multilevel Inheritance program
The application discussed in this section is based on the asset management classes you have
studied so far. We will now look at the concepts of multilevel inheritance with the help of
program code. For this purpose, we will use the asset hierarchy discussed previously. The
complete program that demonstrates multilevel inheritance is shown in Listing 4-2.

Listing 4-2 Asset Management Application

class Asset {

 // Same definition as in Listing 4-1
}

FIGure 4-5. Illustrating multilevel inheritance on bank assets

–id : int
–type : string

+printDescription() : void

–tradeExchangeName : string –builtUpArea : float–bankName : string
–balance : float

–overdraftLimit : float–interestRate : float

Chapter 4: Inheritance 75

class BankAccount extends Asset {

 // Same definition as in Listing 4-1
}

class SavingsAccount extends BankAccount {

 private float interestRate;

 public void setInterestRate(float interestRate) {
 this.interestRate = interestRate;
 }

 public void printDescription() {
 System.out.println("A savings account");
 super.printDescription();
 System.out.printf("Interest rate (%%): %.02f%n", interestRate);
 }
}

class CheckingAccount extends BankAccount {

 private float overdraftLimit;

 public void setOverdraftLimit(float overdraftLimit) {
 this.overdraftLimit = overdraftLimit;
 }

 public void printDescription() {
 System.out.println("A checking account");
 super.printDescription();
 System.out.printf("Overdraft limit: $%.02f%n", overdraftLimit);
 }
}

public class AssetMgmt {

 private SavingsAccount tomSavingsAccount;
 private CheckingAccount iVisionBusinessAccount;

 public static void main(String[] args) {
 AssetMgmt manager = new AssetMgmt();
 manager.createAssets();
 manager.printAllAssets();
 }

 private void createAssets() {
 tomSavingsAccount = new SavingsAccount();
 tomSavingsAccount.setId(1001);
 tomSavingsAccount.setType("Bank Account");

76 Java Programming

 tomSavingsAccount.setBankName("Citi bank");
 tomSavingsAccount.setAccountNumber(526702);
 tomSavingsAccount.setBalance(15450.00f);
 tomSavingsAccount.setInterestRate(3.0f);

 iVisionBusinessAccount = new CheckingAccount();
 iVisionBusinessAccount.setId(1002);
 iVisionBusinessAccount.setType("Bank Account");
 iVisionBusinessAccount.setBankName("Bank of America");
 iVisionBusinessAccount.setAccountNumber(24689);
 iVisionBusinessAccount.setBalance(678256.00f);
 iVisionBusinessAccount.setOverdraftLimit(50000.00f);
 }

 private void printAllAssets() {
 String lineSeparator = "-------------------";
 System.out.println(lineSeparator);
 tomSavingsAccount.printDescription();
 System.out.println(lineSeparator);
 iVisionBusinessAccount.printDescription();
 System.out.println(lineSeparator);
 }
}

Here, we have first created an Asset class:

class Asset {

 private int id;
 private String type;

Note that the Asset class is not declared public because the Java compiler has a restriction of
allowing only one public class declaration in a source file.

TIp
To create multiple public classes in your application, declare each
class in a separate file, compile all the source files, and place the
generated .class files in the CLASSPATH. The runtime will be able to
locate these class files whenever called for in your application. If you
are using NetBeans or some other IDE, create a project and add as
many public classes as you want. Each public class will be put into a
separate file under the project.

The Asset class declares two fields, which are private to the class definition. To access these
variables, we provide the corresponding getter/setter methods.

Chapter 4: Inheritance 77

NOTe
Object-oriented design guidelines suggest that all class fields should
be declared private and one should provide getter/setter (also called
accessor/mutator) methods to access these private data members. Also,
note that the information that the Asset class holds is sensitive and
must be declared private by virtue of its nature. In the previous chapter,
when the Point class was introduced, we did not mark its fields private
because we had not talked about private/public modifiers yet.

Besides the two fields, we declare a printDescription method in the class definition that prints
the values of these fields on the user console.

The BankAccount class inherits the Asset class:

class BankAccount extends Asset {

 private String bankName;
 private int accountNumber;
 private float balance;

The BankAccount class declares three fields; we once again provide the appropriate getter/
setter methods for each field and a printDescription method to print the values of these fields on
the console. Next, we declare a SavingsAccount class that inherits BankAccount:

class SavingsAccount extends BankAccount {

 private float interestRate;

The SavingsAccount class, as discussed earlier, has the unique characteristic of an interest
rate that does not apply to a checking account. Therefore, we declare a field to represent this
interest rate and a corresponding setter method to set its value. Note that a getter method was not
created for this field because we are not going to need it. The printDescription method, like in
the earlier cases, prints the value of the class field.

Likewise, we create a CheckingAccount class that derives from BankAccount:

class CheckingAccount extends BankAccount {

 private float overdraftLimit;

The checking account has the unique characteristic of an overdraft limit, which is represented
by the overdraftLimit field. Like in earlier cases, we provide the setter method for this field and a
printDescription method.

Our next task is to write a test application that uses these classes. We do so with the following
declaration:

public class AssetMgmt {

78 Java Programming

Note that this class is declared public, although in reality this is not necessary (you will
understand why after you study Java packages and member visibility rules in Chapter 5). We define
two variables that hold references to the SavingsAccount and CheckingAccount types, as follows:

private SavingsAccount tomSavingsAccount;
private CheckingAccount iVisionBusinessAccount;

tomSavingsAccount will be used for holding an instance of the SavingsAccount class. As the
name suggests, this may be for representing the real-life savings account of a customer named
Tom. Next, we declare another variable of the CheckingAccount type, which may represent a
real-life business account of iVision, Inc.

We now write a main method where the program execution always begins:

public static void main(String[] args) {
 AssetMgmt manager = new AssetMgmt();
 manager.createAssets();
 manager.printAllAssets();
}

We first create an instance of the AssetMgmt class. Once an instance is created, we can
invoke the instance methods on this object.

NOTe
A class declaration can contain both static and nonstatic methods.
The static methods can be invoked without creating an instance of
the class. The nonstatic methods can be invoked only on an object
reference. The static keyword is discussed in Chapter 6.

On the newly created manager object, we invoke the two methods createAssets and
printAllAssets. As the names suggest, the first method creates a few assets and the second method
lists those objects on the console.

private void createAssets() {

We declare the createAssets method to be private because we know for sure that this method
need not be invoked by any code outside the class definition.

NOTe
It is generally considered a good practice not to expose the code to
the outside world unless you truly want to do so.

In the method definition, we first create an instance of SavingsAccount class:

tomSavingsAccount = new SavingsAccount();

We now invoke several set methods on the created object to set the values of various fields
of the class:

tomSavingsAccount.setId(1001);
tomSavingsAccount.setType("Bank Account");
tomSavingsAccount.setBankName("Citi bank");

Chapter 4: Inheritance 79

tomSavingsAccount.setAccountNumber(526702);
tomSavingsAccount.setBalance(15450.00f);
tomSavingsAccount.setInterestRate(3.0f);

Note that the setId and setType methods belong to the parent class Asset. These methods are
public and therefore can be invoked by the SavingsAccount object we created.

NOTe
Because SavingsAccount is a subclass of Asset, the setId and setType
methods are automatically inherited in the subclass even if they were
not declared public. You learn the member visibility rules when we
discuss packages in Chapter 5.

These methods set the two fields of the Asset object that is automatically created whenever
you create a SavingsAccount object.

NOTe
Whenever you create an object of a subclass, its parent class object is
automatically created. You learn the object-creation process in depth
in the next chapter.

You set the values of three fields—bank name, account number, and balance—by calling the
corresponding setter methods of the BankAccount class. Once again, note that the BankAccount
object has been created for us automatically during the creation of the subclass object. Finally,
we set the interest rate by calling the setInterestrate method of the SavingsAccount class itself.

Likewise, we create one more asset of the CheckingAccount type and set its fields by calling
the appropriate setter methods of the various classes in the inheritance hierarchy.

Now we look at the printAllAssets method, which is also declared with a private modifier.
The method prints the descriptions of the assets by calling the corresponding printDescription
method on each object:

tomSavingsAccount.printDescription();
iVisionBusinessAccount.printDescription();

The two printDescription methods in the preceding statements need further explanation. If
you look at the printDescription method of the SavingsAccount class, you’ll see that it contains
the following two statements:

super.printDescription();
System.out.printf("Interest rate (%%): %.02f%n", interestRate);

The second statement obviously prints the interest rate field to the console. The first statement
uses the super keyword to access the super class object and invokes the printDescription method
of this super object.

NOTe
You can access any of the super class fields and methods from a
subclass object by using the super keyword to reference the super
class object’s fields and methods.

80 Java Programming

If you look up the printDescription method of the BankAccount class, which is a super class
of SavingsAccount, you will find another call, super.printDescription. This call invokes the
printDescription method of its super class, which is the Asset class. Thus, by using the super
keyword, you are able to request each of the inherited objects to print their own descriptions.
When you run the application, you will see the following output:

A savings account
Asset ID: 1001
Asset type: Bank Account
Name: Citi bank
Account #: 526702
Current balance: $15450.00
Interest rate (%): 3.00

A checking account
Asset ID: 1002
Asset type: Bank Account
Name: Bank of America
Account #: 24689
Current balance: $678256.00
Overdraft limit: $50000.00

Note how all the details of each account are printed to the console.

polymorphism
In the code example described in the previous section, you might have noticed that we used the same
name, printDescription, for defining a method in each of the three classes defined in the inheritance
hierarchy. This is called polymorphism in the object-oriented paradigm. The word polymorphism
comes from Greek and means “having many forms.” In our case, the printDescription method
declared in our classes—that is, Asset, BankAccount, and SavingsAccount (also CheckingAccount)—
has different forms depending on the class to which it belongs.

Whenever we use the same method name across a class hierarchy, we say that the method is
overridden in a subclass. This feature is called method overriding. Now, how does the compiler know
which version of the method to call? The compiler decides this by looking at the object reference on
which the method is invoked. Thus, when we invoke the printDescription method on an object of
type SavingsAccount, the compiler first searches for this method within this class. If it’s found, the
compiler simply invokes this method. Otherwise, it looks for this method in its super class. If the super
class provides the method definition, the compiler calls its implementation. Otherwise, it searches up
the hierarchy until the method declaration is found. If any of the classes in the hierarchy, including the
base class, do not define the method, the compiler finally gives a compile-time error. Thus, the
compiler statically binds the method to an object that defines it. This is called early binding.

NOTe
Connecting a method call to a method body is called binding. When
binding is performed before the program is run (by the compiler and
linker, if there is one), it’s called early binding. When the binding is
performed at the runtime, it is called late binding.

Chapter 4: Inheritance 81

In our code, we called the printDescription method on an object of type SavingsAccount. This
results in calling the printDescription method defined within the SavingsAccount class and not the
one defined in its super class. This feature is called compile-time polymorphism. The compiler
resolves which implementation to call at the compile time, thus the name. We also have a feature
called runtime polymorphism, whereby the Java runtime decides during program execution which
implementation to call. You learn about runtime polymorphism in the next section.

Creating a Heterogeneous Collection of Objects
In the previous example, we created two assets and printed their descriptions by calling the
overridden printDescription method on each. What if we have hundreds of such assets? Maintaining
references to many such objects and calling printDescription on each one of them would be really
tedious. You learned about arrays in a previous chapter—so why not create an array of assets? In our
discussion of arrays, I said that an array consists of homogenous objects; so how can we put the
references to different object types in a single array? Well, this is possible, as you’ll see shortly. We
call this a heterogeneous collection of objects. You learn how to create this type of array and how to
traverse the elements of such an array in the program example that follows.

A program That Demonstrates a Heterogeneous Collection
A few classes have been added to our earlier class diagram in Figure 4-5 to include more types of
assets. The modified class diagram is shown in Figure 4-6.

FIGure 4-6. Class diagram for a portfolio management system

–id : int
–type : string

+printDescription() : void
+getNetWorth() : float

–tomAssets
1 *

–CreateAssets()
–PrintAllAssets()
–PrintNetWorth()

–symbol : string
–marketPrice : float
–quantityAtHand : int

–name : string
–maturityDate : string
–investedAmount: float

–tradeExchangeName : string –builtUpArea : float–bankName : string
–balance : float

–overdraftLimit : float–interestRate : float

82 Java Programming

The program in Listing 4-3 implements these classes. The portfolioManager class defines the
main method. It creates a heterogeneous collection of different asset types and demonstrates how
to traverse its elements to print a description of each asset and how to compute the net worth of
the entire portfolio.

Listing 4-3 Portfolio Management System

class Asset {
 // Same definition as in Listing 4-1
 public float getNetWorth() {
 return 0;
 }
}

class BankAccount extends Asset {
 // Same definition as in Listing 4-2
 public float getNetWorth() {
 return balance;
 }
}

class SavingsAccount extends BankAccount {
 // Same definition as in Listing 4-2
}

class CheckingAccount extends BankAccount {
 // Same definition as in Listing 4-2
}

class Security extends Asset {

 private String tradeExchangeName;

 public String getTradeExchangeName() {
 return tradeExchangeName;
 }

 public void setTradeExchangeName(String tradeExchangeName) {
 this.tradeExchangeName = tradeExchangeName;
 }

 public void printDescription() {
 super.printDescription();
 System.out.println("Trade Exchange: " + tradeExchangeName);
 }
}

class Stock extends Security {

Chapter 4: Inheritance 83

 private String symbol;
 private float marketPrice;
 private int quantityAtHand;

 public void setMarketPrice(float marketPrice) {
 this.marketPrice = marketPrice;
 }

 public void setQuantityAtHand(int quantityAtHand) {
 this.quantityAtHand = quantityAtHand;
 }

 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public void printDescription() {
 System.out.println("Investment in securities");
 super.printDescription();
 System.out.println("Stock: " + symbol);
 System.out.printf("Today's market price: $%.02f%n", marketPrice);
 System.out.printf("Quantity at Hand: %d%n", quantityAtHand);
 System.out.printf("Net worth: $%.02f%n", marketPrice * quantityAtHand);
 }

 public float getNetWorth() {
 return marketPrice * quantityAtHand;
 }
}

class Bond extends Security {

 private String name, maturityDate;
 private float investedAmount;

 public void setName(String name) {
 this.name = name;
 }

 public void setInvestedAmount(float investedAmount) {
 this.investedAmount = investedAmount;
 }

 public void setMaturityDate(String maturityDate) {
 this.maturityDate = maturityDate;
 }

 public void printDescription() {

84 Java Programming

 System.out.println("Investments in Bonds");
 super.printDescription();
 System.out.println("Bond name: " + name);
 System.out.printf("Invested Amount: $%.02f%n", investedAmount);
 System.out.println("Maturity Date: " + maturityDate);
 }

 public float getNetWorth() {
 return investedAmount;
 }
}

class RealEstate extends Asset {

 private String name;
 private float builtUpArea;
 private float currentMarketRate;

 public void setName(String name) {
 this.name = name;
 }

 public void setBuiltUpArea(float builtUpArea) {
 this.builtUpArea = builtUpArea;
 }

 public void setCurrentMarketRate(float currentMarketRate) {
 this.currentMarketRate = currentMarketRate;
 }

 public void printDescription() {
 System.out.println("Real Estate");
 super.printDescription();
 System.out.println("Name: " + name);
 System.out.printf("Built-up Area: sq.ft. %.02f%n", builtUpArea);
 System.out.printf("Current Market Rate(per sq.ft.): $%.02f%n",
 currentMarketRate);
 System.out.printf("Net worth: $%.02f%n",
 +builtUpArea * currentMarketRate);
 }

 public float getNetWorth() {
 return builtUpArea * currentMarketRate;
 }
}

public class PortfolioManager {

Chapter 4: Inheritance 85

 Asset[] tomAssets = new Asset[5];

 public static void main(String[] args) {
 PortfolioManager manager = new PortfolioManager();
 manager.createAssets();
 manager.printAllAssets();
 manager.printNetWorth();
 }

 private void createAssets() {
 SavingsAccount tomSavingsAccount = new SavingsAccount();
 tomSavingsAccount.setId(1001);
 tomSavingsAccount.setType("Bank Account");
 tomSavingsAccount.setBankName("Citi bank");
 tomSavingsAccount.setAccountNumber(526702);
 tomSavingsAccount.setBalance(15450.00f);
 tomSavingsAccount.setInterestRate(3.0f);
 tomAssets[0] = tomSavingsAccount;

 CheckingAccount iVisionBusinessAccount = new CheckingAccount();
 iVisionBusinessAccount.setId(1002);
 iVisionBusinessAccount.setType("Bank Account");
 iVisionBusinessAccount.setBankName("Bank of America");
 iVisionBusinessAccount.setAccountNumber(24689);
 iVisionBusinessAccount.setBalance(678256.00f);
 iVisionBusinessAccount.setOverdraftLimit(50000.00f);
 tomAssets[1] = iVisionBusinessAccount;

 Stock ibmStocks = new Stock();
 ibmStocks.setId(5001);
 ibmStocks.setType("Security");
 ibmStocks.setTradeExchangeName("NYSE");
 ibmStocks.setSymbol("IBM");
 ibmStocks.setQuantityAtHand(100);
 ibmStocks.setMarketPrice(129.61f);
 tomAssets[2] = ibmStocks;

 Bond aaplBonds = new Bond();
 aaplBonds.setId(6000);
 aaplBonds.setType("Bonds");
 aaplBonds.setTradeExchangeName("NYSE");
 aaplBonds.setName("Apple Inc");
 aaplBonds.setInvestedAmount(25000.00f);
 aaplBonds.setMaturityDate("01/01/2015");
 tomAssets[3] = aaplBonds;

 RealEstate texasEstate = new RealEstate();
 texasEstate.setId(8000);
 texasEstate.setType("Real Estate");
 texasEstate.setName("House in Texas");

86 Java Programming

 texasEstate.setBuiltUpArea(2250);
 texasEstate.setCurrentMarketRate(950.00f);
 tomAssets[4] = texasEstate;
 }

 private void printAllAssets() {
 String lineSeparator = "-------------------";
 System.out.println("Entire Portfolio");
 for (Asset asset : tomAssets) {
 System.out.println(lineSeparator);
 asset.printDescription();
 }
 System.out.println(lineSeparator);
 }

 private void printNetWorth() {
 float total = 0;
 for (Asset asset : tomAssets) {
 total += asset.getNetWorth();
 }
 System.out.println("Net Worth of Tom's entire portfolio: $" + total);
 }
}

The program first defines the various classes for representing different asset types. We will not
discuss these class definitions because they are identical to the asset classes used in the previous
example. So let’s jump to the main program—the portfolioManager class. This class declares an
array of the Asset type, as follows:

Asset[] tomAssets = new Asset[5];

We restrict the number of assets to five. You can create an array of a larger size if you want to
store more assets, or better yet you can create an array that grows dynamically. You will learn
how to create dynamic arrays in Chapter 16. In the main method, we create an instance of the
portfolioManager class and call its createAssets method:

PortfolioManager manager = new PortfolioManager();
manager.createAssets();

In the createAssets method, we first create an asset of the SavingsAccount type and set its
various fields by calling its setter methods and all those of the superclasses:

SavingsAccount tomSavingsAccount = new SavingsAccount();
tomSavingsAccount.setId(1001);
...

After the SavingsAccount object is initialized, we copy its reference into the tomAssets array
at index 0:

tomAssets[0] = tomSavingsAccount;

Note that this assignment is valid. The tomSavingsAccount represents an object of a class that
is a subclass of Asset. You are allowed to copy the references of subclass objects into a collection

Chapter 4: Inheritance 87

of the superclass type. Likewise, we will create the various types of assets and assign their
references to the elements of the tomAssets array.

After the assets are created, the main method calls its printAllAssets method; so let’s look at
its definition. The printAllAssets method iterates through the elements of the array by using a
foreach loop and calls the printDescription on each element of the array:

for (Asset asset : tomAssets) {
 System.out.println(lineSeparator);
 asset.printDescription();
}

When you call the printDescription method on the asset object, the runtime looks up the
object type that the asset currently holds. During the first iteration, the asset refers to the object of
type SavingsAccount—remember the array element at index 0 holds the reference to the
tomSavingsAccount object. Therefore, the printDescription method defined in the SavingsAccount
class would be called. During the second iteration, the asset refers to an object of type
CheckingAccount and therefore the printDescription method defined in the CheckingAccount
class would be called, and so on. Thus, the runtime calls an appropriate version of the overridden
printDescription method, depending on the object type it refers to. This is called runtime
polymorphism—the runtime decides which implementation to call.

Finally, the main method calls the printNetWorth method, which computes the total value of
all the assets in the heterogeneous collection and prints it to the console:

float total = 0;
for (Asset asset : tomAssets) {
 total += asset.getNetWorth();
}

The method iterates through the entire collection, calling the overridden getNetWorth
method on each object; it adds the value returned by each object in the loop and finally prints
the total on the console.

To understand further how the runtime decides which implementation of the method to call,
look the diagram shown in Figure 4-7.

FIGure 4-7. Understanding runtime polymorphism

printDescription

printDescription

printDescription
asset

printDescription

printDescription

printDescription

asset

printDescription

printDescription

printDescription

asset

88 Java Programming

The diagram in Figure 4-7 illustrates three situations. Each situation depicts three objects of
type Asset, BankAccount, and SavingsAccount. Each object has a method called printDescription.
Therefore, the method is overridden in the class hierarchy. The asset is a reference to these objects
that invokes the printDescription method on each. The asset is of type Asset, which is the base
class in the hierarchy. Now, consider the situation in Part A of the diagram. The asset in this
situation is holding a reference to the SavingsAccount type. Therefore, when we execute the code
asset.printDescription, it will invoke the printDescription method defined in the SavingsAccount
class. Now, consider Part B. In this case, the asset refers to the BankAccount object type and
therefore the statement asset.printDescription will invoke the method defined in the BankAccount
class. Finally, in Part C, the asset holds the reference to the Asset class and therefore the statement
asset.printDescription will invoke the method defined in the Asset class.

NOTe
When your invocation starts in a superclass, the subclass
implementation is not called. However, when an invocation starts in a
subclass, the invoked method can invoke a superclass implementation
by using the super keyword, as shown in the earlier program examples.

Although we discussed this earlier, I’ll reiterate for the current context: If the referred object
does not implement the called method, the program flow automatically falls to the superclass
implementation. Thus, if the SavingsAccount does not define a printDescription method and if
the asset refers to an object of the SavingsAccount type, as shown in Part A of the diagram, the
runtime will invoke the corresponding implementation in the BankAccount class, and if this, too,
does not define the called method, the runtime will execute the corresponding method in the
base class Asset. This is known as late binding because the method to be invoked is bound to a
particular object at runtime.

Detecting the Object Type
In the program shown in the previous section, you saw how to create and traverse a heterogeneous
collection. Now, what if you want to detect the type of element held by a specific location in the
collection? To understand the need for doing so, consider a situation where the banks have raised
the interest rate on all savings accounts to 4.5 percent from the current rate of 3 percent. Now we
need to find all the objects in our heterogeneous collection that hold a reference to the
SavingsAccount type. Therefore, we need a way to detect the type of object held by each element
of the array. This is done with the help of the instanceof operator, as illustrated in the following
code snippet:

private void raiseSavingsInterest() {
 for (Asset asset : tomAssets) {
 if (asset instanceof SavingsAccount) {
 ((SavingsAccount) asset).setInterestRate(4.5f);
 break;
 }
 }
}

The raiseSavingsInterest method iterates through all the elements of the collection, checking
each retrieved object for its type. We use the instanceof operator to check whether the variable

Chapter 4: Inheritance 89

on its left side is of the type mentioned on its right side. If yes, it returns true; otherwise, it returns
false. Once we locate an object of type SavingsAccount, we call the setInterestrate method on
the located object to set the new interest rate. However, this requires a typecast on the asset
variable. Note that asset is of type Asset and that SavingsAccount is a subclass of Asset.
Typecasting from a superclass to a subclass does not happen automatically. Therefore, an explicit
typecast to the SavingsAccount type is required before the desired set method can be called. After
performing the desired operation, we break the loop because in our case it is not necessary to
iterate through the rest of the records in the array—we know that we have only one
SavingsAccount in our entire Asset collection.

Now, consider a situation where we want to compare the given reference with multiple types
in an inheritance hierarchy. For this, we may create a loop as follows:

for (Asset asset : tomAssets) {
 if (asset instanceof Asset) {
 // do something with Asset
 System.out.println("Asset found");
 } else if (asset instanceof BankAccount) {
 // do something with bank account
 System.out.println("Bank Account found");
 } else if (asset instanceof SavingsAccount) {
 // do something with savings account
 System.out.println("Savings Account found");
 }
}

This is not going to give the desired results—but why? We compare the desired reference first
with the base class type. Because any subclass object is of the type base class too, this comparison
will always return true. This means your code will never execute the two else if clauses. Now,
modify the code as shown here:

for (Asset asset : tomAssets) {
 if (asset instanceof SavingsAccount) {
 // do something with savings account
 System.out.println("Savings Account found");
 } else if (asset instanceof BankAccount) {
 // do something with bank account
 System.out.println("Bank Account found");
 } else if (asset instanceof Asset) {
 // do something with Asset
 System.out.println("Asset found");
 }
}

This time, we first compare the asset variable with the SavingsAccount type. If this comparison is
found to be true, the comparison to the superclasses BankAccount and Asset will not be performed.

NOTe
The general rule is that if you want to detect an object type in an
inheritance hierarchy, start with the lowermost subclass and then
move up the hierarchy to the base class.

90 Java Programming

Typecasting rules on Inheritance Hierarchies
As shown in the earlier examples, a typecast to a superclass is implicit; however, a typecast to a
subclass must be explicit. Here’s a summary of the typecasting rules for inheritance hierarchies:

Casting “up” the class hierarchy is always permitted. This means you may typecast a ■■
subclass variable to its superclass without using the cast operator. In other words, a cast
from a subclass to a superclass is implicit.

NOTe
How the compiler resolves methods on inheritance hierarchies was
described earlier; due to this, developers do not need to worry about
how method calls are resolved.

Casting “downward” must be explicit. When typecasting a variable of a superclass to ■
its subclass, you must do so explicitly by using the cast operator. The cast object type is
checked at runtime. If the runtime does not find an object of the cast type during program
execution, a runtime exception is generated. Exceptions are discussed in Chapter 8.

The compiler must be satisfied with the cast. If you try to cast an object of one type ■■
to another that does not fit in the inheritance hierarchy, the compiler will definitely
complain about the invalid cast. The casting is always permitted within the classes
belonging to a single-inheritance hierarchy but not across two different hierarchies.

preventing Method Overriding
When you create an inheritance hierarchy, sometimes you may want to ensure that the methods
in your classes are not overridden by their subclasses. This is achieved with the use of the final
keyword in front of the method name. For example, in our class hierarchy, you could make the
getId method final so that no subclass can override its implementation. To make it final, you
would use the following declaration:

public final int getId() {

When you do so, the subclasses SavingsAccount and CheckingAccount will not be able to
override the definition of the getId method in their implementations. The attempt to override the
final method will be detected at compile time and your code will not compile.

preventing Subclassing
Sometimes, you may want to make sure your classes cannot be further subclassed. For example,
it makes perfect sense not to allow anybody to subclass the SavingsAccount or CheckingAccount
class. You do this by declaring the class itself as final.

TIp
JDK libraries declare several classes, such as String, Math, Boolean,
Double, Integer, Float, Long, Short, StringBuffer, System, Void,
Character, Byte, and so on, as final. Therefore, you will not be able to
extend these classes in your applications.

Chapter 4: Inheritance 91

To make our SavingsAccount class “final,” just add the final keyword in its declaration, as
shown here:

final class SavingsAccount {

Now, the compiler will give a compilation error if somebody tries to subclass this class further.

TIp
So far you have seen the use of method overriding. An overridden
method has the same signature as its corresponding base class
method. So the question is, can we override the fields of a class
the way we override a method? Yes, we can indeed do so. In such
situations, to access the superclass variable, also known as the
shadowed variable or simply a member, we would use the same
super keyword we used for calling the superclass overridden method.
Thus, a superclass variable can be accessed with the syntax
super.variableName. You would very rarely use this feature because
in your own created class hierarchies you would certainly avoid using
the same name for fields in different classes to avoid ambiguity.

Summary
The inheritance feature of object-oriented programming allows for code reuse. Java supports
inheritance with the help of the extends keyword. In this chapter, you learned to extend the
functionality of the existing classes using the inheritance feature. When a class is extended from
another class, we say that the newly defined class is a subclass of the existing class and that the
existing class is a superclass of the newly created class. Java supports single inheritance but not
multiple inheritance, as other languages such as C++ do. However, the single-level inheritance
may be extended to multiple levels, to any depth. An inherited class inherits the properties of its
parent that have been declared using the public access modifier. You will study the implications
of other access modifiers in upcoming chapters. Thus, its children inherit all the public methods
and attributes of the base class. A child can override the definition of its parent’s method. This is
called method overriding or compile time polymorphism.

You may also declare an array of objects of the base type and assign elements of subclasses
to it. This is called a heterogeneous collection because the objects that an array holds differ in
their types. You can traverse the elements of such a heterogeneous collection by using a reference
variable of the base class type. When you invoke a method on an object referred by the element
of the array, the runtime resolves the object reference and calls an appropriate method,
depending on the object type. This is known as runtime polymorphism.

It is possible to detect the type of object that a heterogeneous array element refers to by using
the instanceof operator. You may need to provide an appropriate typecast when you use a
reference of the base element type to access elements of the subclass type. When a subclass
reference is used for accessing the elements of the base class type, no cast is required—it is
implicit. However, whenever a base class variable type accesses an object of the subclass type,
an explicit cast is required. You can prevent method overriding and subclassing with the use of
the final keyword. In the next chapter, you will learn more features of inheritance—the object-
creation process; the use of the super, this, and final keywords; and the member visibility rules.

Chapter
5

Object Creation and
Member Visibility

93

94 Java Programming

n the last chapter, we covered inheritance in Java. Inheritance allows you to extend
the functionality of existing classes. In this chapter, you learn what happens when a
subclass is instantiated. Without explicitly creating a superclass object, how can a
subclass object access its members? You learn the object-creation process during
the instantiation of a subclass. The main motive behind understanding this is to gain

control over the object-initialization process. You will understand how to call an appropriate
constructor of each of the superclasses in the hierarchy to initialize the fields of the corresponding
superclass. Sometimes, you may want to prevent others from inheriting your classes. You learned
the use of the final keyword in the previous chapter to control this. In this chapter, you further your
study of the final keyword to gain an in-depth knowledge of its use. In the previous chapter, you
saw the use of public and private modifiers to control the visibility of a member. In this chapter,
you will come to understand the need for controlling this visibility and also learn two more
modifiers that give you finer control over member visibility. An in-depth study of all the visibility
rules is also provided.

In particular, you will learn the following in this chapter:

How superclass objects are created when you instantiate a subclass■■

Deciding which superclass constructor is used during its instantiation ■

More about the ■ super and this keywords

Declaring ■ final classes, methods, and variables

Understanding ■■ public, protected, private, and default access modifiers

Instantiating a Subclass
In the previous chapter, you learned to create a single-level class hierarchy of an arbitrary
depth. We created an asset management system in that chapter, and the top-level class in this
system was Asset. We derived several classes from Asset to represent various real-life assets.
I stated that when you instantiate a class at the bottom of the hierarchy, all its superclasses get
instantiated. We verified this with a concrete example. Now, you will learn about the object-
creation process in-depth.

You learned in Chapter 3 that every class has a constructor—either the one provided by the
compiler by default or a user-defined one. When the class is instantiated, the runtime allocates
memory for it and then calls its constructor. The constructor has a special job—to see that the
object is built properly. Each class can initialize its own data members. Although a subclass can
initialize the members of its superclass (except for private and static members), it is best that we
leave this functionality to each individual class involved in the hierarchy so as to maintain tight
encapsulation in the classes.

Now, when you instantiate a subclass, it can obviously initialize its own data members; but
then who is responsible for initializing the members of its superclass? For this reason, it is
essential that every object-creation process calls its superclass constructor to get an opportunity
to initialize its own data members. Likewise, calling each of the superclass constructors in the
hierarchy right up to the top-level class will ensure that all the data members in the entire object

I

Chapter 5: Object Creation and Member Visibility 95

hierarchy can be properly initialized. Therefore, the compiler enforces a constructor call for
every superclass of a derived class. In the next section, we study this object-creation process with
a code example.

CAuTIOn
An inherited class inherits all the fields and methods of its base class,
except for its constructors. The constructors are strictly used by that
base class only.

The Object-Creation Process
Suppose you have implemented inheritance in an application a few levels deep. Now, when
you instantiate a class at the bottom of this inheritance hierarchy, what happens to its parents?
Are the objects of each parent class in the class hierarchy created? If so, are each of these
objects initialized properly? Who does the initialization, if any? Understanding the object-
creation process will answer these questions and any others that may have come to your mind
in the discussions so far. With a good knowledge of how objects are constructed, you are able
to create objects with any desired state.

In our asset management system from Chapter 4, we created an inheritance hierarchy consisting
of classes—Asset, BankAccount, and SavingsAccount. After instantiating a SavingsAccount class,
we called the various setter methods in each of its superclasses to initialize the derived data
members of each superclass. If there are many fields, you need to call several setter methods. With
an understanding of the object-creation process, you will find a better way to initialize all these
derived data members with an implicit call to the constructor of each superclass.

To better understand the object-creation process, let’s begin with a simple case of two-level
inheritance, where you have just a base class and its derived class. When you create an instance of
a derived class, it contains an object of its base class. This base class object is the same as the one
you would have created by directly instantiating the base class itself. The derived class object is
just a wrapper on this base class object. It is essential that the base class object be properly
initialized. This can be ensured only if you know for sure that during the object-creation process
the constructor of the base class is called—remember from our previous discussions that a class
constructor has all the appropriate knowledge and privileges to perform its initialization. Thus, the
compiler automatically inserts calls to the base class constructor in the derived class constructor
provided you do not call super explicitly.

To explain the object-creation process, we will use the inheritance hierarchy defined in our
asset management system from the previous chapter. The extracted part of the class hierarchy is
shown in Figure 5-1. Each of the three classes in this figure has an additional operation defined—
and that is the class constructor. The printDescription method of the original Asset class is removed
for simplicity. The constructor in all three cases does not take any arguments. The purpose of this
no-arguments construct is to announce whenever the corresponding class is instantiated.

To keep things simple and focus on the aspects of object creation, we cover only the
implementation code for the no-arguments constructor for each of these classes. The constructor
prints a message to the user whenever the class is instantiated. The main program creates an

96 Java Programming

object of SavingsAccount. This, in turn, creates objects of its superclasses, as you will see very
shortly when you study the output of the program. The complete program is given in Listing 5-1.

Listing 5-1 Object-Creation Process

class Asset {

 private int id;
 private String type;

 public Asset() {
 System.out.println("Creating Asset ...");
 }
}

class BankAccount extends Asset {

 private String bankName;
 private int accountNumber;
 private float balance;

FIGure 5-1. Multilevel inheritance hierarchy

BankAccount

–bankName : string
–balance : float

+BankAccount()

SavingsAccount

–interestRate : float

+SavingsAccount()

Asset

–id : int
–type : string

+Asset()

Chapter 5: Object Creation and Member Visibility 97

 public BankAccount() {
 System.out.println("Creating BankAccount ...");
 }
}

class SavingsAccount extends BankAccount {

 private float interestRate;

 public SavingsAccount() {
 System.out.println("Creating SavingsAccount ...");
 }
}

public class ObjectCreationProcess {

 public static void main(String[] args) {
 SavingsAccount tomSavingsAccount = new SavingsAccount();
 }
}

As seen in Listing 5-1, the main method simply creates an instance of the SavingsAccount
class. After that, the instances of all its parent classes will be created. This can be seen from the
program output, shown here:

Creating Asset ...
Creating BankAccount ...
Creating SavingsAccount ...

As you can see from the output, the Java runtime first calls the Asset class constructor, followed
by BankAccount class constructor, and finally the SavingsAccount class constructor. This means
that the object of the topmost superclass, also known as the base class, is constructed first, followed
subsequently by all its subclasses in the order they are defined in the class hierarchy. This is also
known as constructor chaining.

In the preceding object-creation process, the runtime implicitly calls the no-arguments
compiler-provided default constructor of each of the involved classes. As a matter of fact,
the definition of the SavingsAccount constructor would be as follows:

public SavingsAccount() {
 super();
 System.out.println("Creating SavingsAccount ...");
}

Here, the compiler has added a call to super as the first statement in the constructor body.
This is a hidden call provided by the compiler. The compiler provides this as long as you do not
write any explicit call to another constructor, which can be provided by either the super or this
keyword. The use of the this keyword in calling another constructor defined within the same class
is discussed later in this chapter.

98 Java Programming

nOTe
The one essential way in which constructors differ from methods is that
the first statement of every constructor is either a call to the constructor
of its superclass (using super) or a call to another constructor in the same
class (using this). If you use super or this, it must be the first statement in
the constructor body; otherwise, the compiler throws an error stating that
super or this must be the first statement. This is required so that the data
members of the superclass are properly initialized before their use.

As you saw earlier, the real purpose of the constructor is for object initialization. Therefore,
you would write your own constructor that provides initialization code. So, during the subclass-
creation process, how do you call this constructor of a super class? You use the super keyword to
do this. If you have more than one constructor defined for a class, you will be able to use the
same super keyword to call any one of them. Generally, you provide multiple constructors to
provide different initializations in each constructor for different situations.

Calling the super Constructor
To understand how the super keyword is used for calling the superclass constructors, let’s add
the constructors to our class hierarchy from Figure 5-1. The modified class hierarchy is shown
in Figure 5-2.

FIGure 5-2. Modified asset management inheritance hierarchy

BankAccount

–bankName : string
–balance : float

+BankAccount()
+BankAccount(in bankName : string, in balance : float, in id : int, in type : string)
+printDescription() : void

SavingsAccount

–interestRate : float

+SavingsAccount()
+SavingsAccount(in interestRate : float, in bankName : string, in balance : float,
 in id : int, in type : string)
+printDescription() : void

Asset

–id : int
–type : string

+Asset()
+Asset(in id : int, in type : string)
+printDescription() : void

Chapter 5: Object Creation and Member Visibility 99

Each class now has two constructors—one with no arguments and the other with a few
arguments. Look at the SavingsAccount constructor with five arguments. The SavingsAccount has
a total of five fields—one of its own and the other four inherited. Therefore, to fully initialize an
object of the SavingsAccount type, you need to accept the values of these five fields from the user.
The values for the inherited fields will be passed to the superclass constructor. The superclass
BankAccount constructor takes four arguments—two are used for initializing its own fields and
two are passed to the Asset class constructor. Now, let’s look at the program that makes calls to
these user-defined superclass constructors. The code is given in Listing 5-2.

Listing 5-2 Program Illustrating Calls to Custom super Constructors

class Asset {

 private int id;
 private String type;

 public Asset() {
 System.out.println("Creating Asset ...");
 }

 public Asset(int id, String type) {
 this.id = id;
 this.type = type;
 }

 public void printDescription() {
 System.out.println("Asset ID: " + id);
 System.out.println("Asset type: " + type);
 }
}

class BankAccount extends Asset {

 private String bankName;
 private int accountNumber;
 private float balance;

 public BankAccount() {
 System.out.println("Creating BankAccount ...");
 }

 public BankAccount(String bankName, int accountNumber, float balance,
 int id, String type) {
 super(id, type);
 this.bankName = bankName;

100 Java Programming

 this.accountNumber = accountNumber;
 this.balance = balance;
 }

 public void printDescription() {
 super.printDescription();
 System.out.println("Name: " + bankName);
 System.out.println("Account #: " + accountNumber);
 System.out.println("Current balance: $" + balance);
 }
}

class SavingsAccount extends BankAccount {

 private float interestRate;

 public SavingsAccount() {
 System.out.println("Creating SavingsAccount ...");
 }

 public SavingsAccount(float interestRate, String bankName,
 int accountNumber, float balance, int id, String type) {
 super(bankName, accountNumber, balance, id, type);
 this.interestRate = interestRate;
 }

 public void printDescription() {
 System.out.println("A savings account");
 super.printDescription();
 System.out.println("Interest rate (%): " + interestRate);
 }
}

public class SuperConstructorApp {

 public static void main(String[] args) {
 String lineSeparator = "-------------------";
 SavingsAccount tomSavingsAccount = new SavingsAccount();
 SavingsAccount jimSavingsAccount = new SavingsAccount(4.0f, "AMEX",
 2015, 500.00f, 2005, "Bank Account");
 System.out.println(lineSeparator);
 System.out.println("Tom's Savings Account");
 tomSavingsAccount.printDescription();
 System.out.println(lineSeparator);
 System.out.println("Jim's Savings Account");
 jimSavingsAccount.printDescription();
 System.out.println(lineSeparator);
 }
}

Chapter 5: Object Creation and Member Visibility 101

Let’s begin our discussion with the SuperConstructorApp class, because this is where the
program execution begins. In the main method, we first construct an object of SavingsAccount
class by calling its no-arguments constructor. This creates an uninitialized (or, to be more precise,
an initialized object with default values set by the compiler) object of the SavingsAccount class,
as in the earlier example.

The second statement in the main method then constructs another object of the SavingsAccount
type by calling its constructor that takes arguments. Look at the definition of this constructor,
shown here:

public SavingsAccount(float interestRate, String bankName,
 int accountNumber, float balance, int id, String type) {
 super(bankName, accountNumber, balance, id, type);
 this.interestRate = interestRate;
}

The first statement in the constructor is a call to super that takes four arguments. This results in
calling the constructor of the BankAccount class, which is the superclass of the SavingsAccount
class. The next statement initializes the value of the local field interestrate. Now, look at the
definition of the BankAccount class constructor, shown here:

public BankAccount(String bankName, int accountNumber, float balance,
 int id, String type) {
 super(id, type);
 this.bankName = bankName;
 this.accountNumber = accountNumber;
 this.balance = balance;
}

The first statement in the constructor body is a call to super that takes two arguments. This
results in calling the constructor of the Asset class. The remaining three statements initialize the
fields of BankAccount class. Finally, look at the constructor of the Asset class:

public Asset(int id, String type) {
 this.id = id;
 this.type = type;
}

It uses the two arguments to initialize its state. From the preceding discussions, you can
see how the user-defined constructors of superclasses are called within the constructor of the
current class.

nOTe
If you do not provide an explicit call to super with arguments, the
compiler provides a call to super with no arguments, which results
in calling a no-arguments constructor of the superclass. If you don’t
provide a no-arguments constructor, the compiler makes a call to
the default no-arguments constructor, which it provides itself. This
happens only if you have not defined any other constructor for the
class; otherwise, the compiler throws an error.

102 Java Programming

CAuTIOn
The compiler does not provide a no-arguments constructor if you
provide any other constructor (a constructor with no arguments or
a constructor having arguments) of your own.

The program output is shown here:

Creating Asset ...
Creating BankAccount ...
Creating SavingsAccount ...

Tom's Savings Account
A savings account
Asset ID: 0
Asset type: null
Name: null
Account #: 0
Current balance: $0.0
Interest rate (%): 0.0

Jim's Savings Account
A savings account
Asset ID: 2005
Asset type: Bank Account
Name: AMEX
Account #: 2015
Current balance: $500.0
Interest rate (%): 4.0

Next, we discuss a new term, method overloading, before delving deeper into the constructor-
calling process.

Method Overloading
In our example of the previous sections, the classes Asset, BankAccount, and SavingsAccount
defined two constructors. Both constructors obviously have the same name. They simply differ
in the number of arguments they accept. This feature is called method overloading, where two
methods defined in a class have the same name. They must, however, differ from each other in
some aspect so that the compiler knows which version to use for binding. Before discussing
these aspects and covering the rules of method overloading, let’s add another constructor to
our SavingsAccount class to see the purpose behind method overloading.

In our example, we defined two constructors for the SavingsAccount class—one with no
arguments and the other one with several arguments. The one with no arguments initialized the
savings account object with null strings and zeroes, which does not make sense in real life. The
other constructor required lots of arguments, so if you are constructing several objects, you will
need to type in all these arguments in each call to the constructor. When you create a bank
account, typically the bank name and the account number are sufficient information to be captured
from the user. The rest of the values (the object’s state) may be generated internally in the program.
Therefore, it would be sufficient to have a constructor that takes only two parameters. The definition
of such a constructor is given in the following code snippet:

Chapter 5: Object Creation and Member Visibility 103

public SavingsAccount (String bankName, int accountNumber) {
 this (5.0f, bankName, accountNumber, 0, 10001, "Bank Account");
}

As before, this definition indicates a constructor declaration because the method name is the
same as the class name and the method does not return anything. The constructor takes only two
arguments—the ones we want. In the body of the constructor, the one and only statement is a
call to this. Earlier we used this keyword to refer to the fields of the current class. In this case,
the this keyword is used to call a constructor belonging to the same class. Thus, we put opening
and closing parentheses after this call with the required number of parameters embedded within.
The call to this contains six parameters, which results in calling the constructor that takes six
parameters. The two parameters are supplied by the caller of the this constructor. The rest of the
parameters are hard-coded and could be generated internally in the SavingsAccount class. Now,
to call this constructor, the developer uses the following:

SavingsAccount anitaSavingsAccount = new SavingsAccount("HSBC", 1022);
System.out.println("Anita's Savings Account");
anitaSavingsAccount.printDescription();
System.out.println(lineSeparator);

Add this code to the earlier main method and the previously defined two-argument constructor
to the SavingsAccount class. Run the application; you will get the details of Anita’s savings account
printed to the console, as follows:

Anita's Savings Account
A savings account
Asset ID: 10001
Asset type: Bank Account
Name: HSBC
Account #: 1022
Current balance: $0.0
Interest rate (%): 5.0

Note how the savings account object is properly initialized with the desired values. You can
easily see that this simplifies our object-creation process because we need to supply only a few
parameters. It’s very common for a constructor with fewer parameters to call a constructor with
more parameters, supplying default values. For this usage, the constructors with fewer parameters
will frequently consist of only the this call. The compiler matches this with a constructor with the
appropriate number and types of parameters and then calls it.

CAuTIOn
A call to the this constructor must be the first statement in the
implementation of the constructor. It cannot appear anywhere else.
Therefore, you can have only one call to this, which must be the
first statement in the method body. If you call this, you cannot call
super because super cannot appear anywhere else other than the
first statement.

104 Java Programming

Note that method overloading need not be restricted to compiler declarations. It can be
applied to any other method of the class. For example, you may want to create another variation
of the printDescription method that takes a few parameters. In that case, you overload the
printDescription method. As you read further in this book, you will come across many examples of
method overloading. For the time being, though, we’ll just cover the rules of method overloading.

rules of Method Overloading
The overloaded method must differ from the existing method in the number of parameters and/or
the order of parameters. In the case of two methods where the number of parameters is the same
and they are all of the same type in each of the methods, rearranging the parameters into a
different order results in an overloaded method. While differentiating between the two overloaded
methods, the compiler ignores their return types and the exceptions thrown (see Chapter 8 for
more on exception handling). Therefore, if the two overloaded methods only differ in their return
types or exceptions thrown, you will get a compilation error.

Creating a Copy Constructor
One more benefit of constructor overloading is the ability to create a copy constructor, which
allows you to create an object copy from the values of another similar object. This gives you
two independent objects to work with, and changes made to one will not affect the other.

The example shown in Listing 5-3 explains how to write a copy constructor.

Listing 5-3 Program Illustrating How to Write a Copy Constructor

public class TimeOfDay {

 private int hour, mins;

 public TimeOfDay(int hour, int mins) {
 this.hour = hour;
 this.mins = mins;
 }

 public TimeOfDay(TimeOfDay other) {
 this(other.hour, other.mins);
 }

 public String toString() {
 return (this.hour + ":" + this.mins);
 }

 public static void main(String[] args) {
 TimeOfDay currentTime = new TimeOfDay(12, 30);
 TimeOfDay copyOfCurrentTime = new TimeOfDay(currentTime);
 System.out.println("Original: " + currentTime.toString());
 System.out.println("Copy: " + copyOfCurrentTime.toString());
 }
}

Chapter 5: Object Creation and Member Visibility 105

The class TimeOfDay defines two constructors—one that takes two arguments of the integer
type and one that takes an object reference of the same type. The first constructor accepts the
values of hour and mins from the user and initializes the created object’s state with these values.
The second constructor calls this two-argument constructor with the help of the this keyword,
passing the state of the object that is passed to it as a parameter. The main program creates two
objects using these two constructors and prints their state on the user’s console to verify that both
have the same state.

To print the state of the TimeOfDay object, we override the toString method of the Object
class. Remember that every class in Java inherits from Object, which is a top-level class. In the
overridden toString method, we format a string containing the state values of the current object
and return it to the caller.

nOTe
The default implementation of the toString method returns an object
reference. Many times, developers override this method to print the
object’s state in the desired format.

The next section summarizes what you have learned so far in constructor calling.

Invoking Constructors: Summary
So far, we have overloaded constructors to provide default values to some of the fields of a class,
to provide a different initialization, and to create a copy constructor. Here are the key points to
remember:

To invoke a parent constructor, you must place a call to ■■ super in the first line of the
constructor. Calling super after the first statement results in an error.

The parameters you pass to ■ super decide which specific implementation of the parent
class constructor is called.

The first statement in the constructor may be a call to ■ super or this. You use super to call
the superclass constructor and you use this to call some other constructor defined within
the same class.

If no ■ this or super call is used in a constructor, the compiler adds an implicit call to super(),
which calls the parent “no-arguments” constructor. The no-arguments constructor may be
implicit or explicitly declared. If no such constructor is available in the parent constructor,
the compiler generates an error.

The compiler does not provide a no-arguments default constructor if you write your own ■■
constructor (either a no-arguments constructor or a constructor with arguments).

The final Keyword
So far we have discussed how to inherit from an existing class. However, what if you do not want
anybody to inherit from your custom class? You can restrict other developers from extending your
classes with the help of the final keyword. In Chapter 4, I briefly touched upon the use of the final
keyword. In this chapter we’ll go into more detail.

106 Java Programming

The final keyword can be applied to a class, a method, or a variable. In general, the use of
the final keyword restricts further extensions or modifications. We discuss the application of the
final keyword in all three cases in the following sections.

The final Classes
In some situations you would not want other developers to extend the classes you have created.
For example, in the Java libraries, the String class cannot be extended. This is done to provide
better memory management. Strings are immutable objects, which means their contents cannot
be modified once they are declared.

Now, consider the following two declarations:

String s1 = "abc";
String s2 = "abc";

Both s1 and s2 refer to the same immutable string. Therefore, it makes little sense maintaining
two copies of the same object. The JVM creates all string literal objects in a dedicated memory
pool and allocates the same reference to all the strings having the same value. Therefore, making
the String class final makes sense so that Java’s creators have ultimate control over the memory
allocation used by the String type variables. Allowing developers to subclass String may result in
independent strings having the same contents.

To make a class “final,” you use the final keyword as a prefix in the class declaration,
as follows:

public final class MyClass {

 ...;
}

Now, if you attempt to declare another class that extends the final class, as shown next, the
compiler will generate an error during compilation:

public class YourClass extends MyClass {

 ...;
}

Declaring your classes final ensures that others cannot extend them. In our assets
management software, we may want to make the SavingsAccount and CheckingAccount classes
final if we are sure there is no need for anybody to extend them further.

The final Methods
Just the way you create final classes, you create final methods that cannot be overridden in the
subclasses. To explain the purpose behind this, let’s look at an example. In Java, the Object class
includes methods such as wait and notify. These are system-level methods that implement core
language capabilities. If Java allowed users to substitute these methods with their own overridden
implementations, the semantics of the language itself would be altered. Therefore, these methods
are declared as final.

If you do not want a subclass of your class to override your method implementation, you
mark the method as final. The following code snippet shows a declaration of a final method:

Chapter 5: Object Creation and Member Visibility 107

public class MyClass {

 ...
 public final void myMethod() {
 ...;
 }
}

The method myMethod has been declared final and cannot be overridden in a subclass of
MyClass. For example, the following declaration will generate a compile-time error:

public class YourClass extends MyClass {

 ...
 public void myMethod() {
 ...;
 }
}

nOTe
Because the private and static methods cannot be overridden in a
subclass, they are always implicitly final.

There are three benefits to making a method final. The first benefit, as you have seen so far, is
to explicitly prevent overriding it in a subclass. As mentioned earlier, there is a very valid reason
not to allow the wait and notify methods of the Object class to be overridden in the subclasses.

The second benefit is that it tells the compiler that for a call to this method, dynamic binding
isn’t necessary, which potentially results in a slightly more efficient code. Static binding is always
more efficient than dynamic binding. In the case of static binding, the method call is resolved at
compile time, whereas in case of dynamic binding, the runtime resolves the method call.

The third benefit also results in better efficiency—marking a method final allows the compiler
to turn any call to that method into an inline call. When the compiler sees a final method call, it
can, at its discretion, skip the normal approach of inserting code via the method call mechanism.
A call mechanism consists of pushing the method arguments on the stack, jumping to the method
code, executing it, hopping back to the caller, cleaning off the stack arguments, and finally
dealing with the returned value. Instead of this, the compiler now can replace the method call
with a copy of the actual code in the method body. This is called inlining and eliminates the
overhead of a method call. However, if the method is big, the benefit of saving time in calling
and returning from a method will be dwarfed by the amount of time spent inside the method.
Therefore, generally small methods benefit from inlining. The inlining benefits are not necessarily
restricted to the size of the method, however, because inlining a method often leads to further
optimizations, such as the elimination of dead code or more inlining.

nOTe
Java does not allow you to explicitly mark a method as an inline
method. The compiler, at its own discretion, may inline the methods
marked “final” in your code.

108 Java Programming

The final Variables
A variable declared with the final keyword is treated as a constant. Any attempt to change its value
in the program causes a compile-time error. The following code snippet shows a declaration of a
final variable:

public class Math {

 public final double PI = 3.14;
 ...
}

The variable PI is declared as final. It is assigned a value of 3.14. The value assigned to
PI remains constant throughout the program and cannot be altered by any further program
statement.

nOTe
By Java’s coding conventions, all final variables should appear
in uppercase letters with components separated by underscore
characters.

A final variable need not be initialized at the time of declaration. The program may initialize the
variable elsewhere after its declaration. However, such initialization must be performed only once.
A final variable that is not initialized at the time of its declaration is called a blank final variable.

nOTe
A blank final variable provides much more flexibility in the use of
the final keyword. For example, final fields inside a class can take
a different value for each object and yet retain its immutable quality.

The following code snippet illustrates this:

public class Student {

 public final int ID;

 public Student() {
 ID = createID();
 }
 public int createID() {
 return ... // generate new ID
 }
 ...
}

Chapter 5: Object Creation and Member Visibility 109

Here, we declare a final variable called ID in the Student class. The variable is not initialized
at the time of its declaration. The class constructor initializes this final variable.

CAuTIOn
A blank final variable must be initialized in a constructor because
it is called only once during the object life cycle. If a final variable
is initialized in a constructor, it must be initialized in all overloaded
constructors.

The final Variables of the Class Type
Earlier we created and used variables of the class type that hold references to the objects of those
class types. Now, we’ll cover an important situation in which such a variable of the class type is
declared final. Look at the program in Listing 5-4.

Listing 5-4 Understanding the Use of the final Class Type Variables

class Point {

 private int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public void setX(int x) {
 this.x = x;
 }

 public void setY(int y) {
 this.y = y;
 }
}

class Circle {

 private final Point CENTER_POINT = new Point(0, 0);

 public void drawCircle() {
 CENTER_POINT.setX(10);
 CENTER_POINT.setY(10);
 // CENTER_POINT = new Point(50, 50); // illegal assignment
 }
}

110 Java Programming

In this program, we declare two classes: Point and Circle. The Point class declares two
private variables: x and y. The Circle class declares a final variable called CenTer_POInT of
type Point, as follows:

private final Point CENTER_POINT = new Point(0, 0);

The final variable CenTer_POInT is initialized to a Point object having its x and y coordinates
set to (0,0). Note that CenTer_POInT holds a reference to a Point object having the value (0,0).
This represents the center of the circle. Now, the question is, can we change these coordinates to
change the circle’s center before drawing a new circle? In the drawCircle method, we call the setX
and setY methods of the Point class to change the values of the x and y fields, as shown here:

public void drawCircle() {
 CENTER_POINT.setX(10);
 CENTER_POINT.setY(10);
}

If we compile this code, it will compile without any errors because the CenTer_POInT
variable, which is of the constant type, points to a Point object that has its state initially set to
(0,0). The contents of the Point object—that is, (0,0) —are themselves not constant and therefore
can be modified.

TIP
If a final variable holds a reference to an object, the reference must
remain constant, not the object. You can change the object’s state by
invoking mutator methods on it.

Now, consider the case where you try to assign another Point object to the CenTer_POInT
variable, as follows:

CENTER_POINT = new Point(50, 50); // illegal assignment

Compiling this statement results in a compilation error because the CenTer_POInT object
should always point to the fixed object reference to which it is initialized. It cannot refer to any
other instance of the Point class.

TIP
A final variable of the class type cannot refer to any object other than
the object reference to which it has been set.

Important Points related to the final Keyword
Here is a summary of the important points you should keep in mind when using the final
keyword:

You cannot subclass (extend) a ■■ final class.

You cannot override a ■ final method.

A ■ final variable that is a field of a class is a constant.

A blank ■ final variable (field) is a variable that is declared “final” but not initialized.

Chapter 5: Object Creation and Member Visibility 111

A blank ■ final variable (field) must be initialized in a constructor. If the variable is initialized
in a constructor, you must initialize it in all the overloaded constructors of the class.

A blank ■ final variable (field) can be set only once.

A blank ■■ final variable (field) must be set before it is used anywhere.

understanding Member Visibility rules
In the examples so far, you have seen the use of the public and private keywords. These are access
modifiers that control the visibility of fields, methods, and classes in the scope of the entire
application. Why would you really worry about the visibility of these members? All this time, we
have been talking about data hiding and encapsulation in object-oriented design. Defining visibility
rules for the members helps achieve these goals. To explain how, let’s look at an example. Consider
a situation where you are running a game in a Java applet downloaded from, say, www.zapak.com,
and at the same time you are purchasing this book from the Amazon website. Just imagine what
would happen in this situation if there were no visibility restrictions provided in Java. In this case,
the credit card information you input on the Amazon site may become visible to the game
downloaded from the Zapak site. Obviously, you won’t like this—there should be some mechanism
that protects the visibility of the members of one application from another application. This
mechanism in Java involves the creation of namespaces. When a Java runtime loads a class (an
internal class called ClassLoader is responsible for this), it does so in a namespace, which is made
unique depending on its origin. A namespace is a set of unique class names loaded by a particular
ClassLoader; each class name is bound to a specific Class object. Thus, the classes loaded from the
Amazon site would be put in a different namespace than the classes loaded from the Zapak site.
This not only allows information hiding but also helps in avoiding name collisions; therefore, the
classes belonging to two different namespaces can have the same name.

Many times, you will also want to control the member’s visibility within different parts of the
same application. For example, the sensitive employee data should not be made visible to
outsiders browsing the company website. Java provides this kind of security (or the access control
of members) with the help of private, protected, public, and default modifiers.

Naturally, you need to define a namespace for achieving this kind of security. A namespace
defines a boundary area within which access of a containing member is restricted. Java defines
such namespaces by using the concept of package. Earlier, you used the Java packages java.util
and java.awt. The members defined in the java.util package may be made available to other
members within the same package and made inaccessible to members within the java.awt
package. But who does this? When you create classes, your job is to create only appropriate
logical packages in your application and define the desired visibility of each code member. The
rest is taken care of by the JVM. So let’s discuss how to define this visibility. Four possible values
control the visibility or the access level of the entities in your program:

private■■ If an entity is declared with a private modifier, it will be accessible only to the
code that is contained within the class that defines the entity.

protected ■ The entity can only be accessed by code that is contained

within the class that defines the entity,■■

by classes within the same package as the defining class,■■

or by a subclass of the defining class, regardless of the package in which the ■■
subclass is declared.

http://www.zapak.com

112 Java Programming

default (or package) ■ The entity can be accessed by code that is contained

within the class that defines the entity■■

or by a class that is contained in the same package as the class that defines the entity.■■

public■■ The entity can be accessed by code in any class.

These visibility modes are specified with specific keywords: public, protected, and private.
If any of these keywords are not used as qualifiers, the entity is given a default visibility (that is,
package-private or friendly). The four access modifiers and the resulting corresponding visibility
are summarized in Table 5-1.

Note that there is no modifier called “default.” If you do not specify any of the modifiers
explicitly, the default is assumed.

To understand these accessibility rules, you must first understand the levels at which this visibility
is tested. Accessibility is decided at five different levels:

Same class■■ Check whether the element is accessible to the code defined within the same
class where the element is declared.

Same package subclass ■ The classes are grouped together in a package. You test the
visibility for access within a subclass declared in the same package.

Same package nonsubclass ■ You test the visibility within a class that belongs to the same
package but does not inherit from the declaring class.

Different package subclass ■ You test the visibility within a class that inherits from a class
belonging to a different package.

Different package nonsubclass■■ In this case, the class neither derives from the declaring
class nor belongs to the same package as the declaring class.

Now we’ll focus our attention on the accessibility criteria set by each of the modifiers.

Same Package Different Package

Modifier Same Class Subclass nonsubclass Subclass nonsubclass

public Yes Yes Yes Yes Yes

private Yes No No No No

protected Yes Yes Yes Yes No

Default
(package-private)

Yes Yes Yes No No

TABLe 5-1. Access Modifiers and the Scope of Variables

Chapter 5: Object Creation and Member Visibility 113

The public Modifier
A public modifier makes the corresponding element truly public—that is, it is accessible to
everybody. You would use this modifier only if you wish to make the member of a class
publicly available (note that this is considered bad design and defeats the encapsulation
principle of object-oriented design). Making the members visible to every other piece of code
in your application makes them vulnerable to both accidental and intentional modifications,
thus resulting in runtime errors in your application. You would, however, declare your classes
public so that they can be instantiated by an outsider. To understand the accessibility rules of
a public member, look at the program in Listing 5-5.

Listing 5-5 Program Illustrating public Modifier Visibility

package mypackage;

public class MyClass {

 public int count;

 public void setCount(int count) {
 this.count = count;
 }
}

class DerivedClass extends MyClass {

 void someMethod() {
 count = 10;
 setCount(5);
 }
}

class NonDerivedClass {

 void someMethod(int count) {
 MyClass obj = new MyClass();
 obj.count = 10;
 obj.setCount(5);
 }
}

The class MyClass declares a public field called count and a public method called setCount.
The DerivedClass, which inherits MyClass, defines a method called someMethod. The method has
access to both the count and setCount members of MyClass. The nonDerivedClass does not inherit
from MyClass; however, it belongs to the same package, mypackage. The someMethod within this
class creates an object of MyClass and accesses its public field count and also invokes the public
method setCount. Both members, as expected, are available to the code within nonDerivedClass.

114 Java Programming

Now, let’s consider the accessibility of these members from the classes belonging to another
package. This is shown in Listing 5-6.

Listing 5-6 Accessing Public Members Through Another Package

package myanotherpackage;

import mypackage.MyClass;

class DerivedClass extends MyClass {

 void someMethod() {
 count = 10;
 setCount(5);
 }
}

class NonDerivedClass {

 void someMethod(int count) {
 MyClass obj = new MyClass();
 obj.count = 10;
 obj.setCount(5);
 }
}

Note that you must write this code in another .java file to declare another package called
myanotherpackage. You import the definition of MyClass by using the import statement to
resolve its references within the current program. The DerivedClass in this new package
defines a method called someMethod that, as you can see, has access to both the public
members of MyClass. The nonDerivedClass creates an object of MyClass, as in the earlier
case, and accesses the two public members.

The preceding accessibility can easily be understood by examining Figure 5-3.
An upward arrow extending from the derived class to the base class indicates the inheritance. An

X on this arrow indicates that the corresponding class is not a derived class. The nonDerivedClass in
both packages does not inherit MyClass.

Therefore, as stated earlier, the identifier declared with the public attribute is truly public.

The private Modifier
The private modifier is really useful when you want to make a member accessible only to the
class to which it belongs. An example of this might be a variable that stores a Social Security
number or a credit card number. Consider a CreditCard class in an application that defines a
field to store a credit card number. This variable should be accessible only to the code defined
in the CreditCard class and not anywhere outside. You would declare this kind of field with a
private modifier.

To understand the visibility of a private member, change the public keyword to private for
the count and setCount declarations in the MyClass definition of Listing 5-5. If you compile the
code, both files will not compile, giving you a compilation error wherever you try accessing the

Chapter 5: Object Creation and Member Visibility 115

count and setCount members. The scope of a private identifier can be understood by examining
Figure 5-4.

The protected Modifier
Going back to our asset management example, we have defined several classes that lie in a
single hierarchy. The Asset, BankAccount, and SavingsAccount classes belong to one such
inheritance hierarchy. The asset management software may contain another inheritance
hierarchy containing classes responsible for accounting. The two inheritance hierarchies may

FIGure 5-3. Visibility of public identifiers

MyPackage

MyClass

public int count;

public void setCount(int count) {

 this.count = count;

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // valid

 obj.setCount = (5); // valid

}

MyAnotherPackage

DerivedClass

void SomeMethod() {

 count = 10; // valid

 setCount(5); // valid

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // valid

 obj.setCount(5); // valid

}

DerivedClass

void SomeMethod() {

 count = 10; // valid

 setCount(5); // valid

}

116 Java Programming

be arranged in two different Java packages—say, asset and accounting, respectively. A certain
class defined in the accounting package would need access to the net worth of an asset defined
in the asset package. If this class derives from a class defined in the asset package, it would
have access to the entities defined in the base class, provided those are declared protected.

To understand the visibility of protected members, change the public modifier of the count
and setCount members in MyClass of Listing 5-5 to protected. The class MyClass compiles
without error. Both the DerivedClass and nonDerivedClass belonging to MyPackage have
access to the protected count and setCount members. However, the NewClass.java file will

FIGure 5-4. Visibility of private identifiers

MyPackage

MyClass

private int count;

private void setCount(int count) {

 this.count = count;

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // invalid

 obj.setCount(5); // invalid

}

MyAnotherPackage

DerivedClass

void SomeMethod() {

 count = 10; // invalid

 setCount(5); // invalid

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // invalid

 obj.setCount = (5); // invalid

}

DerivedClass

void SomeMethod() {

 count = 10; // invalid

 setCount(5); // invalid

}

Chapter 5: Object Creation and Member Visibility 117

not compile. It would produce nonDerivedClass compilation errors on the statements shown in
the following code snippet:

package myanotherpackage;

import mypackage.MyClass;

class DerivedClass extends MyClass {

 void someMethod() {
 count = 10;
 setCount(5);
 }
}

class NonDerivedClass {

 void someMethod(int count) {
 MyClass obj = new MyClass();
 obj.count = 10; //this does not compile
 obj.setCount(5); //this does not compile
 }
}

The visibility of a protected modifier (identifier) can be seen in Figure 5-5.
Thus, a protected variable is accessible to a subclass, regardless of its package declaration,

and also to all classes belonging to the same package. It is not accessible to a class belonging to
another package and that does not inherit from the defining class.

Lastly, we look at the default scope visibility.

The Default Modifier
When you do not apply any of the modifiers (private, protected, or public) to an entity, it gets
the default visibility. An entity defined with a default visibility will be accessible within the class
defining it and to all the classes that belong to the same package, but it is not accessible to any
class in a different package.

To understand the visibility rules for a default modifier, remove the modifier in the declarations
of the count and setCount members of MyClass of Listing 5-5. The MyClass.java file compiles
without errors, indicating that both DerivedClass and nonDerivedClass belonging to mypackage
have access to these members. The NewClass.java file, however, will not compile, giving errors,
on the statements shown in the following code:

package myanotherpackage;

import mypackage.MyClass;

class DerivedClass extends MyClass {

 void someMethod() {
 count = 10; //this does not compile
 setCount(5); //this does not compile
 }

118 Java Programming

}

class NonDerivedClass {

 void someMethod(int count) {
 MyClass obj = new MyClass();
 obj.count = 10; //this does not compile
 obj.setCount(5); //this does not compile
 }
}

FIGure 5-5. Visibility of protected identifiers

MyPackage

MyClass

protected int count;

protected void setCount(int count) {

 this.count = count;

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // valid

 obj.setCount(5); // valid

}

MyAnotherPackage

DerivedClass

void SomeMethod() {

 count = 10; // valid

 setCount(5); // valid

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // invalid

 obj.setCount(5); // invalid

}

DerivedClass

void SomeMethod() {

 count = 10; // valid

 setCount(5); // valid

}

Chapter 5: Object Creation and Member Visibility 119

To understand the default access modifier, consider Figure 5-6.
Thus, an identifier having default scope is accessible to any class within the same package

and not to any other class belonging to another package.
Now that you have seen the various visibility criteria for the entities and understand Java

packages, let’s look at the rules that must be applied when using inheritance.

A Few rules on Inheriting
A member that is inherited in a subclass cannot have a weaker access privilege than the access
privilege originally assigned to it. It can have only a stronger access privilege. The weakest type

FIGure 5-6. Visibility of default identifiers

MyPackage

MyClass

int count;

void setCount(int count) {

 this.count = count;

}

NonDerivedClass

void someMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // valid

 obj.setCount(5); // valid

}

MyAnotherPackage

DerivedClass

void SomeMethod() {

 count = 10; // invalid

 setCount(5); // invalid

}

NonDerivedClass

void SomeMethod(int count) {

 MyClass obj = new MyClass();

 obj.count = 10; // invalid

 obj.setCount(5); // invalid

}

DerivedClass

void SomeMethod() {

 count = 10; // valid

 setCount(5); // valid

}

120 Java Programming

of access is private and the strongest is public. This rule applies only to the methods of a class
and not to its fields.

A field with the same name declared in a subclass is treated as a shadowed variable in the
subclass that essentially hides the corresponding declaration in the base class. This rule can be
exemplified using the following cases:

A method declared public in a superclass also must be public in all subclasses.■■

A method declared protected in a superclass must either be protected or public in ■
subclasses; it cannot be private nor have a default scope.

A method declared without access control (no modifier was used) cannot be declared ■
private in a subclass.

A member declared private is not inherited at all, so there is no rule for it.■■

Summary
When you create an object of a subclass, all its parent objects are created. The construction process
begins with the topmost class in the inheritance hierarchy and continues down the line until the
desired subclass is instantiated. During the construction of all these parent objects, a constructor of
each of the instantiated classes is called. A class may declare more than one constructor. You use
the super keyword to gain control over which constructor of a superclass is called. If you want to
call another constructor of the same class, you use the this keyword.

Sometimes, you may want to prevent others from inheriting your classes. In this case, you use
the final keyword in front of the class declaration to prevent its further derivation. The final
keyword can also be applied to methods and variables. A method that is declared using the final
keyword cannot be overridden in a subclass. A final variable is a program constant, and its value
cannot be changed during program execution. A variable declared as final can be initialized only
once during program execution (that is, when it is declared or in a constructor). If the variable is
not initialized at the time of declaration, it is known as a blank final variable. A blank final
variable must be initialized in a constructor because the constructor is called only once during
program execution; all other methods may be called multiple times. If you initialize a final
variable in a constructor, you must provide this initialization in all the overloaded constructors.

To control the visibility of the various identifiers during program execution, Java provides three
keywords: public, protected, and private. These can be applied to a field, a method, or a class.
If you do not specify any of these modifiers, a default visibility scope is applied. A public identifier,
as its name suggests, is truly public and is accessible within the entire scope of the executing
program. A private identifier, on the other hand, is privately accessible only within the class to
which it belongs. A protected identifier is accessible within the package to which it belongs and
all its subclasses, regardless of the package they belong to. A protected identifier cannot be
accessed from a class declared in another package and that does not derive from the declaring
class. Default access makes the identifier visible to all the classes within the defining package,
but prevents its access from all derived and nonderived classes defined in a different package.

At this point, you have learned a good number of the features of a Java class. In the next
chapter, you will learn some more advanced features of a Java class.

Chapter
6

Static Modifier
and Interfaces

121

122 Java Programming

n the previous chapters, you studied several important aspects of object-oriented
programming. You learned to declare and use a class, extend its functionality with
the help of inheritance, and so on. Java allows multiple levels in an inheritance
hierarchy. You learned how the superclass objects are constructed when a subclass
object is created. You also learned the use of the super keyword in calling the

superclass methods and using superclass fields in subclasses. The access to the various members
of a class is controlled using the access modifiers. You learned about all such available access
modifiers that control the visibility of members. To restrict inheritance, you use the final keyword.
You learned how to create final variables, methods, and classes.

In this chapter, you learn some more stuff related to classes and another important construct—
interfaces.

In particular, you will learn the following:

Understanding static fields, methods, and initializers■■

Defining and extending interfaces ■

Implementing multiple interfaces ■

Abstract classes■■

The static Keyword
You have already seen the use of the static keyword in our Java programs. In fact, the first program
you encountered in Chapter 2 uses the static keyword, where it was applied to the main method.
The static keyword can also be applied to the fields of a class. The only other application of the
static keyword is to create initializers. This chapter covers the use of the static keyword in all three
cases—that is, used with fields, methods, and initializers—and their importance in practical
situations. We’ll start by discussing fields.

The Static Fields
A class field may be marked as static. But why would you do so? Suppose you have created
an application that uses several of your own classes. The application user can create several
objects of these classes during runtime. Therefore, you may want to know how many objects of
each type a user has created in a typical session to get an understanding of the memory usage
of your application. In this case, a static field will help in maintaining the count of number of
objects created.

Another good application of a static field would be to create a truly global variable. As you
already know, Java does not allow you to create any declarations outside the class definition
(C++ allows you to create global variable declarations). However, you are able to create a
globally accessible variable within your application using the static keyword. One more useful
application of a static field declaration is to create an application-level programming constant.
You will learn all these techniques in this section.

A static field is associated with the class definition itself. It is shared among all the instances
of the class. This means that when a class is instantiated, no separate memory allocation will
occur for a static field. The memory allocation for a static field happens only once, and that is
when the class loads. When JVM loads the class definition into memory, it allocates space for all
the static fields of a class. This memory space (that is, the fields) will be shared among all the

I

Chapter 6: Static Modifier and Interfaces 123

objects of a class that are created throughout the life of the program. Conversely, all nonstatic
fields will have their own memory allocation in each instance of the class. Therefore, when you
have more than one instance of a class, each object will have an independent memory allocation
for all its nonstatic fields. In other words, all nonstatic variables are copied into the newly created
instance in memory.

Thus, in the case of a nonstatic variable, if you modify its value for a particular instance, the
changes will remain local to that object and are not reflected in other instances of the class.
However, for a static field, because only one allocation is shared among all the instances, any
changes to it will be visible to all the instances of the class. An important application of this
would be when you want to keep a count on how many instances of a class have been created
by the running application. Let’s look at this usage with the help of an application.

Consider a game that allows a player to create multiple balls during game play. Such an
application would probably declare a class called Ball. As a game strategy, the application might
keep track of the number of balls created by the player during the entire span of the game. Therefore,
the static field would come in handy for counting the number of ball instances. This is illustrated
in the program shown in Listing 6-1.

Listing 6-1 Program Illustrating the Use of a Static Field

class Ball {

 private static int count = 0;

 public static int getCount() {
 return count;
 }

 public Ball() {
 count++;
 }
}

public class BallGame {

 public static void main(String[] args) {
 for (int i = 0; i < 10000; i++) {
 int number = (int) (Math.random() * 10);
 if (number == 5) {
 new Ball();
 }
 }
 System.out.println("No of balls created: " + Ball.getCount());
 }
}

The class Ball declares one static attribute called count. The initial value of this attribute is 0:

private static int count = 0;

124 Java Programming

The class constructor increments the count value. Recall that each static field gets its own
memory allocation, which is shared among all the instances of a class. Therefore, when the class
constructor increments the count field, its shared value is incremented and thus it tracks every
instantiation of a class. This is shown in Figure 6-1.

The BallGame class provides the main method in which you instantiate the Ball class. To
simulate the situation that a player may create any number of balls, we use a randomizer in the
program to set the number of balls. The randomizer generates a random number in the range 0 to
10. The program runs 10,000 iterations, creating a random number in each. When the generated
random number equals 5, a Ball is created. At the end of the loop, we print the total number of
balls created on the user console. The number of balls is retrieved using a getter method on the
count field. Note that the getter method getCount is declared static and is called by using the
syntax ClassName.methodName.

Accessing Static Fields Through Object References
In the previous section, we accessed the static method getCount by using the class name. Can we
call this method on an object reference? Yes, we can. To understand how this is done and what it
means, look at the following statement:

System.out.println(new Ball().getCount());

Here, we first create an instance of Ball. The class constructor would increment the count by 1.
After the object is fully constructed, the runtime calls its getCount method. Thus, the count value
printed to the console also includes the currently created object.

FIGuRe 6-1. Memory allocation for static and nonstatic fields

Instance
1

Instance
2

Ball

Count

All static variables are
stored here.

Each instance gets a copy
of all nonstatic variables.

Instance
n

Chapter 6: Static Modifier and Interfaces 125

Inheriting Static Fields
In Chapter 4, you learned about inheritance. The same way the class fields and methods are
inherited by a subclass, the static fields of a class will be inherited in a subclass. Consider the
following class declaration:

class RedBall extends Ball {

}

Here, RedBall simply inherits the Ball class, thereby inheriting all its members. Now, if we
instantiate RedBall and get the ball count by using the following statement, we find that the count
variable belonging to the Ball class is incremented during the construction of the RedBall object:

System.out.println(new RedBall().getCount());

This confirms that all static fields are also inherited by the subclasses.

Creating a Truly Global Variable
According to the best practices of object-oriented design, the fields of a class should always be
made private. Now, what would happen if we declare them public? Well, the answer is simple.
Any code outside the class definition would be able to access and modify these fields. Although
this is considered bad design, making the static fields public allows us to create a truly global
variable. For example, modify the declaration of the count field in our earlier program as follows:

public static int count = 0;

Now, we are able to access this count field anywhere in the code with the statement Ball.count.
There is no need for a getter method.

CAuTIOn
According to good programming practices recommended by Sun
(now Oracle), instance variables should always be declared private. The
problem with public non-final variables is that they can be changed
by anyone who uses the enclosing class without you knowing. Using
getters and setters gives you a chance to monitor/verify any reads or
writes of that data, thus leading to more reliable programs. As you’ll
recall from the wallet example in Chapter 3, we do not let the cashier
take the money out of our wallet; rather, we give it to him. We do this
because we always want the chance to check for ourselves that the
correct amount is taken out.

TIp
It is okay to declare class variables public when they are used as
constants and marked final.

Creating Application Constants
From the previous section, you know how to create an application global variable declaration.
You also learned the use of the final keyword in Chapter 4. If you make your global variable

126 Java Programming

declaration final, it will create a constant that cannot be modified throughout the application.
The following statement shows how to create such a constant:

class Constants {

 public final static double PI = 3.14;
}

The variable pI, which is declared static, is accessible without creating an instance of the
Constants class. The variable is initialized to a value of 3.14 at the time of declaration. Because it is
declared final, its value cannot be modified further in the application. Thus, you have successfully
created an application constant. To use this constant in your code, you would use the syntax
Constants.pI. The visibility of this constant in your program code is decided by the access modifier
applied to its declaration, which in this case is public. This constant can be accessed anywhere in
your program code as long as the code has access to the class Constants.

If you read the web chapter “Syntax Reference 1: Java Language Constructs,” you learned
about the coding convention for declaring constants. To reiterate, the names of variables declared
as class constants should be all uppercase, with words separated by an underscore character.
You should avoid the use of ANSI constants in your program code as your own constants for
ease of debugging.

Some Important notes on Static Fields
Here’s a summary of the observations made so far on static fields:

A static field belongs to a class and not to an object (that is, an instance of a class).■■

TIp
For this reason, a static field is also called a class field/attribute or
simply a class variable. The nonstatic fields belong to an instance
of a class and are therefore referred to as instance variables.

Static variables are ■ initialized only once, at the start of the execution.

All static fields are initialized before the initialization of any instance variables. ■

A static field can be ■■ accessed directly via its class name and doesn’t need any object
reference.

The Static Methods
In general, methods may be classified under two categories: the ones whose behavior depends on
the state of the object on which they are defined, and the ones that do not depend on the state of
the object. Consider the example of the ball game described in the previous section. A player may
be given the choice to select the color of the balls. This color choice will be applied to all the balls
he creates during the game. Thus, if we define a setDefaultColor method for setting the color of a
ball, the method may be attached to the Ball class rather than every object of the Ball type. Such a
method is defined using the static keyword, as will be explained further. Now, consider a method
that sets the velocity of the motion for a ball. The velocity will obviously depend on the current
state of the game and will be independently set for each ball on the board game. Therefore, we’ll

Chapter 6: Static Modifier and Interfaces 127

want to define a method called setVelocity that operates on an instance of a Ball class. This type
of method is a nonstatic method—a method that does not use the static keyword. We discuss both
types of methods in this section. First, though, let’s look at a few more situations where the methods
need to be declared with the static keyword.

Sometimes you may want to execute program code without creating a class instance. A typical
example of this is the declaration of the main method in your program code, as shown here:

public static void main(String[] args)

Because the program execution begins with the main method, you need to run it before you
can create an instance of your application class. Therefore, the method is declared using the
static keyword.

Another example is the use of mathematical functions. To compute an exponential or a
logarithm, you would want to call the appropriate function directly instead of creating a class
instance and then invoking a method on that instance. For example, Java libraries define a class
called Math in the java.lang package. The Math class has several mathematical functions defined
in terms of the class methods. All these methods are declared static so that they can be invoked
without instantiating the Math class. For example, to determine a logarithm of a given number,
you would use the method log, which is invoked as follows:

System.out.println(Math.log(5.0));

This statement would print the log of 5.0 on your terminal. To determine the square root of
a given number, you would use the following:

System.out.println(Math.sqrt(5.0));

Both the log and sqrt methods of the Math class are static and can therefore be invoked
without an instance of the Math class being created.

Now that we have discussed the need for static methods, let’s go back to our ball game
example. Listing 6-2 is an enhanced ball game that creates a random number of balls on each run.
Out of the total number of balls created, a randomly selected number of them will be red and the
rest green. Each ball has a constant radius, which is also set randomly on each run. As you can
imagine, the radius is an appropriate candidate for creating a class field (static) with corresponding
getter/setter static methods. Because the color of each ball is randomly set, it becomes the instance
property (nonstatic). Finally, we set the velocity of motion for each ball after it is created. Setting
the velocity of the ball will be an instance method (nonstatic) because it operates on an individual
object. Examine the code in Listing 6-2 to understand the implementation of both static and
nonstatic fields and methods.

Listing 6-2 Modified Ball Game Program

import java.awt.Color;

class Ball {

 private static int count = 0;
 private static int redBallCount = 0;
 private static int greenBallCount = 0;

128 Java Programming

 private static int radius = 0;
 private Color defaultColor;

 public static int getRedBallCount() {
 return redBallCount;
 }

 public static int getGreenBallCount() {
 return greenBallCount;
 }

 public static int getRadius() {
 return radius;
 }

 public static void setRadius(int radius) {
 Ball.radius = radius;
 }

 public Ball(Color color) {
 count++;
 if (color == Color.RED) {
 this.defaultColor = Color.RED;
 redBallCount++;
 } else {
 this.defaultColor = Color.GREEN;
 greenBallCount++;
 }
 }

 public void setVelocity(double v) {
 String strColor = null;
 if (defaultColor == Color.RED) {
 strColor = "Red";
 } else {
 strColor = "Green";
 }
 System.out.printf("Ball #%d:%-10s velocity set to %.02f%n",
 count, strColor, v);
 }
}

public class EnhancedBallGame {

 public static void main(String[] args) {
 int numberOfBalls = (int) (Math.random() * 10);
 int radius = (int) (Math.random() * 20) + 1;
 Ball.setRadius(radius);
 System.out.printf("Creating %d balls of radius %d%n",
 numberOfBalls, Ball.getRadius());

Chapter 6: Static Modifier and Interfaces 129

 for (int i = 0; i < numberOfBalls; i++) {
 int number = (int) (Math.random() * 2);
 if (number == 0) {
 new Ball(Color.RED).setVelocity(Math.random() * 10);
 } else {
 new Ball(Color.GREEN).setVelocity(Math.random() * 10);
 }
 }
 System.out.println("Number of red balls created: "
 + Ball.getRedBallCount());
 System.out.println("Number of green balls created: "
 + Ball.getGreenBallCount());
 }
}

The Ball class declares several fields—count, redBallCount, greenBallCount, radius, and
defaultColor. The first four are static and the last one is nonstatic. The defaultColor field holds the
color value of each individual ball and is therefore set to be an instance variable. The count field,
as in the earlier example, tracks each ball that’s created and at the end holds the total number of
balls. The redBallCount and greenBallCount fields hold the total number of red and green balls
created, respectively. The radius field is common to all balls and is therefore declared static. The
class defines the desired getter/setter methods on these fields.

The class constructor takes one parameter of the Color type. Note that Color is a Java-supplied
class defined in the java.awt package. The Color class defines several static fields to represent
different colors. The constructor increments the static field count to account for the newly created
object. The value of the input argument is copied into the defaultColor field. If this input argument
is of type Color.ReD, we increment the count of red balls; otherwise, we increment the count of
green balls. Both these counts are static fields and therefore their values are retained during each
instantiation of the Ball class.

Finally, the Ball class declares one nonstatic method called setVelocity that takes one parameter
representing the velocity value to be set. This method simply prints the value of the velocity along
with the ball number on which the velocity is set to the user’s console. We also print the color value
of each ball.

In the main method of the enhancedBallGame class, we set the number of balls to be created
using the randomizer from earlier:

int numberOfBalls = (int) (Math.random() * 10);

We set the radius for all the balls to be created by using the randomizer once again:

int radius = (int) (Math.random() * 20) + 1;
Ball.setRadius(radius);

Here, setRadius is a static method of the class that sets the value of the static field radius. This
value will be common to all instances of the Ball class.

Next, we create the balls by setting up a for loop:

for (int i = 0; i < numberOfBalls; i++) {

130 Java Programming

We select between a red and green ball by once again using the randomizer:

int number = (int) (Math.random() * 2);
if (number == 0) {
 new Ball(Color.RED).setVelocity(Math.random() * 10);
} else {
 new Ball(Color.GREEN).setVelocity(Math.random() * 10);
}

We use the new keyword to instantiate the Ball class. We call the class constructor by sending
either the red or green color value to it. After the class is instantiated, we call the setVelocity
nonstatic method on the created instance to set the velocity of the created ball. The velocity value
is set again using the randomizer.

After all the balls have been created, the program prints a tally of the red and green balls.
A typical output is shown next. Note that this output varies on each run.

Creating 7 balls of radius 20
Ball #1:Green velocity set to 5.82
Ball #2:Green velocity set to 1.11
Ball #3:Green velocity set to 1.05
Ball #4:Red velocity set to 6.79
Ball #5:Green velocity set to 7.33
Ball #6:Green velocity set to 8.88
Ball #7:Red velocity set to 1.23
Number of red balls created: 2
Number of green balls created: 5

The next section covers the restrictions imposed on the code that can be put in a static method.

Access Restrictions in Static Methods
Because a static method is invoked without a class instance, you cannot use a this or super reference
in the static method. That is to say, it is illegal to reference any of the class fields or methods using a
this reference within a static method. However, a static method can access the class members (both
fields and methods). A class member is a member of the class that is declared using the static
keyword. As you have seen so far, both fields and methods can be declared with the static keyword.
Such static fields and methods are accessible to the code defined in a static method. The nonstatic
fields are bound to a class instance and therefore cannot be accessed in the body of a static method.
To understand these code restrictions in a static method, look at the code snippet in Listing 6-3.

Listing 6-3 Access Restrictions in Static Methods

class StaticMemberTestApp {

 private static int i;
 private int j;

 public static void staticMethod() {
 // do something
 }

Chapter 6: Static Modifier and Interfaces 131

 public void nonStaticMethod() {
 // do something else
 }

 public static void main(String[] args) {
 i = 5;
 j = 10; // this does not compile
 staticMethod();
 nonStaticMethod(); // this does not compile
 }
}

The StaticMemberTestApp class declares two fields: The variable field i is declared static
whereas the variable j is nonstatic. The main method, which itself is static, modifies the value of
i, which is legal. However, accessing j in the body of the main method generates a compile-time
error. Note that a static method cannot access a nonstatic attribute within its body. Similarly, the
class declares two methods: one static and one nonstatic. The staticMethod is a class method
(static) and is called within the body of the main method without producing any compile-time
errors. However, calling the nonStaticMethod, which is an instance (nonstatic) method, within
the body of the main method generates a compile-time error.

Another important code restriction is that a static method cannot be overridden in a subclass.
This is illustrated in the code snippet in Listing 6-4.

Listing 6-4 Overriding Methods

class MyClass {

 public static void staticMethod() {
 // do something
 }

 public void nonStaticMethod() {
 // do something
 }
}

class MySubClass extends MyClass {

 public void staticMethod() // this does not compile
 {
 // overrides base class implementation
 }

 public void nonStaticMethod() {
 // overrides base class implementation
 }
}

132 Java Programming

The class MyClass declares two methods: one static and one nonstatic. The class MySubClass
inherits MyClass. The class MySubClass now attempts to override the two methods inherited from
its parent. Overriding the staticMethod, which is declared using the static qualifier in the base
class, generates a compile-time error. Overriding a nonstatic method (that is, nonStaticMethod)
is permitted.

Some Important notes on Static Methods
Here are a few important points about static methods:

A static method is invoked via a class reference. You can use an object reference to invoke ■■
a static method; however, this is generally not considered good style.

The special method ■ main is declared static so that we do not need to create an instance
of the class to which it belongs while starting the application.

A static method cannot use ■ this and super in its body.

A static method can access static fields and methods of the class. ■

A static method cannot access nonstatic fields and methods of the class. ■

A static method cannot be overridden in a subclass.■■

The Static Initializers
We use constructors to initialize nonstatic fields of a class. The constructors are called at the time
of object creation and complete the initializations defined in them before the object becomes
ready to use. You may use the same constructors to initialize static fields of the class. Initializing
the static fields in a constructor means that you have to wait until the time of object creation. In
certain situations, you will want to initialize the static fields before a class is instantiated. Consider
the situation where you have defined a class called GoogleConnector that provides a connection
to the Google website. When the user of this class instantiates it, he would naturally expect that
the connection is already made and readily available to his code. If connection-making code is
written in the class constructor, at times the connection may fail and the created object would not
have access to the Google site. Ideally, if we make this connection while loading the class, it will
be available to all its created objects. Java allows us to perform these initializations of static
fields in what is called a static initializer or simply a static constructor.

A static initializer block resembles a method with no name, no arguments, and no return
type. The name is not required because there is no need to refer to it from outside the class
definition. Therefore, it is like an anonymous method. Whereas a typical class constructor may
contain arguments, a static block cannot have any arguments. Because the static block is
executed automatically during the class load time, the arguments to it will not make any sense,
and therefore no arguments are allowed. Finally, like a constructor, the static block has no
return type.

In our extendedBallGame from the previous section, we defined a static field called radius.
We initialized it to zero at the time of its declaration. Alternatively, we could have defined a static
initializer, as follows, to initialize the static field:

static {
 radius = 5;
}

Chapter 6: Static Modifier and Interfaces 133

Now, every ball object will have a default radius of 5 that can be set to another value by calling
the setRadius method elsewhere in the object code.

nOTe
A static block can access only the static members of the class and does
not have access to its nonstatic members because no instance of the
class is available when the code defined in the static block executes.

Advantages of a Static Initializer
Although the example in the preceding section illustrates a simple case where a static block is
used for initializing a single static field, which could be done by other ways, too, its real purpose
lies in the initialization and allocation of resources that are required throughout the life of the
class. Here are a few examples:

A ■■ Modem class may perform initializations of its registers in a static block.

A device driver may register the required natives in a static block. ■

In some situations, initialization of a static field may require some prior computations. ■
For example, a digital key signature algorithm may require a random-seed value based
on the current time. This would require reading the current time and performing some
computations before the seed is generated. Such code may be executed in a static block
so that when the class is loaded, the seed for the key generator is readily available.

Sometimes you may want to audit whether anybody has loaded a class that has access to ■
sensitive information, as is typical in banking and military applications. A static block can
be used for logging such activities.

For a typical database application, you may generate prepared SQL statements in a ■
static block.

In singletons, you may declare private static members that are initialized in a static block ■■
only once. (The singleton is a design pattern that implements the mathematical concept
of a singleton by restricting the instantiation of a class to one object.)

Multiple Static Blocks
A static block is executed only once when the class is loaded. Your class may contain multiple
static blocks. These are executed in the order in which they appear in the class. This can be
useful in organizing the multiple logical initializations your class may require in a sequential
order. Consider a class that creates a Sudoku puzzle. Creating a puzzle requires certain steps to
be executed in sequence. The class definition to implement this may look like the following:

class Puzzle {

 static {
 // Initialize random number generator
 }

 static {
 // Formulate Sudoku solution board
 }

134 Java Programming

 static {
 // Make puzzle
 }
 // Rest of the class code presents the generated puzzle to the user
}

The three static blocks execute in the sequence they are specified. Thus, first the random
number generator will be initialized, followed by the formulation of the Sudoku solution board,
and lastly the code that generates puzzle will be executed. When all three blocks execute
successfully, a puzzle will be ready for the user.

Another example would be the GoogleConnector class we discussed earlier. This class might
first initialize a modem, followed by making a Wi-Fi connection and then a network connection to
the Google site. These three operations can be arranged in three independent static blocks and
called sequentially in the given order in the class definition. Other places where you would use
multiple static blocks include loading a database driver, followed by a connection to a database,
and loading resource bundles for internationalization in a specific sequence. Be aware that loading
expensive resources in a static block may not always be a good idea. What’s more, handling
failures in a static block is usually difficult, as explained later in the chapter.

An Alternative to a Static Initializer
Instead of using a static block as discussed in the previous section, you can initialize your static
fields by defining a private static method. Let’s look at how to do this in our extendedBallGame
example. The game has a static field called radius. We could initialize this field using the following
code snippet:

private static int radius = initClassVariables();

private static int initClassVariables() {
 // some computations to determine radius
 int radius = 5;
 return radius;
}

Defining a method like this for initialization is really useful if you have to reinitialize your objects
later in the code. You may then simply call this private class method whenever a re-initialization is
desired. For example, in our ball game, when two balls touch each other, we may want to create a
bigger ball out of the two balls by merging them into a single ball. Thus, the initialization method
gives us more flexibility in coding as compared to a static initialization block.

Some Important notes on Static Initializers
Here are a few important points on using static blocks to keep in mind while coding these initializers:

The JVM sets a limit of 64K on the size of a static initializer block. Therefore, you cannot ■■
put lot of code in this block.

You cannot throw checked exceptions from a static initializer. The exceptions are discussed ■
in Chapter 8 on exception handling.

You cannot use the ■ this keyword in a static block because no instance has been created
so far.

Chapter 6: Static Modifier and Interfaces 135

You cannot call ■ super explicitly in a static block. Static blocks are loaded when the class
is loaded, and super is called whenever object creation takes place. Therefore, it is built
into a nonstatic initializer (that is, a constructor). That’s why including it in a static block
results in generating a compile-time error.

There is no return type for a static block. ■

Testing the code in a static block is usually considered a nightmare by developers.■■

CAuTIOn
Although exceptions are discussed in depth in Chapter 8, we will
briefly discuss here how to handle exceptions in static blocks. In our
earlier programs, the methods catch and handle exceptions using a
try-catch block. In static blocks, we cannot use try-catch. Therefore,
one option is to log an exception and then throw a RuntimeException
to end the current thread. Another option would be to call the
System.exit() method. This, however, is not desirable in a managed
environment such as a Servlet. This option is typically used in Java
applications where the static block performs some critical operation
without which the program cannot be run successfully—for example,
loading the database driver. A third option would be to set a flag
indicating the failure. The class constructor can then check the
condition of the flag and throw an exception if desired. Lastly, if the
operation in a static block is not really critical, we can just log the
exception entry and continue.

Interfaces
As mentioned earlier, Java does not support multiple inheritance—in other words, a class cannot
have two or more superclasses. Multiple inheritance has its own advantages and disadvantages.
Java achieves some of the benefits of multiple inheritance through interfaces. So what is an
interface? An interface is a device or system that unrelated entities use to interact with each other.
When you drive a car, you interact with a machine—two totally unrelated entities. These two
entities interact through a well-defined interface for steering, throttling, and braking. The English
and French languages may be considered an interface for communication between two people—
not totally unrelated entities in this case. A remote control is an interface between a viewer and a
television set. In the military, the interface between officers of different rank is the enforced
protocol of behavior. Java interfaces are analogous to such protocols; they provide an agreed-
upon behavior between objects of different types or of the same type.

nOTe
Other object-oriented languages also provide the functionality of
Java’s interfaces. For example, C++ provides an equivalent interface
through its declaration of abstract base classes; Objective-C provides
similar functionality through its protocols, and so on.

136 Java Programming

Interfaces may be considered a standard framework for accessing classes. They provide a
separation between behavior and implementation. We will cover this point in more depth when
we discuss a concrete, real-life example in the next section.

TIp
Object-oriented languages have a concept of composition, where an
object of a different type is composed within another object by holding
a reference to the other object. Interfaces allow a kind of behavioral
composition with the restriction that they do not allow the classes that
implement them to inherit implementation from multiple classes. Both
composition and inheritance allow you to place other objects inside
your new class. Composition does this explicitly whereas inheritance
does it implicitly. Composition is used when you want the features of
an existing class inside your new class but not its interface. To do this,
you embed private objects of existing classes inside your new class.

So what does an interface look like? An interface has a structure similar to a class. It contains
methods and fields. However, none of the methods of an interface can contain implementation
code, and all fields must be declared final. Therefore, the methods defined in an interface provide
only the signatures, and all the fields are program constants. You need to define a class in your
program that provides the implementations of the methods declared in an interface. A class can
implement multiple interfaces, and an interface can have multiple super-interfaces. You will learn
more about this as you continue reading this section.

Although there seems to be a lot of similarity between interfaces and multiple inheritance,
there are some subtle important differences:

A class can inherit the fields of a superclass, but it inherits only the constants from an ■■
interface (note that an interface does not allow field declarations).

A class can inherit method implementations from a superclass, but it cannot inherit ■
method implementations from an interface because there are none in an interface.

In the case of multiple inheritance, all involved classes in the hierarchy are somehow ■■
related to each other; in the case of interfaces, the classes that implement them may or
may not be related through the class hierarchy.

Now that you know what an interface is, the next question is where to use it. Therefore, let’s
discuss the various uses of an interface:

Interfaces are useful in capturing similarities between unrelated classes without the ■■
need to force a relationship between them in the class hierarchy. Think of an employee
class and a Stock class—both require a print functionality whereby the user can print its
description. Thus, we could create an interface called printable that has a print method
(besides other methods for the printer, page settings, and so on). Both the employee and
Stock classes will implement this printable interface to provide a common functionality,
but otherwise the classes are unrelated.

Interfaces allow you to define behavior that one or more classes are expected to implement. ■
In the printable interface example, print, pageSetting, printerSetting, and so on, would be
the methods of the printable interface that define the behavior for various classes.

Chapter 6: Static Modifier and Interfaces 137

Interfaces allow you to hide the implementation details of an object. For example, as ■■
discussed earlier, to drive a car, you need not be concerned with how the fuel is ignited
in the engine’s cylinders. Many times, you can provide anonymous objects to the user
by revealing only the object’s programming interface.

nOTe
All methods in an interface are public and abstract by default.
A method is said to be “abstract” when no implementation is
provided for it.

nOTe
Interfaces with no methods are known as marker interfaces. A known
example of this is the Serializable interface defined in the Java API.
To save an object to a file or to send it across a network connection,
the object’s class must implement this interface. The writeObject
method in the ObjectOutputStream class of the Java API accepts a
parameter of type Object, which is also an instance of Serializable.

A Real-life example of an Interface
Suppose you are asked to develop communication software such as an FTP (File Transfer Protocol)
or Telnet program that uses a modem. Your program must work with a variety of different modems.
Although all the modems provide the same functionality, their implementations are quite different.
Obviously, it would be inadvisable to create multiple versions of your application to interface with
each of the modems available on the market because the code maintenance and application
upgrades would be too much work. For this reason, you would develop an interface that specifies
the method signatures your application uses for interfacing with the modem. This would provide
a uniform programming interface to all the modems. This way, the application that uses a modem
would not break even if the implementations in the methods of the modem change in future.
Typically, you would have open, close, read, and write operations that your application would
invoke on a modem. Your interface would declare these methods as follows:

interface Modem {

 public boolean open();
 public boolean close();
 public int read ();
 public int write(byte[] buffer);
}

nOTe
This is an extremely simplified view of the kind of API a modem might
present. An interface for a modem in real life would have several
more methods.

138 Java Programming

You will provide different implementations for the methods declared in the Modem interface
for each of the supported modems.

To implement an interface, you use the following notation:

public class HayesModem implements Modem {

 public boolean open() {
 // implementation
 }
 public boolean close() {
 // implementation
 }
 public int read () {
 // implementation
 }
 public int write(byte[] buffer) {
 // implementation
 }
}

The class HayesModem declaration uses the implements keyword to implement the Modem
interface. In the class definition, you need to provide an implementation for each method defined
in the Modem interface.

nOTe
If you do not implement all the methods of the interface, the class
becomes abstract. Abstract classes are discussed later in this chapter.

To support another modem, you would create another class (say, IntelModem). You would
define this class as follows:

public class IntelModem implements Modem {

 public boolean open() {
 // implementation
 }
 public boolean close() {
 // implementation
 }
 public int read () {
 // implementation
 }
 public int write(byte[] buffer) {
 // implementation
 }
}

Chapter 6: Static Modifier and Interfaces 139

The method implementations in this class would be different from the implementations
provided in HayesModem class. Each implementation would be specific to the modem
manufacturer. Once you create such classes specific to each modem manufacturer, you can
develop your application software that interfaces easily with each of these modems. To use the
HayesModem class, you would use code similar to the following:

Modem modem = new HayesModem();
modem.open();
modem.write(buffer);
modem.read();
modem.close();

Note that you instantiate the HayesModem class and assign the object reference to a variable
of type Modem. Remember from earlier chapters that an object reference can be assigned to its
superclass without explicit typecasting. The Modem interface is a super-interface here. The
HayesModem class implements Modem and therefore the assignment of an object reference from
type HayesModem to the Modem interface is permitted.

Now, to interface your application with an Intel modem, you would use the following code:

Modem modem = new IntelModem();
modem.open();
modem.write(buffer);
modem.read();
modem.close();

The only difference between the earlier code and this code is in the class instantiation. In the
earlier case we use HayesModem and in the latter case we use IntelModem. The rest of the code
remains the same. This is the greatest advantage of creating interfaces—you don’t need to change
much of the code even when you change modems. This makes it easier to write an application
that works with a lot of different modems. Here, you can see that your initial concern for how to
provide a different implementation for each modem and yet maintaining a single interface to
access them is easily resolved using an interface.

understanding Interface Syntax
An interface uses syntax similar to that of a class declaration. The format of the interface syntax is
shown here:

Modifiers
opt

interface InterfaceName extends
opt
 InterfaceName(s){

 InterfaceBody

opt

}

A typical interface declaration looks like the following:

interface PrimaryColors {

 int RED = 0xFF0000;
 int GREEN = 0x00FF00;
 int BLUE = 0x0000FF;
}

140 Java Programming

The interface is defined using the interface keyword. The interface has a name that follows
the standard naming conventions for a class declaration. The Modifiers control its visibility,
which can be either public or default. Therefore, you either specify this field as public or none.
If you use a public modifier, you must put your interface definition in a separate compilation
unit (a .java file). As in the case of classes, a public access modifier allows the interface to be
accessed outside of the package in which it is declared.

nOTe
The Java Language Specifications lists the following values as the
allowed values for Modifiers—Annotation, public, protected, private,
abstract, static, and strictfp. The protected and private modifiers can
be applied only to member interfaces within a directly enclosing class
declaration. You learn more about this in Chapter 7.

The extends keyword has a similar meaning as in the case of a class declaration. An interface
may extend another interface. When an interface extends another interface, it adds a few more
constants and/or method declarations to the existing interface. However, it is not allowed to provide
an implementation for any of the new methods or the methods inherited from an existing interface.

CAuTIOn
Because none of the methods in an interface are implemented,
the interface itself is considered abstract by default. Because every
interface is implicitly abstract, the abstract modifier is obsolete and
should not be used in new programs.

In the interface body, you declare constants and method signatures. An interface is allowed to
declare constants but not variables. The declaration of a method signature in an interface is also
called abstract method declaration. Because these methods do not contain any implementation,
they are called abstract.

CAuTIOn
You cannot apply the following modifiers to the interface methods:
private, protected, transient, volatile, and synchronized.

understanding Interfaces Through an example
To illustrate how to declare and implement an interface, let’s look at a concrete example. Suppose
we are asked to represent different kinds of vehicles in our application software. A vehicle could
run on gasoline or electric batteries. Therefore, we will have two different classes of vehicles. Each
type would have its own fuel-efficiency measure. For gas vehicles, it is the gasoline consumed per
mile, and for electric vehicles it is the kilowatts (KW) of power consumed per mile. Because this is
common functionality and must be implemented by every type of car, including those that will
come on the market in the future, let’s create a standard interface that every vehicle will implement.
We’ll call this interface Mileageefficiency. Any vehicle that implements this interface will get a

Chapter 6: Static Modifier and Interfaces 141

standard set of methods for obtaining the vehicle’s efficiency. To keep things short and simple,
we’ll define this interface with a single method, as follows:

interface MileageEfficiency {

 public float getMilesPerGallon();
}

The GasVehicle and electricVehicle classes we will be writing shortly will implement this
interface and provide an appropriate implementation for its sole method—getMilesperGallon.
The complete program is given in Listing 6-5.

Listing 6-5 A Program Illustrating Interfaces

interface MileageEfficiency {

 public float getMilesPerGallon();
}

class GasVehicle implements MileageEfficiency {

 private float fuelConsumed;
 private float tripCounter;

 public float getMilesPerGallon() {
 return tripCounter / fuelConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 fuelConsumed = 8.5f;
 }
}

class ElectricVehicle implements MileageEfficiency {

 private float kwPowerConsumed;
 private float tripCounter;

 public float getMilesPerGallon() {
 return tripCounter / kwPowerConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 kwPowerConsumed = 5.6f;
 }
}

142 Java Programming

public class TestDrive {

 public static void main(String[] args) {
 GasVehicle gasolineVehicle = new GasVehicle();
 gasolineVehicle.makeTrip();
 System.out.printf(
 "Efficiency of Gas Vehicle (miles/gallon): %.02f%n",
 gasolineVehicle.getMilesPerGallon());
 ElectricVehicle electricVehicle = new ElectricVehicle();
 electricVehicle.makeTrip();
 System.out.printf(
 "Efficiency of Electric Vehicle (miles/kw): %.02f%n",
 electricVehicle.getMilesPerGallon());
 }
}

Both the GasVehicle and electricVehicle classes define the Mileageefficiency interface and
provide their own unique implementation for the method getMilesperGallon. Both classes also
define a method called makeTrip that records the fuel consumed and the distance traveled on a
trip. The TestDrive class defines a main function that creates an instance of both the vehicles,
makes a trip on each, and prints the fuel efficiency after the trip. When we run the program, we
see the following output:

Efficiency of Gas Vehicle (miles/gallon): 11.76
Efficiency of Electric Vehicle (miles/kw): 17.86

Note that the Mileageefficiency interface we have created can be applied to any other
vehicle type that may come in the future. You will see this when we create a hybrid vehicle
in the next section.

extending Interfaces
It is possible to extend an existing interface. The purpose behind doing so is to add more
declarations, both constants and methods, to an existing interface. This helps in not breaking
the existing applications that have implemented the earlier interface. We will now extend our
Mileageefficiency interface from the previous example to provide a new way to compute the
fuel efficiency of the newly introduced hybrid cars on the market that use both gasoline and
electric batteries. We define this new interface as follows:

interface ExtendedMileageEfficiency extends MileageEfficiency {

 public float getFuelEfficiency();
 public float getElectricEfficiency();
}

To extend an existing interface, we use the keyword extends, just the way we did for extending
class definitions. The interface declares two new methods: one for computing the fuel efficiency of
the car and the other one for the battery consumption. The getMilesperGallon method of the base
interface will have an altogether different implementation that uses these two efficiencies to return a
newly computed efficiency to the user. The declaration of the HybridVehicle class that implements
this interface and the test program that creates an instance of this hybrid car are given in Listing 6-6.

Chapter 6: Static Modifier and Interfaces 143

Listing 6-6 Modified Test Drive Program

interface MileageEfficiency {

 public float getMilesPerGallon();
}

interface ExtendedMileageEfficiency extends MileageEfficiency {

 public float getFuelEfficiency();

 public float getElectricEfficiency();
}

class GasVehicle implements MileageEfficiency {

 private float fuelConsumed;
 private float tripCounter;

 public float getMilesPerGallon() {
 return tripCounter / fuelConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 fuelConsumed = 8.5f;
 }
}

class ElectricVehicle implements MileageEfficiency {

 private float kwPowerConsumed;
 private float tripCounter;

 public float getMilesPerGallon() {
 return tripCounter / kwPowerConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 kwPowerConsumed = 5.6f;
 }
}

class HybridVehicle implements ExtendedMileageEfficiency {

144 Java Programming

 private float tripCounter;
 private float fuelConsumed;
 private float kwPowerConsumed;

 public float getFuelEfficiency() {
 return tripCounter / fuelConsumed;
 }

 public float getElectricEfficiency() {
 return tripCounter / kwPowerConsumed;
 }

 public float getMilesPerGallon() {
 return 0.8f * getFuelEfficiency() + 1.12f % getElectricEfficiency();
 }

 public void makeTrip() {
 tripCounter = 100;
 fuelConsumed = 4.1f;
 kwPowerConsumed = 3.4f;
 }
}

public class EnhancedTestDrive {

 public static void main(String[] args) {
 GasVehicle gasolineVehicle = new GasVehicle();
 gasolineVehicle.makeTrip();
 System.out.printf(
 "Efficiency of Gas Vehicle (miles/gallon): %.02f%n",
 gasolineVehicle.getMilesPerGallon());
 ElectricVehicle electricVehicle = new ElectricVehicle();
 electricVehicle.makeTrip();
 System.out.printf(
 "Efficiency of Electric Vehicle (miles/kw): %.02f%n",
 electricVehicle.getMilesPerGallon());
 HybridVehicle hybridVehicle = new HybridVehicle();
 hybridVehicle.makeTrip();
 System.out.printf(
 "Efficiency of hybrid Vehicle "
 + "(miles/EnergyConsumed): %.02f%n",
 hybridVehicle.getMilesPerGallon());
 }
}

The class HybridVehicle implements the newly declared interface extendedMileageefficiency
and provides the implementation of its two methods, along with the implementation of the
inherited getMilesperGallon method. The main method creates an instance of the hybrid vehicle,
makes a trip, and then prints the car’s efficiency.

Chapter 6: Static Modifier and Interfaces 145

nOTe
The actual computation of this hybrid efficiency would be more
complicated than the simplistic calculations made here to illustrate
the concept.

By this time, you have certainly started realizing (and appreciating) the use of interfaces. The
interface we initially created provided a standard notation to the developer to compute the fuel
efficiency of different types of cars. Later on, when the technology has been enhanced and new
types of cars are introduced on the market, we could extend our existing interface and yet retain
the same interface method getMilesperGallon to compute the efficiency of the new cars. For a
developer, the consistent interface he sees while writing an application is the greatest advantage
to using interfaces.

nOTe
An interface can extend another interface but it cannot implement
any interface.

Implementing Multiple Interfaces
In the previous section, we created a standard interface to get the fuel efficiency of a car. A car
has many such standard functions that could be defined in terms of interfaces. For example, we
could define interfaces for steering, braking, refilling, and so on. We’ll now create one such
interface for tracking the remaining battery life of electric and hybrid vehicles. Obviously, this
interface is of no use to a car that runs on gasoline. Therefore, only electric and hybrid cars will
implement our new interface. Let’s call this interface BatteryLifeTracker. The interface definition
is shown in the following code snippet:

interface BatteryLifeTracker {

 final int MAX_NUMBER_OF_RECHARGES = 300;

 public void chargeBattery();

 public int getRemainingLife();
}

The BatteryLifeTracker interface defines a constant that specifies the maximum number of times
the car battery can be charged. It also defines a standard interface method called chargeBattery that
increments the charge counter. The getRemainingLife method returns the number of times the
battery can still be charged before it is rendered useless.

Both electricVehicle and HybridVehicle classes implement this interface. The class
declaration now looks like this:

class ElectricVehicle implements MileageEfficiency, BatteryLifeTracker {

Note that the two interface names are separated with a comma. As a matter of fact, we could
have any number of interfaces listed here, each separated with a comma. For each interface, we
must implement all its methods within the class body.

146 Java Programming

Both electricVehicle and HybridVehicle now declare a static counter called numberOfRecharges
to keep record of how many times the battery has been charged:

private static int numberOfRecharges;

The implementations of the chargeBattery method in these classes simply increment this charge
count. The implementation of the getRemainingLife method returns the difference between the total
charge count and the number of times the battery has been charged so far. The main method prints
this useful battery life information for both the cars. The complete program is given in Listing 6-7.

Listing 6-7 Implementing Multiple Interfaces

interface MileageEfficiency {

 public float getMilesPerGallon();
}

interface ExtendedMileageEfficiency extends MileageEfficiency {

 public float getFuelEfficiency();

 public float getElectricEfficiency();
}

interface BatteryLifeTracker {

 final int MAX_NUMBER_OF_RECHARGES = 300;

 public void chargeBattery();

 public int getRemainingLife();
}

class GasVehicle implements MileageEfficiency {

 private float fuelConsumed;
 private float tripCounter;

 public float getMilesPerGallon() {
 return tripCounter / fuelConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 fuelConsumed = 8.5f;
 }
}

class ElectricVehicle implements MileageEfficiency, BatteryLifeTracker {

Chapter 6: Static Modifier and Interfaces 147

 private float kwPowerConsumed;
 private float tripCounter;
 private static int numberOfRecharges;

 public float getMilesPerGallon() {
 return tripCounter / kwPowerConsumed;
 }

 public void makeTrip() {
 tripCounter = 100;
 kwPowerConsumed = 5.6f;
 }

 public void chargeBattery() {
 numberOfRecharges++;
 }

 public int getRemainingLife() {
 return MAX_NUMBER_OF_RECHARGES - numberOfRecharges;
 }
}

class HybridVehicle implements ExtendedMileageEfficiency, BatteryLifeTracker {

 private float tripCounter;
 private float fuelConsumed;
 private float kWPowerConsumed;
 private static int noOfRecharges;

 public float getFuelEfficiency() {
 return tripCounter / fuelConsumed;
 }

 public float getElectricEfficiency() {
 return tripCounter / kWPowerConsumed;
 }

 public float getMilesPerGallon() {
 return 0.8f * getFuelEfficiency() + 1.12f % getElectricEfficiency();
 }

 public void makeTrip() {
 tripCounter = 100;
 fuelConsumed = 4.1f;
 kWPowerConsumed = 3.4f;
 }

 public void chargeBattery() {
 noOfRecharges++;
 }

148 Java Programming

 public int getRemainingLife() {
 return MAX_NUMBER_OF_RECHARGES - noOfRecharges;
 }
}

public class FurtherEnhancedTestDrive {

 public static void main(String[] args) {
 GasVehicle gasolineVehicle = new GasVehicle();
 gasolineVehicle.makeTrip();
 System.out.printf(
 "Efficiency of Gas Vehicle (miles/gallon): %.02f%n",
 gasolineVehicle.getMilesPerGallon());

 ElectricVehicle electricVehicle = new ElectricVehicle();
 electricVehicle.makeTrip();
 System.out.printf(
 "%nEfficiency of Electric Vehicle (miles/kw): %.02f%n",
 electricVehicle.getMilesPerGallon());
 for (int i = 0; i < 78; i++) {
 electricVehicle.chargeBattery();
 }
 System.out.printf("The battery can be charged %d more times%n",
 electricVehicle.getRemainingLife());

 HybridVehicle hybridVehicle = new HybridVehicle();
 hybridVehicle.makeTrip();
 System.out.printf(
 "%nEfficiency of hybrid Vehicle "
 + "(miles/EnergyConsumed): %.02f%n",
 hybridVehicle.getMilesPerGallon());
 for (int i = 0; i < 15; i++) {
 hybridVehicle.chargeBattery();
 }
 System.out.printf(
 "The battery can be charged %d more times%n",
 hybridVehicle.getRemainingLife());
 }
}

When we run the program, the following output is produced:

Efficiency of Gas Vehicle (miles/gallon): 11.76

Efficiency of Electric Vehicle (miles/kw): 17.86
The battery can be charged 222 more times

Efficiency of hybrid Vehicle (miles/EnergyConsumed): 20.63
The battery can be charged 285 more times

Chapter 6: Static Modifier and Interfaces 149

Combining Interfaces
Java does not allow you to extend a class from more than one class. However, you can create an
interface that extends one or more interfaces. For example, we could add a new interface that
provides a method for computing the efficiency of a car irrespective of whether it runs on gasoline
or a battery. Such an interface is declared as follows:

interface EfficiencyCalc extends MileageEfficiency, BatteryLifeTracker {

 public float getCarEfficiency();
}

Any class that implements efficiencyCalc has to provide the implementation not only for
the getCarefficiency method but also for all the inherited methods of Mileageefficiency and
BatteryLifeTracker. Implementing multiple interfaces like this allows them to inherit the behavioral
protocols of the parent interfaces.

A Few Important points on Interfaces
Here are a few important points you should keep in mind concerning interfaces:

An interface is very similar to a class, except that it can have only fields that are implicitly ■■
public and static and method declarations that are implicitly public and abstract.

The Java API documentation lists interfaces like classes. ■

The interfaces compile to a .class file and get loaded by the same process that loads classes. ■

You can create a reference variable whose type is the interface name. Only the methods ■
defined in an interface will be visible through this reference.

Any constants defined by an interface can be accessed without a prefix from code within ■■
the class because implementing the interface makes them part of the implementing class.

Abstract Classes
For an interface containing several methods, a developer can provide the implementation for some
of the methods in a class that implements the interface. However, the developer may not be in a
position to implement all the methods of the interface and might leave that task to a colleague or
senior developer to perform at a later time. In such a case, compiling the class would result in
compile-time errors. This situation can be remedied by declaring the class as abstract, and you
create an abstract class using the abstract keyword.

Let’s consider the case where a developer implementing our HybridVehicle class does not know
the implementation of the getMilesperGallon method, which requires a few computations that may
not be known at the time of code development. In such a situation, the developer can provide the
implementation of all other methods of the two interfaces, except for the getMilesperGallon method.
The class HybridVehicle must now be declared abstract, as follows:

abstract class HybridVehicle
 implements ExtendedMileageEfficiency, BatteryLifeTracker {

150 Java Programming

The code will now compile; however, the developer will not be able to create an instance
of HybridVehicle anywhere in the program. To create an instance of HybridVehicle, he will
probably extend this class further and provide the implementation of the getMilesperGallon
method in the new class.

A typical use of abstract classes is seen in our earlier example of the Modem interface. In the
Modem interface, we declared four methods: open, close, read, and write. We could add one
more method called init to this interface. The purpose of the init method, as the name suggests,
is to initialize the modem. The new interface is shown in the following code snippet:

interface Modem {

 public boolean open();
 public boolean close();
 public int read ();
 public int write(byte[] buffer);
 public void init();
}

Because the implementation of the read and write methods is mostly the same for all the
modems, we can provide these implementations for the benefit of modem manufacturers. However,
the implementation of the open, close, and init methods will differ for each manufacturer. In
particular, the init method that initializes the modem hardware will surely vary from manufacturer
to manufacturer. Therefore, we may create a new class, AbstractModem, that provides the
implementation of the Modem interface except for the implementations of open, close, and init
methods. This class must be declared abstract because it does not provide the implementations of
all the methods of the implementing interface. The class definition is shown here:

abstract class AbstractModem implements Modem {

 public int read() {
 int bytesRead = 0;
 // some implementation
 return bytesRead;
 }

 public int write (String buffer) {
 int bytesWritten = 0;
 // some implementation
 return bytesWritten;
 }
}

Thus, the abstract classes allow you to provide the partial implementation of the implementing
interface and leave the rest of the implementation to another developer. Because the abstract class
has some missing implementation, an abstract class cannot be instantiated. The following statement
would generate a compile-time error:

Modem modem = new AbstractModem(); // generates compile-time error

Chapter 6: Static Modifier and Interfaces 151

nOTe
An interface is abstract by nature because all its methods are abstract.
Some people think of an abstract class as a mixture of a concrete class
and an interface. Some people prefer using abstract classes as a way
of defining a behavioral protocol for interfaces.

nOTe
Abstract classes cannot be instantiated, but they can be subclassed.

Here are some important differences between an interface and an abstract class:

An interface contains only the method signatures whereas an abstract class may have ■■
some of its methods implemented.

All of an interface’s methods are public by default. You cannot apply any other access ■
modifiers to the methods declared in an interface. In an abstract class, the implemented
methods can have access modifiers applied to them in their declarations. For this,
the methods have to be public in an interface. Declaring them protected or private
would result in an error. In an abstract class, you can apply a protected modifier to an
implemented method but you cannot make it private.

An interface can extend multiple interfaces. An abstract class cannot be extended from ■
more than one abstract class.

All methods in an interface are implicitly abstract. An abstract class may have a few ■
concrete methods.

An interface does not have a constructor. An abstract class may declare a constructor.■■

Summary
This chapter covered several important features of class declarations in Java. You saw the use
of the static keyword in classes. The static keyword can be applied to methods and fields of
a class. A method that is declared static can be invoked without the enclosing class being
instantiated. A static field behaves like a program constant.

Java provides interfaces to incorporate the benefits offered by multiple inheritance in other
languages. An interface consists of method signatures (with no implementations) and only final
variables. A class uses an interface with the help of an implements keyword. The implementing
class must provide implementation for all methods of the implemented interface; otherwise, the
class becomes abstract. An interface can extend another interface. A class may implement
multiple interfaces.

An abstract class implements some of the methods of the interface it inherits. An abstract class
cannot be instantiated; however, another class can extend it. You create abstract classes when you
do not know the implementation of some of the interface methods at the time of development.

In the next chapter, we define and use an inner class and discuss the many aspects of it.

Chapter
7

Nested Classes

153

154 Java Programming

n the previous chapter we covered the use of static fields, methods, and
initializers. You learned an important feature of Java language—the interfaces.
In this chapter, you will learn another powerful feature of classes—that is, nested
or inner classes. As the name suggests, you can embed a class declaration within
another class. This gives you the power to hide your classes within an outer class.

Embedding a class within another class has many more repercussions than simply hiding it from
the outside world. An inner class may be declared not just within a class definition, but also
within a method of a class or even in the parameter to a method. Such classes can also be
anonymous. Given these possible combinations, it becomes a challenge to define the visibility
rules for various identifiers included in such classes. Fortunately, you do not have to define these
rules; the creators of Java have already done that. You simply need to learn the various rules, and
that’s what you will be doing in this chapter.

In particular, you will learn about the following:

Nested (inner) classes■■

Local classes ■

Anonymous classes■■

Nested Classes
So far in this book, you have seen several examples of class declarations. We have defined fields
and methods within a class declaration. So how about declaring a class within another class? Java
allows us to have such a declaration. A class defined within another class is called a nested class.
Why would you declare a nested class? There is more than one reason to do so, as we will
discuss shortly. But first, here is the structure of the nested inner class declaration:

class OuterClass {

 ...
 static class StaticNestedClass {

 ...
 }
 class InnerClass {

 ...
 }
}

The OuterClass defines two inner classes: StaticNestedClass and InnerClass. The
StaticNestedClass is declared with the static modifier, whereas the InnerClass is nonstatic.
You learned the use of the static keyword in the previous chapter. The static and nonstatic inner
classes have different significance and are therefore categorized separately. Two additional types
of inner classes are local and anonymous. You will learn about all these different types of inner
classes as you read this chapter. First, though, we’ll discuss the purpose of using nested classes.

I

Chapter 7: Nested Classes 155

Why Use Nested Classes?
There are several compelling reasons for using nested classes:

They allow logical groupings of related classes.■■

They provide increased encapsulation. ■

They lead to more readable and maintainable code.■■

Sometimes a class may be useful to only one other class. A typical example of this is the
event listener classes defined in Java for its GUI components (the event listener classes are dealt
with in greater detail in Chapter 13). For instance, let’s say you use a command button in several
applications. When the user clicks the button, the application executes a certain piece of code
specific to that application. You may now declare a class that defines a method to process the
click action initiated by the user. As such, a class may not have any significance outside the
declaring class and therefore may be declared “inner.” As another example, suppose that you are
required to filter out all the odd numbers in a randomly generated array of integers. This filtering
may be done on several random arrays. In such a situation, you would create a class that defines
filtering methods. Such a class would have not much value outside the class that creates random
arrays—meaning that it is not really reusable outside the random array-generation class. This
filtering class would be an ideal candidate for creating an inner class. (We create this filtering
class in the next section.)

The second useful benefit of creating nested classes is that it allows increased encapsulation.
Consider that the HayesModem class from Chapter 6 is required to create an object for processing
the internal read buffer. If you create a class outside the definition of HayesModem, you would
need to provide the getter/setter methods on the read buffer attribute of the HayesModem class,
making it accessible to the other code in the application. You may not want to do this—that is, to
expose the private read buffer to the outside code. Therefore, you could create an inner class within
the definition of the HayesModem class. This class would have access to all the private members of
the HayesModem class, thus keeping them protected from exposure to the outside world. This inner
class may also be declared private to hide it from the outside world. As you can see, this increases
encapsulation—the data and the methods that operate on them are kept together.

Lastly, the use of inner classes make the code more readable and maintainable. Just imagine if
the event listener and the filtering classes we just discussed were declared as outside classes. In
this case, the definitions of these classes could be made anywhere in the project, and the project
itself may consist of hundreds of Java files. Thus, you could easily get lost in searching for class
definitions in a large project. Creating and keeping these classes embedded in a top-level class
where they are used makes the code more readable and maintainable.

Classifications of Nested Classes
The nested classes are classified as follows:

static■■

nonstatic (or inner) ■

local■■

anonymous■■

156 Java Programming

To create a static nested class, you use the static keyword in front of the class declaration,
the same way you declare a static field or a method within the enclosing class. Just like a static
method cannot refer to the nonstatic members of the enclosing class, a static inner class cannot
refer to the nonstatic members of its enclosing class. To refer to the nonstatic members, it has to
use an object reference to the enclosing class. To access a static nested class, you need to use its
fully qualified name, using the syntax OuterClassName.StaticNestedClassName. To create an
object of a static nested class, use the following syntax:

OuterClassName.StaticNestedClassName ClassObjectName =
 new OuterClassName.StaticNestedClassName();

From this syntax, you can see that a static nested class is just like any other top-level class.
It is simply nested in another top-level class for packaging convenience.

As mentioned earlier, the nonstatic nested classes are also called inner classes. An inner class
is associated with an instance of its enclosing class. It has direct access to the outer class’s fields
and methods. An inner class cannot define any static members because it is always associated with
an instance. An instance of an inner class can exist only within an instance of its outer class. You
may create multiple instances of the same inner class within a single instance of the enclosing
class. To create an instance of the inner class, you must have an object of the outer class. The
following code snippet illustrates this:

InnerOddsIterator iterator = this.new InnerOddsIterator();
while (iterator.hasNext()) {
 int returnValue = iterator.getNext();

This code snippet is taken from the program we will discuss later in this section. The
InnerOddsIterator class is an inner class. To create an instance of this class, we use the call
this.new, where this refers to the instance of the current class. The new keyword instantiates the
class specified on its right side. The reference to the instance of the inner class is held in the
iterator variable. We will use this variable to access the members of the inner class. Both hasNext
and getNext are the methods of this inner class.

The last two types of nested classes—that is, local and anonymous—fall under the category of
inner classes. An inner class defined within the body of a method is called a local inner or simply
a local class. The scope of a local class is restricted to the method’s scope. An anonymous inner
class is an inner class declared within the body of a method without a name given to it. You will
use anonymous classes while studying the building of a GUI in Chapter 13.

Now that you have seen the benefits of using inner classes and their classifications, let’s look
at a concrete example of using inner classes.

Demonstrating the Use of Inner Classes
Suppose you are required to create an application that generates a random list of odd numbers.
The list itself should consist of a random number of entries. For this, you will first generate a fixed
number of integers. You will then iterate through these entries to filter out only the odd numbers.
You would define this filtering functionality in an inner class because this functionality would be
of little use outside the scope of the current application. The purpose of declaring a class rather
than a method is the ability to use this class for creating multiple lists within the application. The
complete program for generating a random list of odd numbers is given in Listing 7-1.

Chapter 7: Nested Classes 157

Listing 7-1 A Filtering Program That Uses an Inner Class

public class DynamicOddsGenerator {

 private final static int SIZE = 25;
 private int[] arrayOfInts = new int[SIZE];

 public DynamicOddsGenerator() {
 for (int i = 0; i < SIZE; i++) {
 arrayOfInts[i] = (int) (Math.random() * SIZE);
 }
 }

 public void printOdds() {
 InnerOddsIterator iterator = this.new InnerOddsIterator();
 while (iterator.hasNext()) {
 int returnValue = iterator.getNext();
 if (returnValue != -1) {
 System.out.print(returnValue + " ");
 }
 }
 System.out.println();
 }

 //inner class implements the Iterator pattern
 private class InnerOddsIterator {

 private int next = 0;

 public boolean hasNext() {
 return (next <= SIZE - 1);
 }

 public int getNext() {
 int retValue = arrayOfInts[next++];
 if (retValue % 2 == 1) {
 return retValue;
 }
 return -1;
 }
 }

 public static void main(String s[]) {
 DynamicOddsGenerator numbers = new DynamicOddsGenerator();
 numbers.printOdds();
 }
}

158 Java Programming

The program first declares an array of 25 integers:

private final static int SIZE = 25;
private int[] arrayOfInts = new int[SIZE];

The constructor fills this array with randomly generated numbers:

for (int i = 0; i < SIZE; i++) {
 arrayOfInts[i] = (int) (Math.random() * SIZE);
}

Some of the numbers in the array will be odd and some will be even. The printOdds method
prints all the odd numbers stored in this array. The method first creates an instance of an inner
class that provides this filtering functionality:

InnerOddsIterator iterator = this.new InnerOddsIterator();

The InnerOddsIterator is an inner class that implements the Iterator design pattern and
provides the hasNext and getNext methods. The hasNext method checks whether you have
reached the end of the list and thus is used in the loop termination condition:

while (iterator.hasNext()) {

NOTe
Iterator is one of the patterns defined in Design Patterns: Elements
of Reusable Object-Oriented Software, by the “Gang of Four”: Erich
Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides).

The getNext method returns the number only if it is odd; otherwise, it returns –1:

int returnValue = iterator.getNext();
if (returnValue != -1) {
 System.out.print(returnValue + " ");
}

The InnerOddsIterator class is declared with a private modifier with the intention of keeping
it totally private to the enclosing class:

private class InnerOddsIterator {

TIp
Generally, you will not declare the inner classes public unless you
really find a valid reason for using an object of an inner class outside
the scope of the enclosing class.

NOTe
An inner class is just a member of an outer class and therefore can be
declared private, public, protected, or package private (default). An
outer class can only be declared public or package private. The same
rules apply to the declaration of interfaces, as you learned in Chapter 6.

Chapter 7: Nested Classes 159

The inner class declares a private field called next:

private int next = 0;

The hasNext method returns the next index in the array provided you have not crossed the
limits of the array:

public boolean hasNext() {
 return (next <= SIZE - 1);
}

The getNext method checks whether the element value at the current index is an odd number.
If so, it returns this number; otherwise, it returns –1 to the caller. Note that SIZe is a static constant
defined in the outer class and is accessed within the body of the inner class.

The main method defined in the outer class simply instantiates it and invokes the printOdds
method on it:

DynamicOddsGenerator numbers = new DynamicOddsGenerator();
numbers.printOdds();

Some typical output is shown here:

1 19 11 13 19 7 5 15 13 23 5

Note that every time you run the program, you will get a different list of odd numbers. The
number of generated entries will also vary on each run.

NOTe
Inner classes were added in JDK1.1.

Accessing an Inner Class from the Outside
If an inner class is declared with a public access modifier, it can be instantiated from outside the
scope of its enclosing class. This is illustrated in the program shown in Listing 7-2.

Listing 7-2 A Program Illustrating Inner Class Visibility

class Outer {

 private int counter=0;
 public class Inner {

 public void someMethod() {
 counter++;
 }
 }

160 Java Programming

 public int getCount(){
 return counter;
 }
}
public class InnerClassExample {

 public static void main (String[] args) {
 Outer outer = new Outer();
 Outer.Inner inner = outer.new Inner();
 inner.someMethod();
 System.out.println ("Counter: " + outer.getCount());
 inner.someMethod();
 System.out.println ("Counter: " + outer.getCount());
 }
}

In the application’s main method, the program creates an instance of the Outer class. To create
an instance of the Inner class that is embedded in the definition of the Outer class, you use the
following statement:

Outer.Inner inner = outer.new Inner();

Note that this statement uses the following syntax for a fully qualified name to create a variable
of the Inner class type:

OuterClassName.InnerClassName

The new operator creates an instance of the Inner class. Once the program obtains an instance
of the Inner class, it calls its someMethod twice and prints the value of the private variable counter
in each case. Because a private variable cannot be accessed directly from outside the scope of the
declaring class, the program uses the public getCount method to access this variable. If you run this
application, you will see the following output:

Counter: 1
Counter: 2

Note that the value of the counter variable changes after each invocation of someMethod.

Accessing Shadowed Variables
When a variable declared within a certain scope (block, method, or inner class) has the same
name as a variable declared in an outer scope, we say that the outer variable is shadowed. An
inner class may declare a variable having the same name as the one defined in the outer class.
The program in Listing 7-3 shows you how to differentiate between the shadowed and the
original variables.

Chapter 7: Nested Classes 161

Listing 7-3 A Program Illustrating Shadowed Variables in Inner Classes

class Outer {

 private int size = 10;
 public class Inner {

 private int size=20;
 public void someMethod (int size) {
 System.out.println ("Method parameter (size): " + size);
 System.out.println ("Inner size: " + this.size);
 System.out.println ("Outer size: " + Outer.this.size);
 }
 }
}
public class ShadowedVariableExample {

 public static void main (String[] args) {
 Outer outer = new Outer();
 Outer.Inner inner = outer.new Inner();
 inner.someMethod(5);
 }
}

The Outer class declares a field called size. The Inner class declares a field with the same
name. The Inner class defines a method called someMethod. This method takes a local parameter
having the name size. In the method implementation, we now have to differentiate between these
three variables having the same name size. If you use the field name size as is, without any qualifier,
as shown in the following statement, it will refer to the method argument:

System.out.println ("Method parameter (size): " + size);

If you use the qualifier this in front of the field name, it refers to the field declared in the
current class field, as shown in the statement here:

System.out.println ("Inner size: " + this.size);

To access the size variable declared in the Outer class, you need to use the notation
Outer.this.size. This is shown in the following program statement:

System.out.println ("Outer size: " + Outer.this.size);

To verify these statements, in the application’s main method, we invoke the someMethod
method of the Inner class. The program output is shown here:

Method parameter (size): 5
Inner size: 20
Outer size: 10

You can compare the output with the values assigned to the three variables in the program code.

162 Java Programming

Important points to Note
Here’s a summary of some important points on the use of inner classes:

The name of the inner class must differ from the name of its enclosing outer class.■■

When you compile the outer class, the compiler generates a separate .class file for each ■
of its inner classes. The name of the .class file is OuterClassName$InnerClassName.

The inner class can use both the class and instance variables of enclosing classes and ■
local variables of enclosing blocks.

The inner class may be declared using any of the available access modifiers. A private ■
inner class can only be accessed within the outer class scope.

An inner class can be an interface. Another inner class then implements this interface. ■

An inner class can be abstract. ■

An inner class that is declared ■ static automatically becomes a TopLevel class.

You cannot declare a ■ static member inside an inner class unless the inner class itself is
declared static.

An inner class that wants to use a static variable must be declared ■ static.

The ■■ static keyword can be applied to an inner class and not to an outer class.

Member Classes
A nonstatic class defined within a class is called a member class of the enclosing class. A member
class is commonly used as a helper class to the enclosing class. A member class can access the
instance fields of the enclosing class, whereas a nested top-level class cannot do so. To refresh
your memory, a nested top-level class is an inner class declared with a static modifier. Therefore,
if you want objects of an inner class to have access to the fields of the enclosing class, you will
declare it as a member class rather than as a nested top-level class. All objects of a member class
will have access to the same field of the enclosing class.

Here are the main features of member classes:

Every instance of a member class is internally associated with an instance of its outer class.■■

The methods of a member class can implicitly refer to the fields defined by the enclosing ■■
class, including those that are declared private.

Local Classes
A class declared within a block of Java code is called a local class. Typically, such a block would
be a method, but local classes may also be declared within static initializers and constructors of a
class. A local class declared within the constructor of the enclosing class is shown in Listing 7-4.

Chapter 7: Nested Classes 163

Listing 7-4 A Program Demonstrating Local Class Declarations

public class OuterClass {

 public OuterClass() {
 class Local {

 public Local() {
 // local class constructor code here
 }
 }
 new Local();
 }

 public void instanceMethod() {
 new OuterClass();
 }
}

The constructor instantiates the Local class and uses this object within its scope. The
instanceMethod is the member method of the OuterClass that creates an instance of it. During
this instantiation, a copy of the Local object would be created within the scope of the constructor.

Defining an Inner Class within Method Scope
The inner class may also be defined within a method. In this case, the visibility of the inner class
is restricted to the method scope. The use of an inner class declaration within a method body is
illustrated with a trivial example in Listing 7-5.

NOTe
The classic example of using inner classes within a method is
the implementation of event listeners. GUI building is discussed
in Chapter 13, where we’ll discuss a practical use of the inner
anonymous classes within a method declaration.

Listing 7-5 Declaring Inner Classes Inside a Method

class Outer {

 private int a = 20;
 public void someMethod(final int b) {
 class Inner {

164 Java Programming

 int c = 30;
 public void innerMethod() {
 System.out.println("Formal parameter (B): " + b);
 System.out.println("Outer Class variable (A): " + a);
 System.out.println("Inner Class variable (C): " + c);
 }
 }
 new Inner().innerMethod();
 }
}
public class InnerClassWithinMethodExample {

 public static void main(String[] args) {
 Outer outer = new Outer();
 outer.someMethod(10);
 }
}

The Outer class defines a method called someMethod that takes a parameter of type int.
Within the method body, we declare an inner class called Inner. The inner class declares a local
variable, c, and defines a method called innerMethod. The method implementation accesses the
formal parameter passed to the enclosing method and also the variables declared in the Outer
and Inner classes. The main method of the application creates an instance of the Outer class and
calls someMethod on it. someMethod in turn creates an Inner object and calls the method
innerMethod on it. This outputs the three values, shown next, on the screen:

Formal parameter (B): 10
Outer Class variable (A): 20
Inner Class variable (C): 30

Note that the formal parameter to someMethod is declared using the final qualifier. An inner
class can access the formal parameter only if it is declared final.

CAUTION
A compile-time error is generated if a method within an inner class
defined in the method body tries to access a formal method parameter
that is not declared final. This is required to ensure that the method is
not allowed to modify the value of the variable specified in the formal
parameter.

A Few Important points on Local Classes
Here’s a list of the important features of local classes:

A local class is only visible and usable within the block of code in which it is defined.■■

In addition to accessing fields defined by the containing class, local classes can access ■
any local variables, method parameters, or exception parameters that are in the scope of
the local method definition, provided they are declared with the final specifier.

Chapter 7: Nested Classes 165

Local classes cannot use the ■ new and super keywords.

Local classes cannot contain fields, methods, or classes that are declared ■ static. Because
nested interfaces are implicitly static, local classes may not contain nested interface
definitions.

Local classes cannot be declared with the modifiers ■ public, protected, private, and static.
These modifiers are used only on members of classes and are not allowed on local class
declarations.

A local class cannot have the same name as any of its enclosing classes. ■

Interfaces cannot be defined locally. ■

A local class can use any ■■ final local variables or method parameters that are visible from
the scope in which they are defined.

Anonymous Classes
A local class without a name is called an anonymous class. If you need only a single instance of
a local class, you will create an anonymous class. Typically, a local class has a name and thus a
declaration. You instantiate this class using its name. This process is meaningful if you are going
to make multiple objects of the class. For a single object, you need not name the class. A typical
use of this is found in the implementation of event listener methods in Chapter 16. To give you
an idea of how it looks, consider the following code fragment:

button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 System.out.println("The button was pressed!");
 }
});

Here, ActionListener is an interface that declares a sole method called actionperformed.
We create a new object of an anonymous class that implements the ActionListener interface. The
object of this anonymous class is passed as a parameter to the addActionListener method on the
button object.

Another classic example of the use of anonymous classes involves creating threads. The
following small code snippet demonstrates this:

new Thread(new Runnable() {

 public void run() {
 try {
 while (true) {
 sleep(1000); System.out.print(".");
 }
 } catch(InterruptedException ex) {}
 }
}).start();

166 Java Programming

Here, we create an object of an anonymous class that implements the Runnable interface.
The Runnable interface has a sole method called run that is implemented in the preceding code.
The new Thread code creates a Thread object by taking the previously created anonymous object
as a parameter. Rather than assigning the created Thread object to a variable, we directly invoke
its start method, and in this particular case we do not need to refer to the created Thread object
further in our program code. Thread programming is covered in depth in Chapter 17.

Another classic example of the use of anonymous classes is in Java’s Collection Framework,
which is covered in more detail in Chapter 16. The following example shows how to use a Vector
for storing a list of friends:

Vector friendsList = new Vector(4) { // defining anonymous inner class
 {
 add("Sam");
 add("Smith");
 add("Anthony");
 add("Lisa”);
 }
};

And here is one more example of the use of anonymous classes. The program in Listing 7-6
lists all the .txt files in the folder specified on the command line. You learn file handling in more
detail in Chapter 9 and Chapter 10. Right now, however, simply examine how the anonymous
class based on the implementation of the FilenameFilter interface is used.

Listing 7-6 A Program Demonstrating the FileNameFilter Inner Class

import java.io.*;

public class FileNameFilterExample {

 public static void main(String[] args) {
 File folder = new File(args[0]);
 String[] list = folder.list(new FilenameFilter() {

 public boolean accept(File folder, String fileName) {
 return fileName.endsWith(".txt");
 }
 });
 for (int i = 0; i < list.length; i++) {
 System.out.println(list[i]);
 }
 }
}

CAUTION
An important point to note in the creation of anonymous classes is
that generally they should not be overly complex. If they are, they will
clutter the enclosing class, making the code unreadable. So use them
judicially and only for small definitions.

Chapter 7: Nested Classes 167

Creating Anonymous Classes
In the previous section, you saw a few examples of how to use anonymous classes. Here is the
syntax for creating them:

new ClassName(ArgumentList
opt
){

 classBody
opt

}

or

new interfaceName(){

 interfaceBody
opt

}

NOTe
Anonymous classes cannot define constructors because they do not
have names.

Restrictions on the Use of Anonymous Classes
Here are the restrictions that apply to the use of anonymous classes:

An anonymous class cannot have a constructor because there is no name associated ■■
with it.

An anonymous class cannot define static fields, methods, or classes. ■

You cannot define nested interfaces in an anonymous class because these interfaces are ■
implicitly static.

You cannot define an interface anonymously. ■

Like local classes, anonymous classes cannot be made ■■ public, private, protected, or
static. In fact, in the definition of the anonymous class syntax, there is no provision for
specifying any modifiers in their declarations.

Compiled Anonymous Classes
Given that an anonymous class does not have a name, what is the name assigned to its .class file?
The compiler produces two files when you compile a class containing an anonymous class. These
are named EnclosingClassName.class and EnclosingClassName$1.class. In the case of having more
than one anonymous class in the same enclosing class, the compiler produces the corresponding
.class files for each anonymous class by assigning a unique number to it after the $ sign.

168 Java Programming

Guidelines on Using Anonymous Classes
Finally, here are some tips on where to use local classes and where to use anonymous classes.
In general, you should consider using an anonymous class instead of a local class under the
following conditions:

The class has a very short body.■■

Only one instance of the class is needed. ■

The class is used right after it is defined. ■

The name of the class does not make the code any easier to understand.■■

Summary
A class definition may be embedded within another class. Such a class is called an inner class.
An inner class can access the variables defined in its enclosing outer class. An inner class may
be defined within the body of a class method. The rules on the use of inner classes were
discussed in this chapter.

Local classes are declared within a block of code and are visible only within that block, just
as any other method variable. A local class without a name is called an anonymous class. An
anonymous class is used when only a single instance of a class is required, and it also makes
code more readable.

In the next chapter, you learn how to handle compile-time and runtime errors in your program.

Chapter
8

Exception Handling

169

170 Java Programming

ooking at Murphy’s Law, “If anything simply cannot go wrong, it will anyway,”
you know that you should always prepare yourself for the worst-case scenario.
Things don’t always turn out how you expect them to, and if anything can go
wrong, it probably will. When this happens in real life, there may not be a
remedial solution. Fortunately, in programming, if anything goes wrong, there is

always a remedial action for you to take—this is called exception handling. When something
goes wrong in your program, you say that an exception occurred. When you take a remedial
action on it, you say that you handled the exception. Here is a famous quote by Douglas Adams:

The major difference between a thing that might go wrong and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong, it
usually turns out to be impossible to get at or repair.

To substantiate this quote in this chapter on exception handling, let’s look at the most
infamous computer bug in history. Due to an error in the software design, Ariane 5 Flight 501,
which took place on June 4, 1996, failed within 40 seconds with a loss of a half-billion dollars.
The reason? A tiny software bug. It occurred due to an exception thrown by some code that had
originally been written for the earlier version of the rocket, Ariane 4. This particular routine,
which could not be taken out easily, was left running although it was not really needed during
flight. The code computed a big number that it tried to store in a short data type, causing an
overflow condition. The program did not have a handler to catch this situation. Even an empty
error handler would have probably saved the situation. But in the absence of an error handler,
the error propagated to the operating system, which terminated the program. Unfortunately, the
program was the guidance program for the rocket. All other computers on the flight had the
same code and all of them crashed. Without any guidance, the rocket destroyed itself, which it
was supposed to do in such a case.

From this story, you can certainly see the importance of exception handling. The proper use
of exception handling can answer three basic questions:

What went wrong?■■

Where did it go wrong? ■

Why did it go wrong?■■

The type of exception informs you of “what” went wrong. The exception stack trace tells you
“where,” and the exception message answers “why.” To make the best use of exceptions, you
need to follow three recommended rules:

Be specific.■■

Throw early. ■

Catch late.■■

As you read this chapter, you will learn the “what,” “where,” and “why” as well as the
importance of the three rules. So keep reading!

You have likely experienced errors while running many off-the-shelf applications on your
machine. When an application error occurs, probably the application terminates abnormally and
you have to redo everything you have done so far after restarting the application. An application
error may occur due to several conditions, some of which may be beyond your control. For
example, a network connection may get disrupted or a file that the application is trying to open

L

Chapter 8: Exception Handling 171

may not exist. The application may try to access an out-of-bounds memory location, or the .class
file the application needs may be missing. An application can fail under several such conditions.
This chapter teaches you the intricacies of exception handling.

In particular, you will learn the following:

What is meant by an exception■■

The ■ try/catch/finally constructs for catching and processing exceptions

Exception classifications ■

Throwing exceptions to the caller ■

Creating your own exception classes ■

Learning rules for exception declarations in overridden methods ■

Obtaining and analyzing the stack trace ■

Some guidelines for efficient exception processing■■

What Is an Exception?
When a running Java application fails, it creates an exception object encapsulating the error
condition and throws it back to the running code. The executing program can now introspect the
exception object, which is simply a Java object, to analyze the cause of the exception and take a
corrective action. If no corrective action is taken, the program may terminate abnormally. In a
multithreaded program, the thread that generated the unhandled exception may terminate while
the other threads in the application continue running.

Error Types
Errors may be classified as fatal or non-fatal. The fatal errors are the ones that need to be terminated
when the application cannot continue to function properly. These are sometimes also called hard
errors. A typical example of this type of error is OutOfMemoryError. This is a serious problem, and
application recovery in such a situation may not be viable. Generally, these types of fatal errors are
thrown by the methods of the Java API—or by the Java Virtual Machine itself.

The other types of errors, known as non-fatal, may not be so serious, and application recovery
in most cases is possible. As examples of this type of error condition, consider the case where your
application tries to open a file. If the file is not locatable, the application will allow you to reenter
the filename, along with the appropriate path, and reattempt to open the file. If the file is corrupted,
the program may give you an opportunity to open another copy or to open an altogether different
file. Consider another example: When you open a website in your browser, if the site is currently
unavailable, the browser allows you to open another site. One more example: If an application is
performing some mathematical computation on some input data and the data is out of range, the
application detects the condition during computation and allows you to reenter the data before
performing the computations one more time.

In all these cases, the error conditions do not cause the application to terminate. These are
aptly called non-fatal errors. They occur in a running application, and a corrective measure is
taken to prevent an application crash. There is another class of non-fatal errors that occur due to
mistakes made by a programmer. For example, a NullPointerException is a typical error that is
generated by error-ridden application code.

172 Java Programming

In this chapter, you learn the facilities provided in the Java programming language to capture
these non-fatal error conditions and take corrective actions. These types of errors are more often
called exceptions, and the corrective actions are referred to as exception handling.

The Non-fatal Errors
As you just learned, non-fatal errors are generally caused by inherent mistakes made by
programmers. We typically call these mistakes program bugs. Whatever you do, these non-fatal
errors or exceptions will always occur in your application—and when you least expect them.
Fortunately, Java provides a mechanism to take preventive action against such unforeseen errors.
Before I discuss this mechanism, let’s first look at why such errors occur in the first place and why
it is necessary to catch them. Consider an installer for a new software application. This new
software may depend on some other software for its operation. For example, installing NetBeans
requires that Java SE be preinstalled on your machine. The NetBeans installer therefore looks for
Java SE on the machine where NetBeans is being installed. After searching the default directories,
if it does not find Java SE, it raises an exception, prompting the user to specify the Java installation
folder. If this error is not processed as indicated, the installer will terminate. By providing the error
handler, the installer application gives the user an opportunity to try another folder. Consider
another example: software that monitors the cabin pressure in an airplane. When the cabin
pressure drops below a predetermined threshold, the oxygen masks automatically drop down. The
drop in cabin pressure generates an exception, which is then processed gracefully, thus saving us
from an application crash (perhaps even an airplane crash) and providing us with needed oxygen.

We’ll now look at a simple program that demonstrates a typical mistake made by a programmer
that causes a program error at runtime. Later, you’ll learn how to handle this error condition. For
this example, suppose you are writing software for recording the names of all the visitors who come
by your exhibition booth. You expect a maximum of 100 visitors per day. Therefore, you allocate
space for storing the names of 100 visitors—basically declaring an array of 100 strings. Most likely,
you will also declare a constant set to 100 and use this in the rest of your application code. In the
future, you can adjust the value of this constant to accommodate the growing needs of the software.
Your application also needs to print the list of all those who visited your booth at the end of the day.
The code for this program is shown in Listing 8-1.

Listing 8-1 A Visitor Roster Application

import java.util.Random;

public class VisitorRoster {

 private final int MAX_CAPACITY = 100;
 private String[] visitors;

 public static void main(String[] args) {
 VisitorRoster roster = new VisitorRoster();
 roster.init();
 roster.registerVisitor();
 roster.printVisitorList();
 }

Chapter 8: Exception Handling 173

 private void init() {
 visitors = new String[MAX_CAPACITY];
 }

 private void registerVisitor() {
 Random r = new Random();
 System.out.println("Registering visitors");
 for (int i = 0; i < MAX_CAPACITY; i++) {
 visitors[i] = Long.toString(Math.abs(r.nextLong()), 36);
 }
 }

 private void printVisitorList() {
 System.out.println("\nToday's Visitors:");
 int i = 0;
 while (i <= MAX_CAPACITY) {
 System.out.println("Visitor ID # " + visitors[i++]);
 }
 }
}

The VisitorRoster class declares a string array called visitorList to store the visitor IDs. The
MAX_CAPACITY constant decides the size of this array. For brevity, we have set this to 100. In a
real-life scenario, this would be probably 1000 or more. The main function creates an instance of
the application class and calls its init method to allocate the array. The registerVisitor method
adds some randomly generated IDs to the array. Finally, the printVisitorList method dumps all
the elements of the array onto the user console. Now, a common mistake made by inexperienced
developers is to set the while condition as “less than or equal to” MAX_CAPACITY. Instead, this
should simply be less than MAX_CAPACITY. Let’s see what happens when we run this program
with this condition. The program output is shown here:

Recording visitors
Today's Visitors:
 ...
Visitor ID # 1v3qp79jupnvf
Visitor ID # 35nwc3u2w9zh
Visitor ID # 15z1o2bzl6di3
Visitor ID # deicu0zzg9cw
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 100
 at VisitorRoster.printVisitorList(VisitorRoster.java:35)
 at VisitorRoster.main(VisitorRoster.java:16)
Java Result: 1

The program printed the IDs of 100 visitors properly. However, it terminated abruptly when
it tried to print the name of the 101st visitor, which of course does not exist. The program prints
an error message on the console before terminating. The message specifies the type of error,
which is ArrayIndexOutOfBoundsException. From the name, one can deduce easily that the
error was caused because an invalid index value was used while accessing an element of the
array. The message also tells the index value, which is 100. In addition, the error message
indicates the methods along with the line numbers where the error originated and how it
propagated throughout the program code.

174 Java Programming

You can easily catch and handle such errors in your programs so that they do not terminate
abnormally. When a program terminates abnormally, typically it dumps some undecipherable
messages to the user terminal. Worse is the case where GUI applications terminate abnormally
and switch to a console mode, thus totally confusing the user. You better take care of such
exceptions in your programs in order to provide a rich user experience.

The try-catch Statements
To catch such exception conditions in your program, Java provides a construct called the try-catch
block. The susceptible code that may generate an exception at runtime is enclosed in a try block,
and the exception-handling code is enclosed in a catch block. The syntax of a try-catch block is
shown here:

try {
 blockStatements

opt

} catch (ExceptionType exceptionObjectName) {
 blockStatements

opt

}

A try-catch block in your program code looks like this:

try {
 // code that may generate a runtime or some kind of exception
} catch (Exception e) {
 // your error handler
}

If an exception occurs while the code in the try block is being executed, the Java runtime
creates an object of the Exception class, encapsulating the information on what went wrong, and
transfers the program control to the first statement enclosed in the catch block. The code in the
catch block analyzes the information stored in the Exception object and takes the appropriate
corrective action.

The exception in the previous example can be handled gracefully by putting the susceptible
printVisitorList method in a try-catch block, as shown here:

try {
 roster.printVisitorList();
} catch (Exception e) {
 System.out.println("Quitting on end of list");
}

Now, when you run the program, you will get a more graceful quit message on the terminal
at the end of the list. The partial output is shown here:

...
Visitor ID # gc051hh3hba7
Visitor ID # i98ivsnwunp4
Visitor ID # rapll6ouc0m6
Quitting on end of list

Unfortunately, this error message appears on the terminal in any iteration of the while
loop if an error occurs in that iteration, and not necessarily only at the end of the list.

Chapter 8: Exception Handling 175

You will learn how to handle errors in a better way in your exception handlers as you progress
further in this chapter.

Classifying Exceptions
As you saw in the preceding example, the Java runtime always passes an Exception object to
your exception handler. Because the types of exceptions or runtime errors that can occur in
your application can be very large, it will be difficult to assimilate the information provided by
a single Exception object. Therefore, the Exception class is categorized into several subclasses.
Figure 8-1 shows the high-level view of the Exception class hierarchy.

At the top of the class hierarchy you have the Throwable class. All other exception classes,
including your own designed exception classes, inherit from the Throwable class. Both Error
and Exception are subclasses of Throwable. The Error class denotes the fatal errors, and the
Exception class denotes the non-fatal errors, discussed earlier. We will be focusing on the
Exception class hierarchy, which has several subclasses, each meeting a specific situation. For
example, the class ArrayIndexOutOfBoundsException is used for designating an illegal access
to an array element, whereas the class ArithmeticException describes an exception that may
occur during an arithmetic operation.

The purpose behind creating this exception hierarchy is to give you the option of treating
various exception cases differently and to allow specialized information to reside in exception
classes specific to particular situations.

Several subclasses of the Exception class are provided for this purpose so that you can catch
a specific type of exception. For each specific type of exception you want to capture, you have
to write a separate catch block. Thus, your code will consist of multiple catch blocks when you
want to handle different types of exceptions differently. The order in which these blocks are
defined in your code is also important. When the code inside a try block throws an exception,
its catch clauses are examined in their order of appearance in the source file. Your program
should first try to catch an exception of a subclass type. If no such subclass exceptions are

FIGuRE 8-1. Exception class hierarchy

Throwable

Error Exception

IOException RuntimeException

176 Java Programming

handled, eventually your code provides an exception handler for the most generic Exception
class. The syntax for incorporating this feature is shown here:

try {
 blockStatements

opt

} catch (ExceptionType
1
 exceptionObjectName

1
) {

 blockStatements
opt

}
 ...
} catch (ExceptionType

N
 exceptionObjectName

N
) {

 blockStatements
opt

}

A typical try with multiple catch blocks looks like this:

try {
 // code that may generate a runtime exception
} catch (ReadOnlyBufferException e1) {
 // your error handler
} catch (UnsupportedOperationException e2) {
 // your error handler
} catch (Exception e) { // other catch blocks
 // your error handler
}

Java SE 7 has added new syntax for catching multiple exception types in the same catch clause,
as shown here:

try {
 // code that may generate a runtime exception
} catch (ReadOnlyBufferException | UnsupportedOperationException e1) {
 // your error handler
}

When you use this syntax, you provide a common error handler for all these types of exceptions.

NOTE
A subclass exception must be handled before its superclass exception.
If you write an Exception handler block as the first block in your
multiple-exception-handler code, this would always get called
whenever an exception occurs and the code provided in other
exception handlers would never get called. The compiler catches this
error and complains about “unreachable code.”

Let’s now look at an example where the running code generates multiple types of exceptions.
Rather than providing a generic exception handler to catch all types of exceptions, we provide an
exception handler for each type of exception that may be generated by the running code. The
application asks the user to enter a valid URL, opens it in the program using the built-in uRL class,
and dumps its contents (albeit in simple text format, for simplicity) to the user console. Now, what
kinds of errors can you envision in this simple application? At the simplest level, the user might not
enter any URL, the entered URL might be invalid, the user might forget to specify the protocol,

Chapter 8: Exception Handling 177

there might be an error opening the URL, and the data reading might generate I/O errors—there
could be any number of unforeseen errors. Our program will try to safeguard against all these
errors, and if an error occurs, it will take corrective action to ensure against a program crash.
Listing 8-2 illustrates this use of multiple exception handlers.

Listing 8-2 Program Illustrating Multiple Exception Handlers

import java.io.*;
import java.net.*;

public class MultipleExceptionsExample {

 public static void main(String[] args) {
 String urlStr = null;
 while (true) {
 try {
 System.out.print("Enter url: ");

 BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in));

 urlStr = reader.readLine();

 if (urlStr.length() == 0) {
 System.out.println("No url specified:");
 continue;
 }

 System.out.println("Opening " + urlStr);

 URL url = new URL(urlStr);

 reader = new BufferedReader(new InputStreamReader(
 url.openStream()));

 System.out.println(reader.readLine());
 reader.close();
 } catch (MalformedURLException e) {
 System.out.println("Invalid URL " + urlStr + ": "
 + e.getMessage());
 } catch (IOException e) {
 System.out.println("Unable to execute " + urlStr + ": "
 + e.getMessage());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 }
}

178 Java Programming

Note that the application uses certain classes from the java.io and java.net packages, which
are discussed in depth in Chapter 9 and Chapter 20. To understand the current application, you
do not need a deep understanding of these classes. We will focus mainly on what happens when
the execution of the code within these classes generates errors at runtime.

The main method defines an infinite loop to accept the user input endlessly. The user is asked
to enter a desired URL. The program reads the input using the following lines of code:

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
urlStr = reader.readLine();

The BufferedReader class is discussed in Chapter 9, and InputStreamReader is discussed in
Chapter 10. It suffices to say here that these lines of code read a line of input from the keyboard
(until the enter key is pressed) and assigns it to the urlStr variable. The program then checks
whether the user indeed input some string with the following statement:

if (urlStr.length() == 0) {
 System.out.println("No url specified:");
 continue;
}

This takes care of one of the error conditions mentioned earlier. If there is no input, the
program simply loops back and asks the user to reenter the URL. Next, we try to establish a
connection to this URL using the following statement:

URL url = new URL(urlStr);

At this time, if the URL is invalid, it will generate an error. This is caught in the following
exception handler:

catch (MalformedURLException e) {
 System.out.println("Invalid URL " + urlStr + ": " + e.getMessage());
}

The following output shows what happens when an invalid URL is entered:

Enter url: google.com
Opening google.com
Invalid URL google.com: no protocol: google.com

Because we forgot to input the protocol, let’s try one more time by entering a protocol, as
follows:

Enter url: ttp://google.com
Opening ttp://google.com
Invalid URL ttp://google.com: unknown protocol: ttp

Oops! This time we missed the h in http. The same exception handler has trapped the error,
this time giving another message (unknown protocol), which again is an appropriate one. Now,
let’s enter the URL one more time without any mistakes. The output is as follows:

ttp://google.com
ttp://google.com
ttp://google.com:

Chapter 8: Exception Handling 179

Enter url: http://google.com
Opening http://google.com
<!doctype html><html><head><meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1"><title>Google</title><script>window.google={kEI:"BK9TTbv
XJIjfcbD5sOEI",kEXPI:"28317,28600,28641,28722",kCSI:{e:"28317,28600,28641,28
722",ei:"BK9TTbvXJIjfcbD5sOEI",expi:"28317,28600,28641,28722"},ml:function()
{},kHL:"en",time:function(){return(new Date).getTime()},log:function(c,d,

Wow! We got the contents of the Google home page. Now, the question is, why did we include
another exception handler, IOException?

catch (IOException e) {
 System.out.println("Unable to execute " + urlStr + ": " + e.getMessage());
}

To understand this, try the following URL:

Enter url: http://google.com:81

You will get the following output:

Opening http://google.com:81
Unable to execute http://google.com:81: Connection timed out: connect

This time the program executed the code in the IOException handler. Finally, why do we have
the most generic exception handler at the end?

catch (Exception e) {
 System.out.println(e.getMessage());
}

This is to account for all remaining unforeseen errors. This takes care of all the errors mentioned
earlier, thus ensuring the program runs without crashing.

Combining Exception Handlers
Look at the following code segment that contains multiple exception handlers:

try {
 // Say some file parser code here...
} catch (IOException ex) {
 // log and rethrow exception
} catch (ParseException ex) {
 // log and rethrow exception
} catch (ClassNotFoundException ex) {
 // log and rethrow exception
}

The code parses the contents of a given file. The process may generate different types of
exceptions, such as IOException, ParseException, and ClassNotFoundException. Each exception
handler for these errors logs the exception and re-throws another exception to the caller. We
discuss this re-throwing business later in the chapter. What is important here is that all exception

http://google.com
http://google.com
http://google.com:81
http://google.com:81
http://google.com:81:

180 Java Programming

handlers execute the same piece of code. So why not combine them? Java SE 7 facilitates this.
Here’s what the new code looks like:

try {
 // Say some file parser code here...
} catch (IOException ex | ParseException ex |
 ClassNotFoundException ex) {
 // log and rethrow exception
}

Here, all those exception handlers that have common code are combined by using a logical
OR operator between their exception types. This makes the code simpler. However, this feature
works only on Java SE 7 and above. If you want to take different actions for different exceptions,
you do not have a choice other than to provide individual exception handlers, as stated earlier.

How Runtime Matches catch Blocks
Whenever an exception occurs in running code, the search for the first matching catch block
begins and the rules listed here are followed:

A thrown exception object is caught by the ■■ catch block that specifies the class of the
occurred exception or its superclass.

In the case of multiple ■ catch blocks, these are evaluated sequentially in the order they are
specified by applying the first rule. If a catch block is found, the rest of the catch blocks
are ignored.

A certain ■ catch block will never be executed if a catch block containing its superclass is
listed prior to it. In such situations, a compile-time error is generated.

The compiler forces the programmer to handle all checked exceptions. In other words, ■
you must provide error handling for all exceptions except for the RuntimeException and
its subclasses.

If the ■■ try block never throws an exception specified in the catch list, the compiler generates
an error.

The finally Statement
In the program example discussed in the previous section, we made a URL connection to read the
home page contents from the user-specified URL. We closed this connection by calling the close
method on the stream object. Now, consider some slightly low-level code that makes a socket
connection to another machine on the network and reads/writes data using this socket. During this
entire communication, if an exception occurs, our exception handler handles the exception. If the
communication was successful, our program would usually close the socket before proceeding with
the next program statement. However, the socket closing is required even if an exception occurs at
runtime. For example, even though we may be able to make a successful socket connection, an
exception might occur during the read/write operations. Obviously, the socket needs to be closed in
this case too. To take care of such situations, Java provides a construct called finally. The finally
block does this trick. We execute the socket-close operation in the finally block. The structure of a
finally block is illustrated in Figure 8-2.

Chapter 8: Exception Handling 181

And the syntax of the complete try/catch/finally block is as shown here:

try {
 blockStatements

opt

} catch (ExceptionType exceptionObjectName) {
 blockStatements

opt

}
finally {
 blockStatements

opt

}

Typical try/catch/finally code is shown here:

try {
 // code that may generate a runtime exception
} catch (SubclassException e1) {
 // your error handler
} catch (SubclassException e2) {
 // your error handler
} catch (Exception e) {
 // your error handler
} finally {
 // this code is always executed
}

The code to be tested is enclosed in the try block. If an exception occurs during execution, an
appropriate exception handler is called. After the exception is processed, the program calls the
finally block and executes the code in it. What happens if you have not provided the handler for the
type of exception that occurs in the running program? The code in the finally block still executes.
What happens if the code under test does not generate an exception? In this case, too, the code in
the finally block is called and executed. It means that the finally block code is always executed.

FIGuRE 8-2. The try/catch/finally program flow

try block

catch

Exception occured

Exception
doesn’t occur

finally block

182 Java Programming

From this discussion, you can see that the ideal place for closing the socket connection would be
the finally block. By placing the socket- or stream-close code in the finally block, we ensure that
the socket or stream is always closed regardless of communication success or failure.

NOTE
A finally block is typically useful for cleanup code or any mess
created in the try block, especially when recovering resources in use.

Guidelines on the use of the finally Block
You may have a finally block in conjunction with a try block without a catch block. In other
words, it is possible to eliminate the catch block totally in your program code. The syntax for
this is shown here:

try {
 blockStatements

opt

} finally {
 blockStatements

opt

}

In such a case, your code would have the following structure:

try {
 // some code
} finally {
 // free resources
}

This is typically used for freeing resources used in the try block. It would always be executed
regardless of whether or not the code in the try block generates an error. Now, if an error occurs
in the code specified in the try block, the program tries to find an appropriate exception handler
in the code; however, because no handler is found, the current thread terminates. Before
terminating the thread, the program executes the finally clause specified in your code. After this,
it also executes the uncaughtException method in the ThreadGroup object to which the current
thread belongs.

The fact that the Exception object is thrown to the outer code can be used to our advantage
in separating out the error-handling code from the resource-freeing code. This is shown in the
following code block:

 try {
 try {
 // some code
 } finally {
 // free resources
 }
 } catch (Exception e) {
 // handle exceptions
 }

Chapter 8: Exception Handling 183

If an exception occurs in the inner try block, it is caught in the exception handler provided by
the outer try block. Thus, the code in the finally block becomes solely responsible for cleaning up
resources while the code in the catch block takes the responsibility of handling exceptions. In
fact, if the code in the finally block were to generate an exception, it would also be caught and
handled in the catch block.

There is one design flaw in Java’s finally syntax. The finally block allows you to include one of
the jump statements, such as break. If the finally block is entered from a throw statement, which is
discussed later in the chapter, the execution of a break, continue, or return statement in the finally
block overrides the throw statement and aborts the error handling. Note that the finally block does
not have access to the Exception object and therefore cannot determine whether it has been entered
as a result of a throw statement or due to another cause.

NOTE
C# takes care of this flaw in Java by prohibiting the use of any jump
statements in a finally block.

Another important point you should note here is that the finally block cannot handle errors.
As stated earlier, it does not have access to the Exception object or any of the objects referenced
by it. Therefore, it cannot log an error, diagnose it, or apply any corrections. It does not even
know whether it was entered normally or as a result of an error. The philosophy behind a finally
block is to free the resources and clean up any mess that the code might have created. It is
typically used to achieve unconditional error cancellation.

CAuTION
When a return statement is executed in your code, the finally block is
never executed.

CAuTION
If an exception occurs in the finally block, the original exception
generated in the corresponding try block is lost.

Rules for using the try/catch/finally Block
Before we move on to study the exception types, here’s a quick summary of the rules for
exception-handling code:

A ■■ try block can have zero or more catch blocks, but only one finally block.

The ■ catch blocks and a finally block must always appear in conjunction with a try block.

A ■ catch or finally block must follow every try block.

In case of multiple exception handlers, the order starts with the most specific exception at ■■
the top.

The try-with-resources Statement
So far, we have used the finally block for cleaning up resources. Java SE 7 has added a new syntax
to the try block to provide an easier way of cleaning resources. With this new syntax, you open the

184 Java Programming

resources that require automatic cleaning in the try statement. For example, if your code requires a
file, you can now open it using the syntax

try (expression){
 blockStatements

opt

}

where Expression could be InputStream fis = new FileInputStream(source).
Your code would look like this:

try (InputStream fis = new FileInputStream(source)) {
 ...
}

After you are done with this input stream, do not bother closing it. The Java runtime will
automatically close it. Thus, there is no need to add a finally block if this is the only resource
in your code that requires cleanup. You may include multiple resources in the try block, each
separated by a semicolon. This is illustrated in the program in Listing 8-3.

Listing 8-3 Program Demonstrating the try-with-resources Syntax

import java.io.*;
public class FileCopy {

 public static void main(String[] args) {
 try
 (InputStream fis = new FileInputStream(new File("src.txt"));
 OutputStream fos = new FileOutputStream(new File("dest.txt"))){
 byte[] buf = new byte[8192];
 int i;
 while ((i = fis.read(buf)) != -1) {
 fos.write(buf, 0, i);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 Once again, do not worry about the file-handling code. We cover that in a later chapter.
Just focus on the try-with-resources syntax. Here, we open two files in the try block. We do not
close these files anywhere in the program and also do not provide a finally block. The files will
be automatically closed at the end of the main method.

Likewise, you may allocate multiple resources in the try block. The only restriction is that
each such resource must implement the java.lang.AutoCloseable interface. Note that this feature
works only for Java SE 7 and above.

Checked/unchecked Exceptions
In Java, exceptions are broadly classified as checked and unchecked. Sometimes, the checked
exceptions are also called compile-time exceptions because your code would not compile if you
do not handle a checked exception. All unchecked exceptions need not be caught in the program,

Chapter 8: Exception Handling 185

and the code would compile even when they are not caught. Refer once again to Figure 8-1 for the
Exception class hierarchy. All exceptions that come under IOException (including IOException itself)
are called checked exceptions. All other exceptions that come under RuntimeException, including
itself, and all subclasses of Error, including itself, are unchecked exceptions and do not require you
to provide a handler in your code. When a checked exception occurs in a method, the method must
either catch the exception and take the appropriate action, or pass the exception on to its caller.
Thus, checked exceptions force programmers to deal with an exception that may be thrown at
runtime. Examples of checked exceptions include NoSuchFieldException, ClassNotFoundException,
and NoSuchMethodException. In the program in Listing 8-3, we used file handling and network
programming. The use of these classes forced us to provide exception handlers. These are examples
of checked exceptions.

In case of unchecked exceptions, the compiler does not force the programmer to catch the
exception or to declare it in a throws clause (discussed later). The programmer need not even
know that the exception could be thrown at runtime. Examples of unchecked exceptions are
IndexOutOfBoundsException, ArrayIndexOutOfBoundsException, ClassCastException, and
ArithmeticException.

NOTE
Although the compiler does not force you to provide a handler for
unchecked exceptions, you could still provide one, if you want to.

The throws Construct
Due to the requirement to handle checked exceptions, you may have to insert the exception
handler in your program at several places. This distribution of exception handlers throughout your
program may clutter your code and make you lose focus on your core program logic. Also, in some
situations, you may not want to handle an exception in the place where it is thrown. This is as good
as saying, “I have generated an error. I do not know what to do with it, so I am passing along the
details so you can take care of it.” Java enables you to centralize your exception-handling code.
With this facility, a method encapsulating the suspect code may simply pass on the exception
information to its caller and without worrying about handling the exception. The caller, in turn, can
pass on the generated exception information to its caller, and so on. Ultimately, the topmost calling
method must handle the exception; otherwise, the result is a compilation error (because a checked
exception is not caught anywhere in the program). This feature is provided with the help of the
throws keyword.

Let’s look at the example shown in Listing 8-4 so you can better understand this feature.

Listing 8-4 Distributed Exception Handlers

import java.io.*;
import java.net.*;

public class CentralizedExceptionHandlerApp {

 private static BufferedReader reader = null;

186 Java Programming

 public static void main(String[] args) {
 String urlStr = null;
 try {
 CentralizedExceptionHandlerApp app =
 new CentralizedExceptionHandlerApp();
 app.openDataFile("data.txt");
 app.readData();
 reader.close();
 } catch (IOException e) {
 System.out.println("Error closing file");
 } catch (Exception ex) {
 System.out.println("Unknown error: " + ex.getMessage());
 }
 }

 void openDataFile(String fileName) {
 try {
 reader = new BufferedReader(new FileReader(fileName));
 } catch (FileNotFoundException e) {
 System.out.println("Specified file not found");
 }
 }

 void readData() {
 String str;
 try {
 while ((str = reader.readLine()) != null) {
 int n = Integer.parseInt(str);
 System.out.println(n);
 }
 } catch (IOException e) {
 System.out.println("Error while reading data");
 } catch (NumberFormatException ne) {
 System.out.println("Invalid number format, skipping rest");
 }
 }
}

As with an earlier example, you have not learned about certain classes in this example so far in
the book. Of course, if you are interested in them, you can always refer to javadocs (which by now
you know how to use). Even if you do not want to learn more about these classes, you should still
be able to learn the point of this example.

A quick look at the program tells you that the CentralizedExceptionHandlerApp class has
three methods: main, openDataFile, and readData. All three methods have some sort of
exception-handling code. If you do a little more observation, you will also realize that almost
50 percent of the total source code consists of exception handling. So why not gather all the
exception handling into one place and make our methods cleaner? The modified program is
given in Listing 8-5.

Chapter 8: Exception Handling 187

Listing 8-5 Centralizing Exception-Handling Code

import java.io.*;
import java.net.*;

public class ModifiedCentralizedExceptionHandlerApp {

 private static BufferedReader reader = null;

 public static void main(String[] args) {
 String urlStr = null;
 try {
 ModifiedCentralizedExceptionHandlerApp app =
 new ModifiedCentralizedExceptionHandlerApp();
 app.openDataFile("data.txt");
 app.readData();
 reader.close();
 } catch (FileNotFoundException e) {
 System.out.println("Specified file not found");
 } catch (IOException e) {
 System.out.println("Error closing file");
 } catch (NumberFormatException ne) {
 System.out.println("Invalid number format, skipping rest");
 } catch (Exception ex) {
 System.out.println("Unknown error: " + ex.getMessage());
 }
 }

 void openDataFile(String fileName) throws FileNotFoundException {
 reader = new BufferedReader(new FileReader(fileName));
 }

 void readData() throws IOException, NumberFormatException {
 String str;
 while ((str = reader.readLine()) != null) {
 int n = Integer.parseInt(str);
 System.out.println(n);
 }
 }
}

Examine this code and you will realize that the two methods, openDataFile and readData,
do not contain any exception handlers. However, the code within these methods may still
generate errors at runtime. So, who handles those? Note the use of the throws keyword in their
declarations. The openDataFile method is declared to throw a FileNotFoundException. This
means that if such an error occurs in the body of this method, it will be thrown to its caller,
asking the caller to take care of it, if it wants to do so. Similarly, the method readData throws
two types of exceptions: IOException and NumberFormatException. If these errors occur at
runtime, they will be passed on to the caller for further processing. Now, let’s look at the main
method. Here, you will find several catch blocks. In fact, some of these catch blocks came from
our earlier definitions of the openDataFile and readData methods. Therefore, the errors thrown

188 Java Programming

by these methods are now handled in the main method. This makes your code cleaner. It allows
you to centralize exception handling and pass on the exception-handling responsibility to somebody
higher up the calling stack.

Throwing Multiple Exceptions
You may cause a method to throw more than one type of exception by listing all the desired
exception types in the throws clause, separated by commas. This is what you have seen in the
modified definition of our readData method from the previous example:

void readData() throws IOException, NumberFormatException {

Here, the method readData throws two types of exceptions to its caller. Therefore, it need not
provide exception handlers for either of these two types. However, if the code inside readData
can generate an exception of any other type, which is also a checked exception, readData must
provide an internal exception handler. The exceptions of the unchecked type need not be caught
but may result in abnormal program termination.

This indicates that a method may handle some of the errors itself and leave the handling of
specialized exceptions to its caller.

user-defined Exceptions
Sometimes you may find that the exception messages given by the standard exception classes are
not intuitive, and it may be necessary to provide more elaborate messages to the application user.
In some other situations, you may want to capture the application errors and inform the user of
them. An application error could simply be an abnormal condition that needs to be reported to the
user and would not result in an application shutdown. To illustrate this point, we will develop an
application in this section that reports the weather conditions to the user. Consider the case where
a tourist agency sends the enrolled tourists to their desired locations. Once they are on their tour,
each one reports the weather condition at their location. The agency simply logs the report sent
by each tourist. The current temperature determines the weather condition at that time. If the
temperature is more than 60°F, we generate a too-hot exception and if the temperature is less than
10°F, we generate a too-cold exception. For the in-between range, no exception is generated. The
implementation of this scenario is shown in Listing 8-6.

Listing 8-6 Program Demonstrating Custom Exceptions

public class Tourist {

 public static void main(String[] args) {
 for (int i = 0; i < 10; i++) {
 Tourist person = new Tourist();
 try {
 person.takeTour();
 System.out.printf(
 "Tourist %d say: This is cool%n", i + 1);
 } catch (TooHotException hx) {
 System.out.printf(

Chapter 8: Exception Handling 189

 "Tourist %d say: %s%n", i + 1, hx.getMessage());
 continue;
 } catch (TooColdException hx) {
 System.out.printf(
 "Tourist %d say: %s%n", i + 1, hx.getMessage());
 continue;
 } finally {
 System.out.println();
 }

 }
 }

 void takeTour() throws TooHotException, TooColdException {
 int temperature = (int) (Math.random() * 100);
 System.out.println("temperature = " + temperature);
 if (temperature > 60) {
 throw new TooHotException("Too hot here");
 } else if (temperature < 10) {
 throw new TooColdException("Too cold here");
 }
 }

 class TooColdException extends Exception {

 public TooColdException(String message) {
 super(message);
 }
 }

 class TooHotException extends Exception {

 public TooHotException(String message) {
 super(message);
 }
 }
}

Besides the main application class Tourist, the program defines two classes: TooColdException
and TooHotException. Both these classes extend Exception classes and provide a constructor that
takes a String type argument. The Tourist class declares a method called takeTour. The method is
declared to throw the two aforementioned exceptions to its caller for it to handle them. In the
method, we set the current temperature to a random value in the range of 0 to 100. We check this
value against the preset values of 60 and 10. If the temperature exceeds 60°F, we throw an object
of TooHotException to the caller using the following statement:

if (temperature > 60) {
 throw new TooHotException("Too hot here");

190 Java Programming

Note how the object is constructed. We use the new keyword, as usual, to create the object
and then pass this instance to the caller of this method by using the throw keyword. Likewise, if
the temperature is lower than 10°F, we throw a TooColdException to the caller.

In the main method, we create 10 tourists, and for each created tourist we call its takeTour
method. In the exception handler, we create an appropriate message. In case of no exceptions,
we create a “cool weather” message. In each iteration, we print the message and clear the buffer
for the next tourist.

Partial output on a sample run of the application is shown here:

temperature = 37
Tourist 1 say: This is cool
temperature = 97
Tourist 2 say: Too hot here
temperature = 97
Tourist 3 say: Too hot here
temperature = 12
Tourist 4 say: This is cool

The throw Statement
As seen in the previous section, you need to construct an instance of a user-defined exception; the
Java runtime cannot detect and create instances of user-defined exceptions. Thus, a user-defined
exception is handled at the place of its occurrence. But what if you want to centralize the entire
exception handling, including the user-defined application-specific exceptions, as explained earlier?
In such a case, there has to be some mechanism of passing the exception to a caller. As seen earlier,
the Java runtime takes care of this for the system-generated exceptions. For user-defined exceptions,
Java provides the throw keyword, which allows the exception to be passed to its caller. The throw
statement is not restricted to user-defined exceptions and can be used for both user-defined and
system-generated exceptions, as explained further in this chapter.

TIP
The throws clause declares that a method passes the exception
generated during its execution to its caller, whereas the throw
statement explicitly creates or obtains an Exception object and
passes it to its caller.

Re-throwing Exceptions
An exception event handler that receives an exception object is allowed to throw the received
exception object to its caller. This may be done after the exception handler either has processed
the exception or has decided not to process it at all. The JLS syntax for this is

try {
 blockStatements

opt

} catch (ExceptionType exceptionObjectName) {
 blockStatements

opt

 throw (exceptionObjectName)
}

where exceptionObjectName for catch and throw is the same.

Chapter 8: Exception Handling 191

Here is how this will be done in your code:

try {
 // some arithmetic operation
} catch (ArithmeticException e) {
 // e may be partially processed here
 e.getMessage();
 throw (e);
}

The catch block partially processes the ArithmeticException object. It prints the message
associated with the received exception object. After processing the exception object, it calls the
throw method with exception object e as its parameter. The caller receives the exception object
and may use it for further diagnosis.

Rather than throwing the received exception object, you may like to create your own exception
object with a custom message and throw it to the caller. You have already seen how to do this by
declaring your exception class. However, there is a better way, which is shown in the following
code snippet:

try {
 // numerical processing code
} catch (ArithmeticException e) {
 Throwable ae = new ArithmeticException("Attempt to divide by zero");
 ae.initCause(e);
 throw(ae);
}

The exception handler now creates an instance of the original exception type and sets a
custom message in it. The original exception is then embedded into the new object by calling the
initCause method. Finally, the newly constructed object is thrown to the caller. The caller now has
an exception object that contains a custom message created by the method in which an exception
is generated, along with the cause of the exception. To retrieve the custom message, the caller
calls the getMessage method on the received exception object. To get further information about
the exception, the caller calls the getCause method on the exception object, as shown in the
following code snippet:

System.out.println(e.getMessage());
System.out.println(e.getCause().getMessage());

The first statement prints the custom message to the console, whereas the second one prints
the original error message.

CAuTION
The initCause and getCause methods were introduced as of J2SE 1.4.

The method of wrapping the original exception object into a custom object and throwing it
to the caller is also sometimes called exception chaining. The exceptions are chained and
passed to the caller.

192 Java Programming

Difference Between the throw and throws Keywords
As you can make out from the preceding discussions, the throw keyword (note the singular form) is
used to force an exception. It can also be used to pass a customized message to the error-handling
code. For example, the following statement throws a custom message in the ArithmeticException:

new ArithmeticException("Attempt to divide by zero");

The throws keyword is used when we know that a particular exception may be thrown or
whenever we want to pass a possible exception.

The final Re-throw in Java SE 7
You have seen so far that to throw an exception higher up the caller hierarchy, your method must
declare that exception type in the throws clause of its declaration. Now, consider a situation where
your method may want to throw two different types of exceptions, as shown in the following code
snippet:

public void compute() throws IOException, ParseException {
 try {
 // code which may generate IOException, ParseException
 } catch (Exception e){
 throw e;
 }
}

However, this code will not compile because we are trying to throw a more generic exception.
For the code to compile, we will need to add the Exception type in the throws clause. This, too,
will not compile if the compute method overrides a method that does not declare throwing the
Exception type (this is explained in the next section). Java SE 7 solves this problem when we add
a final keyword in the catch block, as follows:

catch (final Exception e){

Using the final keyword in the catch block allows us to throw the exact exception subtype that
occurred. For example, if IOException occurs, then IOException would be thrown; if ParseException
occurs, then ParseException would be thrown. The final keyword allows us to throw the exact
exception that occurred without the need to add the Exception type to the method signature.

Declaring Exceptions in Overridden Methods
In Chapters 4 and 5, you saw the benefits of creating inheritance hierarchies to produce highly
structured code. When you extend the classes, you override some of their methods in their
subclasses. What if some of these methods are already declared to throw a few exception types?
When you override these methods, you must observe certain rules:

An overriding method must throw exceptions of the same type as the exceptions being ■■
thrown by the overridden method.

An overriding method may throw exceptions that are subclasses of the exceptions being ■
thrown by the overridden method.

Chapter 8: Exception Handling 193

An overriding method cannot throw a superclass exception of an exception declared by ■
an overridden method.

In case of an overridden method throwing multiple exceptions, an overriding method must ■■
throw a proper subset of exceptions thrown by the overridden method.

To explain these rules, we’ll look at a few code snippets. Here’s the first:

class WebBrowser {

 public void makeConnection() throws IOException {
 }
}

class HTMLWebBrowser extends WebBrowser {

 public void makeConnection() throws ProtocolException {
 }
}

class RichTextWebBrowser extends HTMLWebBrowser {

 public void makeConnection() throws Exception {
 }
}

The HTMLWebBrowser class that inherits WebBrowser overrides the makeConnection method.
This overridden method throws ProtocolException, which is a subclass of IOException. This
satisfies the second rule in the list and is therefore permitted. The class RichTextWebBrowser,
too, overrides the makeConnection method in its implementation. However, it tries to throw an
Exception type, which violates the third rule and therefore won’t compile. This explains why
earlier I said that throwing the Exception type would not compile the code, causing us to use the
final keyword in the catch block, which is a Java SE 7 feature. To explain the other rules, let’s
make some slight modifications to the earlier code snippet, as shown here:

class WebBrowser {

 public void makeConnection() throws IOException, RuntimeException {
 }
}

class HTMLWebBrowser extends WebBrowser {

 public void makeConnection() throws ProtocolException, EOFException,
 ArithmeticException, SecurityException {
 }
}

194 Java Programming

class RichTextWebBrowser extends HTMLWebBrowser {

 public void makeConnection() throws ProtocolException, SecurityException {
 }
}

Now, the makeConnection method in the base class throws two types of exceptions:
IOException and RuntimeException. The overridden makeConnection method in the
HTMLWebBrowser class throws four different types of exceptions. All these are the subtypes of
either IOException or RuntimeException, thus adhering to the second rule. The makeConnection
method of RichTextWebBrowser overrides the corresponding method of HTMLWebBrowser, but
throws only a subset of exception types thrown by the overridden method. This satisfies the fourth
rule and would thus compile without errors.

CAuTION
If a superclass method throws no exceptions, neither can the subclass
method.

The situation stated in the nearby Caution can be overcome with a simple trick. You have
seen how to construct and throw a custom exception object. In situations where you are not
allowed to throw a checked exception, you can wrap a checked exception into an object of
RuntimeException and throw it to the caller. This is illustrated in the program in Listing 8-7.

Listing 8-7 Wrapping RuntimeException

import java.net.*;

public class CustomBrowser {

 public static void main(String[] args) {
 HTMLWebBrowser app = new HTMLWebBrowser();
 try {
 app.makeConnection();
 } catch (Exception e) {
 System.out.println (e.getMessage());
 }
 }
}

class WebBrowser {

 public void makeConnection() {
 }
}

class HTMLWebBrowser extends WebBrowser {

Chapter 8: Exception Handling 195

 public void makeConnection() throws RuntimeException {
 try {
 URL url = new URL("http://www.oracle.com");
 } catch (MalformedURLException e) {
 RuntimeException ae = new RuntimeException("Invalid url");
 ae.initCause(e);
 throw ae;
 }
 }
}

The makeConnection method of the HTMLWebBrowser class knows that its code may
generate an error at runtime; however, it would like its base class to take care of the error
handling. The makeConnection method of the base class (WebBrowser) also does not process or
throw an exception up the hierarchy. To overcome this problem, you can always create an object
of RuntimeException in the overridden method, wrap the generated exception in it, and throw it
up the hierarchy. The following three lines of code do this:

RuntimeException ae = new RuntimeException("Invalid url");
ae.initCause(e);
throw ae;

This trick works, and the compiler does not complain on the overridden method declaration.
You may now process the custom exception object anywhere up the hierarchy. In our case, the
exception is caught and processed in the main method.

Printing a Stack Trace
In some of the earlier examples in this chapter, you might have noticed that in the exception
handler we used the following statement:

e.printStackTrace();

This statement prints a stack dump to the user console. Although, typically, this is used for
getting the stack dump in case of errors, it can also be used in other situations where there are no
errors. With J2SE 1.4 onward, this better way of analyzing a stack trace is available. For example,
when you have a recursive function call in your program, such as a program that generates
Fibonacci numbers, you may want to study how many times and when the recursive method is
called. To get a stack trace, you construct a Throwable object and call its getStackTrace method.
This is illustrated in the program given in Listing 8-8.

Listing 8-8 Analyzing a Stack Trace

public class FibonacciGenerator {

 public static void main(String[] args) {
 generate(3);
 }

http://www.oracle.com

196 Java Programming

 public static int generate(int n) {
 Throwable t = new Throwable();
 StackTraceElement[] frames = t.getStackTrace();
 for (StackTraceElement frame : frames) {
 System.out.println("Calling: " + frame.getMethodName());
 }
 if (n <= 2) {
 return 1;
 } else {
 return generate(n - 1) + generate(n - 2);
 }
 }
}

The program in Listing 8-8 computes and prints a Fibonacci number for a specified input.
The recursive function generate does this. In each call to the function, it obtains a stack trace
and prints the called method name to the console. The getStackTrace method returns an array of
StackTraceElements. The program iterates through this array to print the method names pushed
on the stack. The program output is shown for the case when the Fibonacci number for value 3
is computed:

Calling: generate
Calling: main
Calling: generate
Calling: generate
Calling: main
Calling: generate
Calling: generate
Calling: main

Note that the generate function calls itself twice recursively. Therefore, you will see multiple
calls to generate between every two calls to the main function.

Thus, using this stack trace facility, you can get the stack dump anytime in your program and
you do not have to necessarily wait for an exception to occur in the code.

TIP
In J2SE 5.0 onward, you can obtain a stack trace of all the running
threads by calling the getAllStackTraces static method of the
Thread class.

Asynchronous Exceptions
Before we conclude this chapter, let’s discuss one more type of exception. The exceptions you
have seen so far are synchronous in nature, in the sense that you know the point in the program
where they occur and when they happen, and you process them immediately in the same thread.
Contrary to this, an asynchronous exception may occur at any point in the execution of a program.
For example, an internal error generated by the JVM is a type of asynchronous exception—you
don’t know when will it occur. Similarly, when you execute a stop method of the Thread or

Chapter 8: Exception Handling 197

ThreadGroup class (threads are discussed later, in depth), you cause an asynchronous exception in
another thread. Handling such exceptions is nontrivial and beyond the scope of this book.

Guidelines for using Exceptions
We have discussed several features of exception handling so far. Now, we’ll look at some
guidelines on how to use exception handling efficiently in your program code.

Use exception handling judiciously. Wherever your program code can perform a simple check
to avoid errors, do it rather than waiting for the exceptions to occur. In other words, do not use
exception handling unless you are required to do so. Let’s suppose you have written a stack class
and have written a method, pop, that pops an element from the stack. Before you perform a pop
operation on the stack, you must confirm that the stack is not empty. A simple check will reveal
this condition, and doing so will be more efficient than letting an exception occur in the running
code. Another example would be checking the number of command-line arguments passed to
your program. It would be more efficient to ensure that the user has indeed supplied the required
number of parameters rather than letting an exception occur in the running code. In situations
similar to our earlier example where an ArrayIndexOutOfBoundsException occurred, the real fix
for the array access exception is not to handle the exception, but to fix the code.

Some developers put the try/catch block on every possible statement in the program code.
This results in cluttering the code with several try/catch blocks and obscures the program’s main
logic. Organize all the suspected statements in a single try block and provide multiple handlers
to this try block. If you prefer, you may throw the exceptions to the caller and centralize all the
exception processing, as discussed earlier in this chapter.

Because Java makes it mandatory to handle all the checked exceptions, oftentimes programmers
tend to provide an empty exception handler like the one shown here:

try {
 // do something
} catch (Exception e) {} // do not do this.

Never do this, because if an exception occurs at any time, it will be silently ignored. Ignoring
an exception would result in an unpredictable program state, which would be difficult to diagnose
and fix.

Another important question that comes to the programmer’s mind is, Should I handle the
exception or pass it on to somebody else? Whenever possible, handle the exception. It is always
better to handle the exceptions near the place where it occurs initially. If you feel that centralizing
the exception handling can improve the code readability, feel free to pass the exception to the caller.

Also, it is important that you make best use of the exception hierarchy. Wherever possible,
provide the handlers for the subclass exceptions rather than the most generic exception. If the
existing exception class does not adequately describe the exception in your problem domain,
create your own exception class.

Lastly, and most important, do not forget the golden rules defined at the beginning of the chapter:

Be specific.■■

Throw early. ■

Catch late.■■

198 Java Programming

Summary
This chapter discussed several aspects of exception handling in a Java program. A running program
may encounter errors and may even crash. As a developer, you can minimize the occurrence of
such situations by providing the exception-handling code in your program. The exceptions can be
of two types: fatal and non-fatal. The fatal errors are usually beyond your control and typically
result in an application crash. The non-fatal errors are under your control, and you can provide the
appropriate exception handlers in your code to deal with exceptions when they arise.

Java provides try/catch/finally constructs to support exception handling. Because there can
be several types of errors, Java has neatly classified them into logical classes. The entire exception
hierarchy runs into several classes, all of which derive from the Throwable class. You can choose
an appropriate subclass to handle an individual situation in your program. Java allows you to
provide multiple handlers for a single try block in which you write the susceptible code. In
situations where you are not able to find a built-in subclass that adequately describes your
exception situation, you are allowed to provide your own exception class.

Java further classifies the exceptions into two types: checked and unchecked. All checked
exceptions must be handled in your program code. This may clutter the code with several
exception handlers. In such cases, you can centralize the exception-handling code by using the
throw and throws constructs in your program code. The throw statement enables you to pass an
exception object to the caller. The throws clause marks the specified method, indicating that the
method will throw the exception of the specified type to its caller. Therefore, the caller must
provide a handler for it.

When a subclass overrides a method that throws exceptions, it must observe certain rules.
This chapter discussed those rules in depth. When an exception occurs, you can print a stack
trace to see what went wrong. In J2SE 1.4 onward, you can obtain this stack trace even if there is
no generated exception. Finally, the chapter concluded with a few guidelines for efficient coding
of exception mechanisms in your programs.

In the next chapter, you learn I/O programming.

Chapter
9

Java I/O

199

200 Java Programming

o far we have focused on Java language syntax, classes, interfaces, arrays, and other
language-related stuff. Most of the programs discussed in earlier chapters used
classes from the java.lang package, which were implicitly imported in the code. In a
few programs, we used the classes from other packages such as java.util, java.awt,
java.net, and java.io. Now that the language syntax is mostly covered, we will

discuss the classes from these and other packages provided in Java libraries. One such important
set of classes comes in the java.io package. This is one of the core packages of the Java language
and was a part of JDK 1.0. These classes facilitate the input/output functionality in your programs.
Typical examples of such functionalities include reading from the keyboard, sending some output
to the console, storing data in a disk file, chatting with another user using peer-to-peer networking,
transferring files, browsing the Web, and so on. Thus, the I/O classes are used in a wide range of
applications, including the latest innovations such as voice and video calls, peer-to-peer gaming,
and more.

In this chapter and the next, you will be introduced to several I/O classes. The java.io and
java.nio packages define several useful classes that cannot be fully covered in a single chapter,
so the discussion of I/O classes has been split accordingly. This chapter covers most basics
of I/O, and the next chapter covers more advanced features, including all the latest updates.
In particular, you will learn the following in this chapter:

The stream classes■■

The binary and character-oriented streams ■

Accessing and manipulating the file system ■

Reading and writing objects■■

Input/Output Streams
You may not have realized this, but you have already used some functionality of I/O classes in
the previous chapters. In many of our programs, we used System.out.println to output a message
to the user console. You learned earlier that println is a method executed on the out object. The
out object is of type OutputStream, which is an abstract class. It is the superclass of all classes
representing an output stream of bytes. A stream accepts bytes and sends them to some sink, as
explained later in the section. Likewise, to read input from the user, we used the System.in.read
method. The in is an object of type InputStream. Both InputStream and OutputStream belong to
the family of I/O classes. The System class, which is defined in the java.lang package, contains
three static fields, called in, out, and err. The in is of type InputStream, whereas out and err are
of the PrintStream type, which is a subclass of OutputStream.

Java defines the functionality of its various I/O classes through streams. A stream is an abstraction
and can be thought of as a flow of data from a source to a sink. A stream can be classified in two
ways. A source stream, also called an input stream, initiates the flow of data. A sink stream, also
called an output stream, terminates the flow of data. Source and sink streams are also called node
streams. A stream is just a continuous flow of data. Like an array that holds some data, a stream does
not have the concept of a data index. You cannot move back and forth in a stream. The data can
only be accessed sequentially.

A stream either consumes or provides information. A stream is usually linked to a physical
device. It provides a uniform interface to a device for data flow. In the case of an input stream,
the device to which it connects may be a physical disk, a network connection, a keyboard, and

S

Chapter 9: Java I/O 201

so on. In the case of an output stream, it may be connected to a console, a physical disk, a
network connection, and so on. Thus, when you use the input/output stream classes, your program
code becomes independent of the device to which the stream connects. Examples of source
streams are files and memory buffers. A printer or a console can represent a stream destination.

The streams in Java are of two types: byte and character oriented. The byte streams operate on
bytes of data, whereas the character-oriented streams operate on characters, typically a Unicode
character set. JDK 1.0 provided only byte-oriented streams. JDK 1.1 introduced character-oriented
streams. Because the underlying mechanism for streams is still byte oriented, JDK 1.1 also introduced
bridge classes to convert a byte stream into a character stream, and vice versa.

The I/O Class Hierarchy
Java provides a rich set of classes for I/O. A high-level class diagram for the I/O class library is
shown in Figure 9-1.

All classes in Java inherit from the Object class, and so do the various I/O classes. The
InputStream and OutputStream classes operate on byte data. The Reader and Writer classes
work on characters. The java.io.File class provides the interface to physical files. Java SE 7
introduced the java.nio.file.Path class, which is considered the equivalent of java.io.File in the
new API and provides much more sophisticated functionality.

The byte-oriented files work on 8-bit code and the character-oriented files work on 16-bit
Unicode. We’ll begin with the byte-oriented files. Both InputStream and OutputStream are
abstract classes from which the various byte-stream-oriented classes derive their functionality.
The InputStream class is a base class for all the input-related classes, and the OutputStream class
is a base class for all output-related classes. These two classes provide several methods, such as
read, write, readInt, writeInt, readFloat, writeFloat, and more, for reading and writing. The
subclasses provide the implementations of these methods. Examples of these subclasses are
ByteArrayInputStream, FileInputStream, ObjectOutputStream, and PipedOutputStream.

The Byte Streams
Let’s discuss the various InputStream derived classes first. Figure 9-2 shows a few subclasses of
InputStream.

FIGuRe 9-1. The top-level I/O class hierarchy

InputStream OutputStream Reader Writer File

Object

Various stream classesVarious stream classes Various Reader classes Various Writer classes

202 Java Programming

As mentioned earlier, the number of classes in the Java I/O package is too large to cover all of
them in a book like this. Therefore, we will take a more practical approach and discuss these
classes through programming examples. The first programming example teaches you how to open
a file, read its contents byte by byte, and then close the file. This program determines the length of
the specified file in terms of the number of bytes it contains. Note that we are currently focusing on
byte-oriented files. When we deal with a text file, we will use character-oriented stream classes,
where each character (Unicode) consists of two bytes of data.

Determining File Length
The simplest way to determine the length of a physical file is to open it in binary mode. When
you use the byte-oriented classes based on InputStream and OutputStream, the file will be
opened in binary mode. When you use the character-oriented classes based on Reader and
Writer, the file will be opened in character mode.

After opening the file, we read its contents a byte at a time until the end-of-file marker is
reached. On every read operation, we increment a counter and then get the file length in the
counter when the program terminates.

The program for determining the length of a file is given in Listing 9-1.

Listing 9-1 File Length Program

import java.io.*;

public class FileLength {

 public static void main(String[] args) {
 int count = 0;

FIGuRe 9-2. Hierarchy of input stream classes

FileInputStream FilterInputStream PipedInputStream ByteArrayInputStream

InputStream

Object

PushBackInputStreamBufferedInputStream LineNumberInputStream

Chapter 9: Java I/O 203

 InputStream streamReader = null;
 if (args.length < 1) {
 System.out.println("Usage: java FileLength <filename>");
 System.exit(0);
 }
 try {
 streamReader = new FileInputStream(args[0]);
 while (streamReader.read() != -1) {
 count++;
 }
 System.out.println(args[0] + " length = " + count);
 streamReader.close();
 } catch (FileNotFoundException fe) {
 System.out.println("File " + args[0] + " was not found");
 System.exit(0);
 } catch (IOException ie) {
 System.out.println("Error reading file");
 } finally {
 try {
 streamReader.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

The various I/O classes are defined in the java.io package. Thus, to use I/O, you need to import
the java.io package at the top of your source program:

import java.io.*;

The main function accepts the command-line arguments. When you run the program, you will
need to specify the name of some file on the command line. The program determines the length of
this file and prints this value on the user console.

The command-line parameters are passed as arguments to the main method:

public static void main(String[] args) {

The args argument in the preceding program is an array of String objects, where args[0]
represents the first command-line argument, args[1] represents the second command-line
argument, and so on.

In the main method, we first check whether any command-line parameters are specified while
invoking the application. We do this by checking the length of the args array:

if (args.length < 1) {

If there are no command-line arguments, the program prints a message to the user on how to
run the application:

System.out.println("Usage: java FileLength <filename>");

204 Java Programming

The angular brackets around filename indicate that this is an optional parameter specified on
the command line. If you do not specify this parameter, the program still runs.

After printing the message, we terminate the application gracefully by calling the exit method
of the System class:

System.exit(0);

The parameter 0 (zero) is typically interpreted as an indication to the JVM that the program has
terminated with success.

TIP
Refer to javadocs to learn more about the System class.

Assuming that the user specifies a command-line argument, the program will now proceed with
the next statement:

try {
 streamReader = new FileInputStream(args[0]);

This statement creates an instance of the FileInputStream class by passing the first command-
line argument as a parameter to it. The FileInputStream class constructor opens the file specified
as a parameter for reading. The file is opened in binary mode. On success, it returns a reference
to the open file; we store this reference in a variable (in our example, it is called streamReader).
Note that this variable is of type InputStream, which is a superclass of FileInputStream.

TIP
This may be a good time to look up the different constructors of the
FileInputStream class in javadocs.

As mentioned in the chapter on exception handling, opening a file is a checked operation
and must be enclosed in a try/catch block. The file-opening operation may generate a
FileNotFoundexception at runtime, which must be caught in the program:

} catch (FileNotFoundException fe) {
 System.out.println("File " + args[0] + " was not found");
}

NOTe
As discussed in Chapter 8, the Exception object provides detailed
information on the type and cause of an exception. You should use
this information in your code to generate an appropriate message
to the user. In the current program, we provide different types of
messages in each of the three exception handlers.

After opening the file successfully, we call the read method of the FileInputStream class:

while (streamReader.read() != -1) {
 count++;

Chapter 9: Java I/O 205

The statement streamReader.read() reads a byte from the stream and increments the file
pointer to the next position.

NOTe
If you look up the documentation of the read method in javadocs,
it says that it returns an int. The method, no doubt, reads a byte,
but returns it in int format. The file pointer is incremented by one—a
byte length.

The file pointer indicates the current position in the stream for reading or writing. When the file
pointer reaches the end-of-file, the read operation returns –1 to the caller. Therefore, in our while
loop, the test condition checks for this –1. For each byte read, we increment the count variable by 1.
The count variable has been set to 0 at the start of the program. When the while loop terminates,
the count contains the number of bytes read, which is the length of the specified file.

The read operation is also a checked operation, and you must provide an appropriate error
handler for it. The read operation may generate an IOexception. Therefore, we provide a
corresponding catch block:

} catch (IOException ie) {
 System.out.println("Error reading file");
}

In this exception handler, like the earlier one, we do not dig into the details provided in the
exception object; instead, we simply print a custom message to the user.

After reading the file fully, we print the count value to the user:

System.out.println(args[0] + " length = " + count);

Note that we must close all open files. We close the file in the finally block as follows:

} finally {
 try {
 is.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Remember from our discussions in Chapter 8 that the finally block is always executed
regardless of whether or not an exception occurs in the running code. This ensures that the file
is always closed regardless of what happens earlier in the running program. Note that calling the
close method does not guarantee file closure; it just ensures an attempt is made to close the file.
It is still possible the file may not close. The close operation itself may generate an exception.
We catch this and print a detailed message to the user by calling the printStackTrace method on
the exception object.

Some typical program output is shown here:

C:\360\ch09\>java FileLength build.xml
build.xml length = 69

206 Java Programming

This execution assumes that the build.xml file is available in the same folder as the one where
the FileLength.class file is stored. Alternatively, you may specify a relative path with respect to the
current folder of program execution or give an absolute path to the file.

The InputStream Methods
The read method we used in the previous program is in fact defined in the InputStream class.
The FileInputStream class that extends from the InputStream class inherits this method. The
InputStream class defines several other important methods, which are inherited and implemented
in its subclasses. We will now discuss some of the most frequently used methods of the
InputStream class.

In the previous example, we used the read method, which did not take any arguments. This
method reads one byte at a time. Two more variations of the read method are available in the
InputStream class. These methods take one or more arguments. The following read method takes
a byte array as an argument:

public int read(byte[] b) throws IOException, NullPointerException

The method reads the number of bytes equal to the length of the byte array. The data read is
stored in the byte array. It returns the number of bytes read, which could be less if the end-of-file
is reached earlier. The method throws two different types of exceptions. If the first byte cannot be
read for any reason other than the end-of-file condition, it throws an IOexception. In particular,
executing this call on an already closed input stream causes this exception to be thrown. If the
argument b is null, the method throws a NullPointerexception.

The following read method takes three arguments:

public int read(byte[] b, int off, int len)
 throws IOException, NullPointerException

The first parameter specifies the byte array in which the data will be stored. The second argument,
off, specifies the offset in the byte array where the first byte read will be stored. The third parameter,
len, specifies the number of bytes to read. The method returns the number of bytes actually read. The
method throws two types of exceptions, like in the earlier case, for the same reasons.

public int available() throws IOException

This method returns an estimate of the number of bytes that can be read from this input
stream without blocking, or it returns 0 when it returns the end of the input stream.

NOTe
The phrase “without blocking” is important in the definition of available
method. A stream may flow continuously and keep on acquiring
newer data as time advances. When we say that the method returns an
estimate of the count without blocking, this means that the receiver can
receive the stated number of bytes in a single subsequent read call.

TIP
The java.nio package, introduced since J2SE 1.4.2, solves the issues
of blocking calls by providing buffers and channels. This package is
discussed in the next chapter.

Chapter 9: Java I/O 207

Our next method, skip, has the following signature:

public long skip(long n) throws IOException

The skip method is useful if you want to skip and discard some bytes of data from the input
stream. The number of bytes to discard is specified by the parameter n to the skip method. As
you’ll recall from earlier, streams are sequential. Therefore, by calling the skip method, we can
simply jump ahead in the buffer, but we cannot come back to read whatever we skipped.

The close method closes the input stream:

void close()

Note that the garbage collector does not close an open stream on its own. Therefore, to
reclaim the resources, we must always explicitly close the stream we have opened previously.

TIP
The InputStream class provides a few additional methods, such
as mark, reset, and markSupported. I encourage you to open the
javadocs to learn the use of these methods. Whenever you encounter
a new class, it is a good practice to open the javadocs to check out
what the class offers you.

The OutputStream Class
Similar to the InputStream class, the abstract OutputStream class is a superclass of all
classes representing an output stream of bytes. A few examples of these subclasses are
ByteArrayOutputStream, FileOutputStream, FilterOutputStream, ObjectOutputStream, and
PipedOutputStream. Similar to FileInputStream, the FileOutputStream class provides a real
implementation of the OutputStream class. We will be using the FileOutputStream class and
its methods in our next example, which is a file-copy program that copies the contents of the
specified file to another file.

File Copy utility
The File Copy program accepts two command-line parameters and copies the contents of the file
specified by the first parameter to the filename specified in the second parameter. If the file listed
in the second parameter does not exist, it creates a new file. On the other hand, if the file does
exist, its contents are destroyed before the copy operation. Listing 9-2 provides the code for the
File Copy program.

Listing 9-2 A File Copy Utility

import java.io.*;

public class FileCopy {

 public static void main(String[] args) {
 int numberRead = 0;
 InputStream readerStream = null;
 OutputStream writerStream = null;

208 Java Programming

 byte buffer[] = new byte[512];
 if (args.length < 2) {
 System.out.println("Usage: java FileCopy file1 file2");
 System.exit(0);
 }
 try {
 readerStream = new FileInputStream(args[0]);
 } catch (FileNotFoundException fe) {
 System.out.println(args[0] + " not found");
 System.exit(0);
 }

 try {
 writerStream = new FileOutputStream(args[1]);
 } catch (FileNotFoundException fe) {
 System.out.println(args[1] + " not found");
 System.exit(0);
 }
 try {
 while ((numberRead = readerStream.read(buffer)) != -1) {
 writerStream.write(buffer, 0, numberRead);
 }
 } catch (IOException ioe) {
 System.out.println("Error reading/writing file");
 } finally {
 try {
 readerStream.close();
 writerStream.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 System.out.println("1 file copied!");
 }
}

The main method declares a byte buffer with a size of 512:

byte buffer[] = new byte[512];

This buffer array is used for reading and writing the file data during the copy process. We
could have read one byte at a time, like in the previous example, and written each read byte to
the new file. However, this would slow down the entire copy process for reasons given shortly. It
is always advisable to read and write a chunk of data at a time. For this, we created a buffer with
a size of 512. Generally, buffers are allocated in multiples of 512—a typical value for disk sector
size. A disk organizes its data in sectors of 512 bytes or multiples thereof. Reading a single byte of
data or one full sector of data requires the same amount of disk I/O processing time. Therefore, it
is always efficient for a disk I/O to read/write a sector of data. Creating a buffer of 512, like in our
program, results in efficient disk I/O operations.

Chapter 9: Java I/O 209

TIP
The java.io package also defines classes that provide in-built
buffering. These are discussed later.

As before, the program now checks for the number of arguments by checking the length of
the args array:

if (args.length < 2) {
 System.out.println("Usage: java FileCopy file1 file2");
 System.exit(0);
}

Next, we open an input stream on the file specified by the first command-line argument:

readerStream = new FileInputStream(args[0]);

To open the output stream on the file specified by the second command-line argument, we
instantiate the FileOutputStream class:

writerStream = new FileOutputStream(args[1]);

Next, we set up a while loop for reading and writing files:

while ((numberRead = readerStream.read(buffer)) != -1) {
 writerStream.write(buffer, 0, numberRead);
}

We use the previously discussed overloaded read method of the InputStream class, which
accepts the byte array argument. The method returns the number of bytes read. If this number
equals –1, it indicates that we have reached the end-of-file (EOF) condition. The number read
usually equals the buffer length, but may be less if the EOF condition occurs before the buffer is
completely filled. Because the buffer length is 512 bytes, we would be reading 512 bytes in each
read operation, except for the last read, which may return a number less than 512.

We use the write method of the OutputStream class to write the buffer contents to the file
specified by the writerStream object. The second parameter of the write method specifies the
offset in the buffer from where the data should be written. This is always 0 in our case. The third
parameter specifies the number of bytes to write from the buffer. This is the number returned by
our read method.

As before, we attempt to close both the files in the finally block, regardless of the outcome of
the file-copy process:

readerStream.close();
writerStream.close();

As in the earlier example, we need to enclose all the file operations in a try-catch block and
provide error handlers for file-not-found and I/O errors.

To run this program, you would use the following command line:

C:\360\ch09\>java FileCopy filename1 filename2

Remember that the file-copy program will destroy the contents of the file specified by filename2
if it exists. In the preceding command, the file specified by filename1 must be present in the
current working folder from where the FileCopy program is executed. The newly created file will

210 Java Programming

be available in the same working folder. You may alternatively specify relative or absolute folders
(path of file) for either or both filenames.

The OutputStream Methods
The OutputStream class defines three overloaded write methods:

public abstract void write(int b) throws IOException
public void write(byte[] b) throws IOException
public void write(byte[] b, int off, int len) throws IOException

The first method writes the byte specified in its parameter to the output stream. The byte to
be written is stored in the eight low-order bits of the argument b. The 24 high-order bits of b are
ignored. The subclasses of OutputStream must provide an implementation for this method.

The second method writes the entire buffer specified in its parameter, and the third method
writes the buffer contents specified by the first parameter, starting at an offset in the buffer
specified by the second parameter, and the number of bytes specified by the third parameter.
Note that the actual contents written to the file could be less than the number specified if an error
occurs during writing.

The flush method flushes the contents of the buffer to the output stream:

public void flush() throws IOException

This method is useful if you want to force an immediate write of the file buffer. If you do not
flush the buffer using the flush method, the operating system will at some suitable time write the
buffer to the physical file. In the case of multiuser applications, flushing the buffer immediately
becomes important for maintaining the consistency of data between different threads or users.
Generally, a word processing program such as Microsoft Word flushes your edits into a temporary
file periodically so that if the program crashes for some reason, your edits are not completely lost.
The explicit save operation by the user flushes all edits to the original file.

We have already used one of the constructors of the FileOutputStream class that takes one
String argument specifying the name of the file to be opened. Another important variation of the
constructor is the one that takes two parameters, as specified here:

public FileOutputStream(String name, boolean append)
 throws FileNotFoundException

The first parameter specifies the filename, as in the earlier case. The second parameter, if set to
true, indicates that the file should be opened in append mode. Any data you write to a file opened
in append mode will be added to the tail of the file. Thus, the original contents would be kept
intact. In other words, the file is not overwritten when it is opened in append mode. The method
throws the FileNotFoundexception if the file exists but refers to a folder rather than a regular file,
does not exist but cannot be created, or cannot be opened for any other reason. The method may
also throw a Securityexception if a security manager exists and its checkWrite method denies
write access to the file.

Character Streams
Just the way binary streams operate on binary files, the character streams operate on character
files—that is, text files such as .txt, .odt, and .docx. Just the way you have several real (fully
implemented) subclasses of input and output byte stream types, you have several real classes of

Chapter 9: Java I/O 211

input and output character stream types. The high-level class hierarchy for character stream
classes is given in Figure 9-3.

The Reader and Writer classes act as super classes for the rest of the classes in this category.
Several Reader/Writer subclasses are available that match the corresponding byte stream classes
in functionality, except they work on character streams rather than byte streams.

To explain some of these classes, let’s look at some program examples.

File Viewer utility
Let’s write a utility called File Viewer that accepts the name of a character file on the command
line and displays its contents to the user console. The complete program for the file viewer is
given in Listing 9-3.

Listing 9-3 The File Viewer Utility

import java.io.*;

public class FileView {

 public static void main(String[] args) {
 int numberRead = 0;
 FileReader reader = null;
 PrintWriter writer = null;
 char buffer[] = new char[512];
 if (args.length < 1) {
 System.out.println("Usage: java FileView filename");

FIGuRe 9-3. Reader/Writer class hierarchy

Object

Reader

InputStreamReader

FileReader Other Reader classes

Writer

OutputStreamWriter PrintWriter

FileWriter Other Writer classes

212 Java Programming

 System.exit(0);
 }
 try {
 reader = new FileReader(args[0]);
 writer = new PrintWriter(System.out);
 while ((numberRead = reader.read(buffer)) != -1) {
 writer.write(buffer, 0, numberRead);
 }
 } catch (FileNotFoundException fe) {
 System.out.println(fe.getMessage());
 System.exit(0);
 } catch (IOException ioe) {
 System.out.println("Error reading/writing file");
 } finally {
 try {
 reader.close();
 writer.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

The file viewer accepts one command-line argument; if it is missing, the user is informed
about the proper usage of the file viewer utility. After accepting the correct number of arguments
from the user, the program opens the specified file by instantiating the FileReader class:

reader = new FileReader(args[0]);

The program opens an output stream on the user console using the following statement:

writer = new PrintWriter(System.out);

Note that System.out refers to the output stream where the system by default outputs its
contents. We create an instance of the PrintWriter class on top of this output stream. The
PrintWriter class provides methods for writing primitive data and user-defined types. It is very
useful in outputting text-based data in a formatted way. For instance, it can write int, long, and
other primitive data types as text rather than as their byte values. The overloaded print method
accepts a boolean, char, int, float, double, long, or other as an argument and prints its value in
the text format. These methods take the form shown here:

public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
...

The class also provides the println version of all these methods, which prints a newline
character immediately following the specified data type. Thus, by using this class, we are not
required to convert primitive data types to text for printing to the console or any writer instance.

Chapter 9: Java I/O 213

The PrintWriter class also contains a powerful format method that allows us to print a list of
arguments of various data types in a specified format string and their locale. For those who are
more conversant in C language programming, the PrintWriter class also provides a method called
printf (same as the C language method) that offers the same functionality as the format method.

NOTe
In relation to Java Design Patterns, the PrintWriter class implements a
Decorator pattern that wraps the stream and reader/writer classes.

Next, we set up a loop for reading and writing files until the end-of-file (EOF) condition is
reached on the input stream:

while ((numberRead = reader.read(buffer)) != -1) {
 writer.write(buffer, 0, numberRead);
}

The read method of the FileReader class reads the file contents into the buffer specified in its
argument. It normally returns the number of characters read and returns –1 on the EOF condition.
The number of characters read usually equals the buffer length, except for the last read operation,
which returns a lesser number because the EOF condition is reached.

The write method of the PrintWriter class writes the buffer contents to the output stream. The
second parameter of the write method specifies the offset in the buffer from where the writing
should begin. The third parameter of the write method indicates the number of characters to write
from the buffer.

NOTe
The PrintWriter class automatically encodes using ISO-8859-1. The
ISO-8859 series defines 13 character encodings representing several
languages; each encoding can have up to 256 characters. ISO-8859-1
(Latin-1) comprises the ASCII character set, characters with diacritics,
and additional symbols.

After the while loop terminates, we close both the files by calling the close method on the two
instances in the finally block.

As in the earlier cases, all operations on files are enclosed in a try-catch block, and we provide
appropriate exception handlers for the checked exceptions. To run the program, you would use
the following command line:

C:\360\ch09\>java FileView filename

The program dumps the contents of the file specified by filename to the user console. The file
specified by the filename parameter must be available in the current working folder from where the
File Viewer utility is executed. Alternatively, you could specify a relative or absolute path to the file.

Buffered Readers/Writers
In the previous example, we declared our own character buffer for reading/writing the file. Java
provides the BufferedReader and BufferedWriter classes, which provide the in-built buffers.
Remember that reading a single byte or 512 bytes at a time requires the same amount of I/O
processing. Therefore, buffering characters makes file reading and writing more efficient.

214 Java Programming

When you use these classes, you may specify the size for the buffer; otherwise, a default size is
used that is adequate for most purposes. If you have a lot of system memory, you may allocate
a larger buffer to provide data caching so as to avoid frequent reads and writes from and to a
physical disk.

The BufferedReader Class
Typically, you would construct an instance of the BufferedReader class as follows:

BufferedReader reader = new BufferedReader(new FileReader("filename"));

We first construct an instance of the FileReader class by specifying the name of the file to be
opened in its parameterized constructor. We use this instance of the FileReader class as a parameter
to BufferedReader during its instantiation. Once the reader object is constructed, you may call its
various overloaded read methods to read the file contents. A typical method for reading the file line
by line is the readLine method:

public String readLine() throws IOException

The readLine method reads one line at a time from the input stream and returns it to the
caller as a String object. A line is terminated by either a linefeed ('\n'), a carriage return ('\r'),
or a carriage return followed immediately by a linefeed. The returned string does not include
the line-termination character. It returns null on reaching the end of the stream.

The BufferedWriter Class
Similar to the BufferedReader class, Java provides a BufferedWriter class for efficient writing to
the files. You construct an instance of BufferedWriter as follows:

BufferedWriter writer = new BufferedWriter(new FileWriter("foo.out"));

This creates a file called foo.out if it does not already exist; if the file exists, its contents will
be overwritten. After the file is opened for writing, the BufferedWriter creates a wrapper on it
to provide efficient write operations that can accept the data to be written in a character array
format or a string. It also provides a newline method that writes a newline character to the
output stream.

Now that we have discussed both binary and character stream files, let’s discuss when to use
each type.

Binary Versus Character Streams
If you are working with binary data such as images and sounds, you need to use binary mode
files. For other purposes, you would use character streams, as in the reader and writer classes
described earlier. These reader/writer classes offer you the following benefits:

They handle any character in the Unicode character set; the byte streams are limited to ■■
ISO Latin-1 eight-bit bytes.

Programs that use character streams can easily be internationalized because they do not ■
depend on a specific character encoding.

Because character stream classes use internal buffering, inherently they are more efficient ■■
than byte streams.

Chapter 9: Java I/O 215

In general, use the FileInputStream and FileOutputStream classes to read and write binary
data from and to image files, sound files, video files, configuration files, and so on. These classes
can also be used to read/write ASCII-based text files. To read/write modern Unicode-based text
files, use the FileReader and FileWriter classes.

Chaining Streams
In the previous section, you saw how a BufferedReader instance is opened on top of a
FileReader object. This is called wrapping or chaining streams. Very rarely, a program uses a
single stream object. Generally, several stream objects (in a series) are chained to process the
data more efficiently. The Java I/O libraries provide several such wrappings. The wrappings help
in processing and managing the data more efficiently by providing the additional convenience
methods in the subclasses. Connecting several stream classes together helps in getting the data
in the required format. Each class performs a specific task on the data and forwards it to the next
class in the chain. A typical example of this could be a data-backup utility. Such a program
would chain several streams to compress, encrypt, transmit, receive, and finally store the data in
a remote file.

Figure 9-4 shows one such wrapping for an input stream.
Here, we first open the FileInputStream on a physical data source. The output of this is buffered

in the BufferedInputStream object. We wrap this with a DataInputStream for convenient handling
of primitive data types. The DataInputStream class provides several read methods, such as
readByte, readChar, readDouble, and so on, that operate on primitive data types. A similar
wrapping is provided for writer classes, as illustrated in Figure 9-5.

FIGuRe 9-4. Chaining input stream classes

Program

DataSource

DataInputStream

BufferedInputStream

FileInputStream

216 Java Programming

In this case, the program writes data to a DataOutputStream by using its write methods
that accept primitive data types. The data written is buffered in a BufferedOutputStream
object for efficient disk writing. Finally, the data is written out to a physical device using the
FileOutputStream object.

We’ll now look at how this wrapping helps in writing efficient file I/O programs.

The Line Count Program
The Line Count program counts the number of lines in the specified text file. Java provides a class
called LineNumberReader for this purpose. The LineNumberReader class wraps the BufferedReader
class, which in turn wraps the Reader class.

The code for the Line Count program is given in Listing 9-4.

Listing 9-4 Program for Counting the Number of Lines in a File

import java.io.*;

public class LineCounter {

 public static void main(String[] args) {
 LineNumberReader reader = null;
 if (args.length < 1) {

FIGuRe 9-5. Chaining output stream classes

Program

DataSink

DataOutputStream

BufferedOutputStream

FileOutputStream

Chapter 9: Java I/O 217

 System.out.println("Usage: java LineCounter <filename>");
 System.exit(0);
 }
 try {
 reader = new LineNumberReader(new FileReader(args[0]));
 while (reader.readLine() != null) {
 }
 System.out.println(
 "Line number of the last line in the file is: "
 + reader.getLineNumber() + 1);
 } catch (FileNotFoundException fe) {
 System.out.println(fe.getMessage());
 } catch (IOException e) {
 System.out.println("Error reading file");
 } finally {
 try {
 reader.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

The main method takes one command-line argument that specifies a text file. The program
counts the number of lines in this text file and prints that number to the user console. The main
method checks the appropriate usage of the command line and prints an appropriate message to
the user if the command-line parameters are missing.

We open the file for reading by constructing a LineNumberReader class instance as follows:

reader = new LineNumberReader(new FileReader(args[0]));

After obtaining the reader object, the program simply reads the file line by line, ignoring the
contents read:

while (reader.readLine() != null) {
}

The readLine method returns null after reaching the end-of-file. At this time, it will have the
count of the total number of lines in the file, which we print to the user’s console:

System.out.println(
 "Line number of the last line in the file is: "
 + reader.getLineNumber() + 1);

We now close the file by calling the close method in the finally block. The entire file-handling
code is enclosed in a try-catch block, and we provide appropriate exception handlers for all the
required checked exceptions.

Some typical program output is shown here:

C:\360\ch09>java LineCounter Build.xml
Number of lines: 69

218 Java Programming

NOTe
The Line Count program may also take a binary file as input and give
you legitimate output. The reason behind this is how the readLine
method operates. If you open the javadocs for the LineNumberReader
class, you’ll see that this method reads a line of text. However, this
could be a line containing non-ASCII data. The documentation also
says that a line is considered to be terminated by any of the following:
a linefeed ('\n'), a carriage return ('\r'), or a carriage return followed
immediately by a linefeed. Thus, when you run this program on a
non-ASCII data file, it counts the numbers of lines, as defined, and
gives you legitimate output.

Let’s look at another example to further illustrate the use of reader/writer classes.

File Concatenation
The File Concatenation program, as the name suggests, concatenates the contents of a given
number of files. We specify the files on the command line as a variable argument list. The
output of the program will be a new file that is a sequential combination of all the input files.
In this example, you learn a new language feature (introduced in J2SE 5.0) called varargs,
which are variable arguments to a method. The code for the File Concatenation program is
given in Listing 9-5.

Listing 9-5 Concatenating Files

import java.io.*;

public class Concatenate {

 public static void concenateFile(String... fileName) {
 String str = null;

 try (BufferedWriter writer = new BufferedWriter(
 new FileWriter("CombinedFile.txt"));) {
 for (String name : fileName) {
 try (BufferedReader reader =
 new BufferedReader(new FileReader(name));) {
 while ((str = reader.readLine()) != null) {
 writer.write(str);
 writer.newLine();
 }
 } catch (IOException e) {
 System.out.println("Error reading/writing file");
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Chapter 9: Java I/O 219

 public static void main(String[] args) {
 if (args.length < 0) {
 System.out.println("Usage: java Concatenate file1 file2");
 System.exit(0);
 }
 concenateFile(args);
 System.out.println("Successfully created CombinedFile.txt");
 }
}

The File Concatenation program accepts a variable number of arguments on the command
line. The arguments specify the files to be concatenated. First comes the content of the file, as
specified by the first argument. To this the contents of the file specified by the second argument
are appended, and so on. The resultant output is stored in a file named CombinedFile.txt. The
original files remain unchanged.

After checking the valid input on the command line, the main function calls the concenateFile
method by sending it the variable list of arguments:

public static void concenateFile(String... fileName) {

Note how this list is specified. The ellipsis indicates that the number of arguments is variable.
Each argument is of type String. This varargs (variable arguments) feature allows a developer to
declare that a method can take a variable number of parameters for a given argument.

CAuTION
The varargs must be the last argument in the formal argument list.

The compiler converts this list of variable arguments to an array. Inside the method, we iterate
through this variable arguments list by using a foreach loop:

for (String name : fileName) {

In each iteration, we open a FileReader on the specified file, read its contents a line at a time,
and keep on writing to a previously created writer instance:

try (BufferedReader reader = new BufferedReader(new FileReader(name));) {
 while ((str = reader.readLine()) != null) {
 writer.write(str);
 writer.newLine();
 }
}

Note that we use the try-with-resources syntax of Java SE 7 to open the files. This reduces the
exception-handling code substantially. Also, we do not have to worry about closing the resources.

A typical program run is shown here:

C:\360\ch09>java Concatenate catalog1.txt catalog2.txt catalog3.txt
C:\360\ch09>

Note that the program does not output anything to the console. Instead, it creates a
CombinedFile.txt file in the current folder. The newly created file will contain the concatenation
of the three specified input files.

220 Java Programming

Accessing the Host File System
We’ll now discuss another important class in the I/O package. The java.io.File class provides an
abstract representation of a file or directory on the host file system. As mentioned previously, Java
SE 7 introduced a new class called Path in the java.nio.file package. This class provides more
sophisticated functionality than the File class. This does not, however, reduce the importance of
the File class, and it is recommended that you study this class in the javadocs. The java.nio
package is discussed in the next chapter. However, we will use the newly introduced Path class
for the program in this section. Our program will accept a path on the command line and list out
all the files found in the specified path.

The Directory Listing Program
The Directory Listing program accepts an argument on the command line. The program prints the
names of all the files under the path specified in this argument to the system console. The full
program is given in Listing 9-6.

Listing 9-6 Listing Files in a Directory

import java.nio.file.*;
import java.io.*;
public class DirListing {

 public static void main(String[] args) {

 if (args.length < 1) {
 System.out.println("Usage: DirListing DirectoryName");
 System.exit(0);
 }

 Path dirPath = Paths.get(args[0]);
 DirectoryStream<Path> directory = null;
 try {
 directory = Files.newDirectoryStream(dirPath);

 for (Path p : directory) {
 System.out.println(p.getFileName());
 }
 } catch (Exception ie) {
 System.out.println("Invalid path specified:" + args[0]);
 } finally {
 try {
 if (directory != null) {
 directory.close();
 }
 } catch (IOException ie) {
 ie.printStackTrace();
 }
 }
 }
}

Chapter 9: Java I/O 221

Note that at the top, we import classes from the java.nio.file package. After confirming that
the user has input an argument on the command line, we construct a Path object by calling the
static get method of the Paths class:

Path dirPath = Paths.get(args[0]);

After this, we declare a directory variable of type DirectoryStream, as follows:

DirectoryStream<Path> directory = null;

This declaration uses generics, which is discussed in Chapter 12. We initialize this variable by
calling the newDirectoryStream method of the Files class on the previously created dirPath object:

directory = Files.newDirectoryStream(dirPath);

Now, we can print the names of all the files from this directory stream using a foreach loop,
as follows:

for (Path p : directory) {
 System.out.println(p.getFileName());
}

In the finally block, we close the opened stream.
You can run the program by specifying a desired path on the command line, and you will see

the list of files printed to your console.

Filtering the Directory Listing
In the preceding example, all the files present in the specified directory are listed on the console.
With a little modification to this program, we could filter out the files of a specified type in our
output. For example, we might want to list out only the files with .doc extension from the specified
directory. We can add such filters easily in our program by making the following modification in
the initialization of the directory object:

directory = dir.newDirectoryStream("*.{doc}");
directory = Files.newDirectoryStream(dirPath, "*.{docx}");

The newDirectoryStream method now takes a filter string as an argument. Thus, when we
retrieve elements from the created stream, we get only the files with the extension .doc. You can
create your own filter, as shown in the following example, which returns files having a size greater
than 8,192 bytes:

DirectoryStream.Filter<Path> filter = new DirectoryStream.Filter<Path>() {
 public boolean accept(Path file) throws IOException {
 return (Files.size(file) > 8192L);
 }
};

To use this filter while listing the files in the directory, you would use the following code:

directory = Files.newDirectoryStream(dirPath, filter);

222 Java Programming

TIP
Prior to Java SE 7, you would have used the FilenameFilter class to
perform such a filtering. This class has not been deprecated in Java
SE 7 and therefore you can still continue using it.

Reading/Writing Objects
The Java I/O library provides classes that allow you to read or write a user-defined object from or to
a stream. The two classes, ObjectInputStream and ObjectOutputStream, provide this functionality.
Java also defines an interface called Serializable. If you want to read/write objects, the class
representing the desired object must implement this interface. The Serializable interface does not
have any methods, so its implementation remains null.

Let’s illustrate the use of these classes with an example. Suppose you have created a Student
class to hold a student’s ID as well as the student’s first and the last names. You now want to
create a student database holding the data for the various students in the class. Your program
should also be able to retrieve this data. The program shown in Listing 9-7 does just this.

Listing 9-7 Program Illustrating Object Serialization

import java.io.*;

public class ObjectSerializationApp {

 public static void main(String[] args) {
 ObjectOutputStream objectWriter = null;
 ObjectInputStream objectReader = null;
 try {
 objectWriter = new ObjectOutputStream(
 new FileOutputStream("student.dat"));
 objectWriter.writeObject(new Student(1, "John", "Mayor"));
 objectWriter.writeObject(new Student(2, "Sam", "Abel"));
 objectWriter.writeObject(new Student(3, "Anita", "Motwani"));

 System.out.println("Printing list of students in the database:");
 objectReader = new ObjectInputStream(
 new FileInputStream("student.dat"));
 for (int i = 0; i < 3; i++) {
 System.out.println(objectReader.readObject());
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 objectWriter.close();
 objectReader.close();
 } catch (IOException ie) {
 ie.printStackTrace();

Chapter 9: Java I/O 223

 }
 }
 }
}

class Student implements Serializable {

 private String firstName;
 private String lastName;
 private int id;

 public Student(int id, String firstName, String lastName) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String toString() {
 return ("ID:" + id + " " + firstName + " " + lastName);
 }
}

Let’s first discuss the Student class. The class implements the Serializable interface:

class Student implements Serializable {

As mentioned earlier, the Serializable interface does not have any methods to implement and
is therefore known as a marker interface. The class constructor takes three arguments and stores
their values in instance variables. The Student class overrides the toString method to provide its
own string representation.

The main method of the ObjectSerializationApp class constructs an instance of
ObjectOutputStream, as follows:

objectWriter = new ObjectOutputStream(new FileOutputStream("student.dat"));

Note that this statement creates a new file called student.dat. If the file with this name already
exists, it will overwrite its contents. Once an instance of the ObjectOutputStream is obtained,
you can call its writeObject method to write any serializable object to it. The program constructs
and writes three student objects to the student.dat file using the following statements:

objectWriter.writeObject(new Student(1, "John", "Mayor"));
objectWriter.writeObject(new Student(2, "Sam", "Abel"));
objectWriter.writeObject(new Student(3, "Anita", "Motwani"));

After writing objects, the output file is closed via a call to its close method. The program then
reopens the student.dat file by constructing an ObjectInputStream object around it:

objectReader = new ObjectInputStream(new FileInputStream("student.dat"));

224 Java Programming

The program then reads the three objects from this file and prints their string representation
using the following for loop:

for (int i = 0; i < 3; i++) {
 System.out.println(objectReader.readObject());
}

The method readObject returns a Student object, which is printed to the console by calling
the implicitly overridden toString method. When you run the program, you’ll see the following
output on your console:

C:\360\ch09>java ObjectDemo
Printing list of students in the database:
ID:1 John Mayor
ID:2 Sam Abel
ID:3 Anita Motwani

You can also check for the presence of the newly created student.dat file in your current folder.

Summary
The java.io package provides several useful classes to facilitate I/O operations in your Java
applications. All I/O classes are based on streams, which are an abstraction to a data flow from
a source to a sink. The streams can be byte or character oriented. The byte streams are based on
the InputStream and OutputStream classes. The character-oriented streams derive from the
Reader and Writer classes. Both byte- and character-oriented streams define several subclasses to
provide a wide range of functionality. You learned to use several I/O subclasses to operate on
both byte and character streams. Besides these, Java also provides a File class that provides an
abstraction to a physical file. The File class is useful when you want to work on system files. Java 7
provides another equivalent class called Path, which has more sophisticated functionality when
compared to the File class. You learned to use this class via concrete examples. Finally, we
covered the technique of reading and writing user-defined objects from and to a stream. In the
next chapter, you learn more I/O classes and advanced I/O manipulation techniques. The next
chapter also covers additions within the new versions of Java SE.

Chapter
10

Advanced I/O

225

226 Java Programming

he previous chapter introduced you to several classes defined in the java.io
package and a few from the java.nio package. This chapter continues the
discussion on the remaining I/O classes and more advanced features of the
I/O libraries. To give you a feel of the exhaustiveness of this package, the class
hierarchy is shown in Figure 10-1.

As you can see from this figure, the Java I/O libraries contain several classes that inherit
InputStream and OutputStream. These classes decorate the InputStream and OutputStream
based on the well-known Decorator design pattern. You studied the use of some of these classes
in the previous chapter. This chapter covers many more classes from this list and provides
practical examples using them. Besides the wrapper classes on streams, Figure 10-1 shows other
classes that deal with physical files on the disk. You learn about these classes too in this chapter.
Additionally, this chapter covers the newly introduced classes in Java 7.

In particular, you will learn the following in this chapter:

Byte-oriented stream classes■■

The ■ PushbackInputStream class

The ■ SequenceInputStream class

The ■ PrintStream class

T

FIGure 10-1. The java.io class hierarchy

BuffereInputStream

InputStream

java.io

FilterInputStream

LineNumberInputStream

DataInputStream

PushbackInputStream

BufferedOutputStream

PrintStream

DataOutputStream

FilterOutputStream

ByteArrayOutputStream

FileOutputStream
PipedOutputStream

FileInputStream

SequenceInputStream
StringBufferInputStream

PipedInputStream

ByteArrayInputStream

OutputStream

File

RandomAccessFile

FileDescriptor

StreamTokenizer

Chapter 10: Advanced I/O 227

Character-oriented stream classes ■

The ■ CharArrayreader/CharArrayWriter classes

The ■ Console class

The ■ StreamTokenizer class

Object-oriented streams ■

The ■ externalizable interface

Serializing nested objects ■

Maintaining object versions■■

The Byte-Oriented Stream Classes
In the last chapter, you got an introduction to byte-oriented stream classes, where you used the
FileInputStream and FileOutputStream classes. As you can see from Figure 10-1, there are
several more classes in this category. Although it is not possible to cover all these classes in this
book, we will look at how to use some of them in practical situations so that you are able to use
the rest in your applications. We begin with the ByteArrayInputStream/ByteArrayOutputStream
and DataInputStream/DataOutputStream classes. As the names suggest, the first two classes
operate on a byte array and the latter two operate on object data—rather than primitive data types.
These are obviously the decorator classes that wrap the InputStream/OutputStream base classes.
Let’s discuss the purpose behind having them in the first place.

In many situations, you have the data available in byte arrays. For example, when you
transmit and receive data over a modem, the data is available in modem buffers, which are
basically the byte arrays. Consider the case of the NYSE and NASDAQ. These stock exchanges
stream trade data in real time to brokers. Trade data consists of scrip code, trade time, bid price,
offer price, volume, the high, low, and opening prices, as well as a few more fields. This data is
transmitted over a socket connection to the client machine. The exchange server writes this data
to a modem buffer. The data is sent in raw binary format in order to save bandwidth. In this case,
you would use a ByteArrayOutputStream class to write the data to its internal buffer. This class
deals with only raw binary data. To provide the abstraction to higher data types, you would use
the DataOutputStream class, which is a wrapper on the ByteArrayOutputStream class. The
DataOutputStream contains many methods to write the primitive data types. By chaining the data
output stream to a byte array output stream, you can write the binary form of the trade data into a
byte array and then send the entire array in a single packet to the remote machine. At the client
end, you would use ByteArrayInputStream to buffer the data retrieved from a socket connection.
You would then use the DataInputStream class to convert the raw data to primitive data types.

CAuTIOn
The DataInputStream and DataOutputStream go together. If the data
is written using any other output stream class, the read methods of the
DataInputStream will not be able to successfully read the data.

In general, whenever you want to extract data values of different types from an array of bytes,
you would use these InputStream-derived classes. The LiveData application we will discuss
shortly uses such a data buffer; it contains an integer, a character array, a few double values, and
a long data type. In C++, you would use memory pointers to reference different parts of the array

228 Java Programming

and perform casting on a group of bytes to extract the data of a particular type. In Java, this type
of direct memory referencing is not permitted. And that’s where these InputStream-derived
classes come in handy.

TIP
None of the methods of the ByteArrayInputStream class throw an
IOException. This is because the data comes from an array rather than
an actual I/O device.

nOTe
Java uses big-endian notation for number representation. This means
that for any primitive data value longer than one byte, the most
significant byte is at the lowest address (in other words, big end first.)
Thus, in an output stream of int values, the high order byte goes out
first, and in an input stream the high order byte arrives first. JVM
preserves this order on all underlying platforms, including Intel, which
uses the reverse representation known as little-endian. When you
use the InputStream-derived classes, you do not have to worry about
these internal representations, and your Java application is assured to
work correctly on any platform. Therefore, our stock exchange server
and the client could be running on different platforms, yet proper data
transfers are guaranteed between the two machines.

We will now discuss the LiveData program mentioned earlier to illustrate the use of these
classes. The complete program is given in Listing 10-1.

Listing 10-1 Stock Trade Data Streaming

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

public class LiveData {

 private ByteArrayOutputStream outStream;

 public static void main(String args[]) throws IOException {
 LiveData app = new LiveData();
 app.createData();
 app.readData();
 }

 public void createData() {
 try {
 outStream = new ByteArrayOutputStream();
 DataOutputStream writer = new DataOutputStream(outStream);
 for (int i = 0; i < 10; i++) {
 Trade lastTrade = new Trade(i);

Chapter 10: Advanced I/O 229

 writer.writeInt(lastTrade.scripCode);
 writer.write(lastTrade.time);
 writer.writeDouble(lastTrade.bid);
 writer.writeDouble(lastTrade.offer);
 writer.writeDouble(lastTrade.high);
 writer.writeDouble(lastTrade.low);
 writer.writeLong(lastTrade.quantity);
 }
 } catch (Exception e) {
 System.out.println("Error while writing data to buffer");
 }
 }

 private void readData() {
 byte[] timeBuffer = new byte[8];
 StringBuilder sb = new StringBuilder();
 Formatter formatter = new Formatter(sb, Locale.US);
 ByteArrayInputStream inStream =
 new ByteArrayInputStream(outStream.toByteArray());
 DataInputStream reader = new DataInputStream(inStream);
 try {
 for (int i = 0; i < 10; i++) {
 int scripCode = reader.readInt();
 reader.read(timeBuffer);
 String time = new String(timeBuffer);
 double bid = reader.readDouble();
 double offer = reader.readDouble();
 double high = reader.readDouble();
 double low = reader.readDouble();
 long volume = reader.readLong();

 formatter.format("ScripCode: %2d"
 + "\tTime: %s "
 + "\tBid:$ %05.2f"
 + "\tOffer:$ %05.2f"
 + "\tHigh:$ %05.2f"
 + "\tLow:$ %05.2f"
 + "\tVolume: %d",
 scripCode, time, bid, offer, high, low, volume);
 System.out.println(sb);
 sb.delete(0, sb.length());
 }
 } catch (Exception e) {
 System.out.println("Error while reading data");
 }
 }

 private class Trade {

 private int scripCode;
 private byte[] time;

230 Java Programming

 private double bid, offer, high, low;
 private long quantity;

 public Trade(int i) {
 scripCode = i + 1;
 time = now("hh:mm:ss").getBytes();
 bid = Math.random() * 100;
 offer = Math.random() * 100;
 high = Math.random() * 100;
 low = Math.random() * 100;
 quantity = (long) (Math.random() * 100000000);
 }

 private String now(String dateFormat) {
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new SimpleDateFormat(dateFormat);
 return sdf.format(cal.getTime());
 }
 }
}

The main function in the LiveData class creates an application instance and calls its two
methods: createData and readData. The createData method creates a few random trades and writes
this data to an output stream. The readData method reads this data from a byte array obtained from
the preceding output stream and prints the data in proper format on the user console.

nOTe
In practical reality, the createData method would belong to a server
process and the client program would contain the readData method.
The idealistic simulation of this stock server would require the use
of threads. Because we have not covered thread programming so far
in this book, we will have both create and read functions within the
same application.

The createData method creates an instance of ByteArrayOutputStream and copies its reference
to a class variable for use by the readData method:

outStream = new ByteArrayOutputStream();

We build a DataOutputStream object on top of this output stream:

DataOutputStream writer = new DataOutputStream(outStream);

Using this object reference, we are now able to write data to the underlying byte array using
the higher-level primitive data type write methods. We create 10 instances of the Trade class and
write its fields using the methods writeInt, writeDouble, and so on:

for (int i = 0; i < 10; i++) {
 Trade lastTrade = new Trade(i);
 writer.writeInt(lastTrade.scripCode);
 writer.write(lastTrade.time);
 writer.writeDouble(lastTrade.bid);

Chapter 10: Advanced I/O 231

The Trade class constructor assigns some random values to its fields during instantiation. The
readData method creates an instance of the ByteArrayInputStream on the byte array obtained
from the out stream:

ByteArrayInputStream inStream =
 new ByteArrayInputStream(outStream.toByteArray());

We open the DataInputStream on top of it to read the data by using the higher-level
data-read functions:

DataInputStream reader = new DataInputStream(inStream);

Note the use of various read methods, such as readInt, readDouble, and so on. Some partial
program output is shown here:

ScripCode: 1 Time: 04:53:41 Bid:$ 82.92 Offer:$ 49.41 High:$ 45.25
 Low:$ 52.26 Volume: 4882176
ScripCode: 2 Time: 04:53:41 Bid:$ 48.84 Offer:$ 00.18 High:$ 78.27
 Low:$ 71.53 Volume: 31719488
ScripCode: 3 Time: 04:53:41 Bid:$ 17.35 Offer:$ 29.33 High:$ 42.93
 Low:$ 98.08 Volume: 88175262
ScripCode: 4 Time: 04:53:41 Bid:$ 05.96 Offer:$ 65.09 High:$ 91.19
 Low:$ 15.66 Volume: 16592232

TIP
To save the contents of the out buffer in the OutputStream class to a
physical file, you call its writeTo method as shown here:

FileOutputStream f = new FileOutputStream("test.txt");
out.writeTo(f);
f.close();

Note that we do not close the files. Because the files are based on byte arrays, which do not
persist beyond the application’s life, it does not make sense to close the files. We need to
maintain the reference to these resources ourselves, and that is why we declare the out variable
in our program as an instance variable.

The PushbackInputStream Class
The PushbackInputStream class comes under the category of FilterInputStream classes. The
FilterInputStream has four subclasses, as shown earlier in Figure 10-1. Imagine this class as
providing the structure of the pipe for the flow of data. Its subclasses then extract the data into
small, usable bits. Out of these four subclasses, we have already used DataInputStream in the
previous program. We will use the PushbackInputStream in this section, and the other two later
in this chapter.

The PushbackInputStream class is used when you want to look ahead in the read buffer to see
what the next character is. It creates a one-byte input buffer that allows the input stream to retreat
one byte after it has been read, which enables you to test the next byte before taking any action.
The typical application of this comes in lexical analysis of compiler construction. Rather than

232 Java Programming

taking on this traditional example, we will discuss another application that effectively uses this
class. Suppose we are developing a print calculator where the user inputs a number (let’s say the
purchase price of an item) on the keypad. If this purchase price contains zero cents, we want to
print ** in place of 00 in the item’s price. Thus, if the purchase price is $5.00, the calculator
should print $5.**, and if the purchase price is $249.00, it will print $249.**. For any other value
after the decimal point, the value is printed “as is.” Thus, the prices $36.02 and $78.85 would be
printed as normal. Look at the program in Listing 10-2 to see how this conversion is done.

Listing 10-2 The Print Calculator

import java.io.*;

public class PrintCalc {

 public static void main(String args[]) {
 PrintCalc app = new PrintCalc();
 try {
 app.readAndPrint();
 } catch (IOException e) {
 System.out.println("Error encountered during printing");
 }
 }

 private void readAndPrint() throws IOException {
 PushbackInputStream f = new PushbackInputStream(System.in, 3);
 int c, c1, c2;
 while ((c = f.read()) != 'q') {
 switch (c) {
 case '.':
 System.out.print((char) c);
 if ((c1 = f.read()) == '0') {
 if ((c2 = f.read()) == '0') {
 System.out.print("**");
 } else {
 f.unread(c2);
 f.unread(c1);
 }
 } else {
 f.unread(c1);
 }
 break;

 default:
 System.out.print((char) c);
 break;
 }
 }
 f.close();
 }
}

Chapter 10: Advanced I/O 233

The readAndPrint method reads the number from the keypad, which in our case is the system
keyboard, and sends the formatted output to the printer, which in our case is a system console,
after making adjustments for zero cents. We first create an instance of PushbackInputStream on
the System.in stream:

PushbackInputStream f = new PushbackInputStream(System.in, 3);

The second argument to the constructor sets the buffer size for rollback, which is one byte by
default. Therefore, if we use a constructor without the second parameter, we are able to push
back only the last read byte.

Next, we set up a loop for reading the keyboard until the user hits the q key on the keypad:

while ((c = f.read()) != 'q') {

We now test the input character for a period (or dot). If the character is not a dot, we print the
character on the console in the default case of the switch statement. If a dot is found, we print it
on the console and start looking for the “00” character sequence. If this sequence is found, the
program prints ** to the console:

if ((c1 = f.read()) == '0') {
 if ((c2 = f.read()) == '0') {
 System.out.print("**");

If some other character follows the first read 0, the program puts both the characters back in
the buffer by calling the unread method twice:

f.unread(c2);
f.unread(c1);

If the first read character itself does not equal 0, we simply put it back in the buffer:

else {
 f.unread(c1);
}

The unread method pushes back a byte by copying it to the front of the pushback buffer.
There are other variations (overloaded) of the unread method available that push back a byte
array or a portion of a byte array. Please refer to the javadocs to learn about these methods.

Here is some sample output:

$500.00
$500.**
$245.02
$245.02
$549.78
$549.78
$1024.00
$1024.**
$245.0089
$245.**89
q

234 Java Programming

The odd-number lines show the user input and the even-number lines indicate the program-
generated print number. Note the output for $500.00 and $1024.00, where 00 is replaced with **.
The other numbers are printed as is. What about the last input, $245.0089? Here the two
zeroes are replaced with the two asterisks. I assume a typical physical calculator would not
permit entry beyond two decimal digits. As an exercise for the interested reader, you can impose
this restriction in the software by modifying the application.

TIP
There is class called PushbackReader that works on character streams,
allowing you to push characters back into the stream.

The SequenceInputStream Class
The SequenceInputStream, as the name indicates, provides a logical concatenation of other input
streams. The construction of a SequenceInputStream is different from the other InputStream
classes. The constructor either takes two arguments of the InputStream type or a list of InputStream
objects contained in an enumeration (java.io.enumeration), which is basically an indexed list of
items. Refer to the javadocs to learn more about the enumeration interface. The two constructors
are shown here:

SequenceInputStream(InputStream first, InputStream second);
SequenceInputStream(Enumeration streamEnum);

The SequenceInputStream class allows you to read multiple files in sequence and converts
them into a single stream. The only methods available for this class are read and close. The read
method fulfills the requests from the first input stream until it runs out of contents; it then switches
over to the next one in the list, and so on, until it reaches the end-of-file (EOF) on the last listed
file. An immediate application of this that comes to mind is combining multiple files into a single
file. Recall the EOD (end-of-day) data files provided by the stock exchanges, discussed earlier.
These are supplied on a daily basis. Suppose we want to perform some technical analysis on the
historical data of a stock traded on the exchange? We need to combine these daily data files into
a monthly or, rather, yearly data file for creating historical technical charts. We would use the
SequenceInputStream class for this purpose, as demonstrated in the next application. Another
reason to use this class is to create one input stream from multiple inputs and pass the new stream
to another class that has more data-manipulation methods available. For example, we could use
the DataInputStream class on our combined EOD prices file to retrieve the data in a format
needed by a charting application. Listing 10-3 shows the code for the FileMerger application.

Listing 10-3 A File Merge Utility Demonstrating the Use of SequenceInputStream

import java.io.*;
import java.util.*;

public class FileMerger {

 private Vector listOfFileNames = new Vector();
 private Vector fileList = new Vector();

Chapter 10: Advanced I/O 235

 public static void main(String args[]) throws IOException {
 FileMerger app = new FileMerger();
 app.getFileNames();
 if (!app.createFileList()) {
 System.exit(0);
 }
 app.mergeFiles();
 }

 private void getFileNames() {
 String fileName = "";
 System.out.println("Enter file names (one on a line): ");
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));

 while (true) {
 try {
 fileName = reader.readLine();
 } catch (IOException e) {
 System.out.println("Error reading keyboard");
 }
 if ((fileName.equals("over"))) {
 break;
 }
 listOfFileNames.add(fileName);
 }
 }

 private boolean createFileList() {
 Enumeration list = listOfFileNames.elements();
 while (list.hasMoreElements()) {
 String fileName = (String) list.nextElement();
 InputStream inputStream = null;
 try {
 inputStream = new FileInputStream(fileName);
 } catch (FileNotFoundException fe) {
 System.out.println("File not found: " + fileName);
 }
 fileList.add(inputStream);
 }
 return true;
 }

 private void mergeFiles() throws FileNotFoundException {
 try (
 OutputStream outStream =
 new FileOutputStream("monthlyDataFile.txt");
 SequenceInputStream inputStream =
 new SequenceInputStream(fileList.elements());) {
 byte[] buffer = new byte[4096];

236 Java Programming

 int numberRead = 0;
 while ((numberRead = inputStream.read(buffer)) != -1) {
 outStream.write(buffer, 0, numberRead);
 }
 } catch (IOException e) {
 System.out.println("Error reading/writing file");
 }
 System.out.println(
 "Created monthlyDataFile.txt "
 + "in your current folder");
 }
}

The FileMerger class declares two variables of the Vector type. Because we have not covered
this very useful class previously, I strongly recommend you open javadocs to study it in greater
detail—you will use it quite often in your applications. We have covered arrays previously. As
you’ll recall, before using an array, we need to declare its size, which cannot be changed later in
the program. The Vector class, on the other hand, implements a growable array of objects. Its
elements can be accessed using an integer index, just the way we access array elements. The size
of the Vector can grow or shrink dynamically as we add or remove elements from it. In our program,
we accept a variable number of files from the user for concatenation. Therefore, we cannot use a
fix-sized array for this application (using Java arrays would be awkward because we would need to
keep creating new ones as the size changes). We declare two Vector variables, as follows:

private Vector listOfFileNames = new Vector();
private Vector fileList = new Vector();

The listOfFilenames vector stores the string objects with the names of the files to be merged.
The fileList vector holds the open stream objects pertaining to each filename from the
listOfFilenames array.

The main function creates an application instance and calls its getFilenames method. This
method requests the user to enter the filenames, one on each line. To get the filename from the
keyboard, we open a stream object on the keyboard as follows:

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

nOTe
We wrap System.in with a BufferedReader class, which you will
learn about later in this chapter. The BufferedReader class provides
a method called readLine that eases reading a line of text from the
underlying stream.

Next, the program sets an infinite loop for getting the filenames from the user. The readLine
method reads one line of text. If this text equals “over,” we terminate the loop. Note how the
input filename is compared to the string “over” by calling the equals method of the String class.

Chapter 10: Advanced I/O 237

Once again, you are encouraged to open the javadocs to learn the various string-manipulation
methods defined in the String class. We add each entered filename to the Vector by calling its
add method:

listOfFileNames.add(fileName);

After receiving the filenames from the user, the program tries to open these files by calling
its createFileList method. The method first obtains the list of filenames in an enumeration. The
enumeration interface provides two methods: hasMoreelements and nextelement. These two
methods have obvious meanings, as conveyed by their names. We set up a loop to iterate
through the entire list:

while (list.hasMoreElements()) {

We read each element in the list object using the following statement:

String fileName = (String) list.nextElement();

Note that the list holds its elements using an Object reference. We need to typecast this to a
desired type, which in this case is the type String. We now attempt to open the file having the
specified name and add it to the fileList vector array:

inputStream = new FileInputStream(fileName);
fileList.add(inputStream);

After successfully opening all the listed files, the program proceeds with the file merger by
calling its mergeFiles method. In the case of an error while opening any of the files, the program
simply quits.

The mergeFiles method declares a variable of type OutputStream and creates a file called
monthlyDataFile.txt using the following statement:

OutputStream outStream = new FileOutputStream("monthlyDataFile.txt");

Because we are going to merge all daily data files into a monthly file, we’ve named the
output file accordingly to indicate that it is going to contain a month’s worth of data. You may
use any other name you choose.

Next, we build a SequenceInputStream object:

SequenceInputStream inputStream =
 new SequenceInputStream(fileList.elements());) {

The class constructor receives a set of filenames in an enumeration, which is constructed by
calling the elements methods of the fileList vector. After this, the program simply reads from the
inputStream object an array of bytes and writes it to the previously created output file:

while ((numberRead = inputStream.read(buffer)) != -1) {
 outStream.write(buffer, 0, numberRead);
}

Note that this will read all the files added into the SequenceInputStream object. The output
file now contains the concatenation of all the listed files.

Note that we use the try-with-resources syntax of Java SE 7 to open the files; thus, an explicit
close on these files is not required.

238 Java Programming

Some typical sample output is shown here:

Enter file names (one on a line):

EQ210211.csv
EQ220211.csv
EQ230211.csv
EQ240211.csv
over
Created monthlyDataFile.txt in your current folder

If you examine the contents of the output file, you will notice that each file is specified in the
sequence in which it was added to the vector.

The PrintStream Class
This is a very convenient class that has the ability to print representations of various data values,
such as all primitive types. During printing it converts all characters into bytes using the platform’s
default character encoding.

TIP
What is character encoding? You must have heard about Morse
Code, which has been in use worldwide for a long time. Morse Code
maps textual information as a series of on/off tones, lights, or clicks.
The skilled listener or observer interprets the original text without
any special equipment. This is called character encoding. Several
character encoding standards are in place today, including ISO
8859-1 (Western Europe), ISO 8859-2 (Western and Central Europe),
ISO 8859-8 (Hebrew), and HKSCS (Hong Kong). Unicode, which
you have certainly heard of, is one such character encoding. Java
supports a variety of encoding standards. Such encoding systems map
each character in a given repertoire to a certain sequence of natural
numbers, octets, or electrical pulses to facilitate the data transmission
of textual information through networks and stores them in computers.

The PrintStream class has several versions of an overloaded print method that accept a primitive
data type as an argument. These methods include print (boolean), print (char), and print (double).
The corresponding println methods are also provided for your convenience; these print a newline at
the end. The class also provides a C-style printf method that includes the format specifiers for the
various data types in its placeholders. Unlike other output streams, this class does not throw an
IOexception. Calling its checkerror method checks for exceptions. Optionally, a PrintStream can be
created to flush automatically. For this, you would use the following constructor:

PrintStream (OutputStream out, Boolean autoFlush)

If autoFlush is enabled, the flush method will be automatically invoked after a byte array is
written, a newline character (or '\n') is written, or one of the println methods is invoked.

nOTe
The System.out object we’ve used several times so far for outputting
to the console is of type PrintStream.

Chapter 10: Advanced I/O 239

The Character-Oriented Stream Classes
As the name suggests, character-oriented stream classes operate on characters. Java uses Unicode to
store strings. You’ll recall that Unicode is one of the encoding formats; Java supports a wide variety
of encoding formats, all of which can be configured when reading/writing textual information with
the reader/writer classes.

In the previous chapter, we looked at a few classes in this category. Let’s continue our
discussion by looking at a few more classes in this category.

The CharArray reader/Writer Classes
Earlier in this chapter, we studied the ByteArray input/output classes, which operate on binary
data. The corresponding equivalents of these classes that operate on character data are the
CharArrayreader and CharArrayWriter classes. Like their binary counterparts, these classes
operate on a buffer; however, this time the buffer is a character buffer rather than a byte buffer.
Note that a character in Java consists of two bytes. Thus, each element of the character array takes
up two bytes of space to represent a given character. Except for this difference, the two types of
classes—ByteArray and CharArray—provide very similar functionality to each other. Like a
ByteArrayOutputStream class, the CharArrayWriter class implements a character buffer that can
grow dynamically. The CharArrayreader creates a reader on the existing buffer to read the
characters stored in it. You have previously used the String class. This class provides an important
method called toCharArray that returns a character array containing the elements of the string.
Using this method, you will be able to construct an instance of CharArrayreader as follows:

CharArrayReader reader = new CharArrayReader(str.toCharArray());

Once an instance of CharArrayreader is obtained, you can use it for accessing the individual
characters of the string to perform further operations on it.

The Console Class
So far we have been using System.out to print messages to the console. Java SE 6 added a
Console class to enhance and simplify command-line applications. It provides a C-style printf
method that allows the use of format specifiers in the output string. Most importantly, it provides
a method for reading passwords that disables console echo and returns a char array. Both these
features are very important for ensuring security, as explained shortly.

No public constructor is available for the Console class. You can obtain an instance of Console
by calling the console method of the System class. It returns you a reference to the Console object.
When you start the JVM from a command line, the console typically will be connected to the
keyboard and the display, unless you have explicitly redirected these to other streams.

CAuTIOn
A Console might not be available under some situations. For example,
if you execute the program statement System.console() in a NetBeans
IDE (as well as in some other IDEs), it returns a null object for the
Console, because NetBeans provides its own window for the console
output. Likewise, if a JVM is started by a background job scheduler,
it will typically not have a console.

240 Java Programming

The program shown in Listing 10-4 illustrates the use of the Console class. This program
provides a secure login for a console-based application.

Listing 10-4 Accepting a Secure Login in a Command-Line Application

import java.io.Console;
import java.util.Arrays;

public class ConsoleApp {

 private static final int MAX_LOGINS = 3;

 public static void main(String[] args) {
 ConsoleApp app = new ConsoleApp();
 if (app.login()) {
 System.out.println("Thanks for logging in!");
 } else {
 System.out.println("Login failed!");
 }
 }

 private boolean login() {
 Console console = System.console();
 boolean isAuthenticated = false;

 if (console != null) {
 int count = 0;
 do {
 char[] pwd = console.readPassword("[%s]", "Password:");
 isAuthenticated = authenticate(pwd);
 // delete password from memory
 Arrays.fill(pwd, ' ');
 console.writer().write("\n");
 } while (!isAuthenticated && ++count < MAX_LOGINS);
 }
 return isAuthenticated;
 }

 private boolean authenticate(char[] passwd) {
 char[] secret = {'M', 'c', 'G', 'R', 'A', 'W', 'H', 'I', 'L', 'L'};
 if (java.util.Arrays.equals(passwd, secret)) {
 java.util.Arrays.fill(passwd, ' ');
 System.out.println("Authenticated\n");
 return true;
 } else {
 System.out.println("Authentication failed\n");
 }
 return false;
 }
}

Chapter 10: Advanced I/O 241

The main method creates an application instance and calls its login method before proceeding
with the rest of the application’s functionality. The login method obtains the Console object by
calling the console method of the System class:

Console console = System.console();

This object would be null if we run the application in NetBeans. In such a situation, we return
false to the caller, which eventually terminates the application. We give three attempts to the user
to enter the correct password. We read the password using the following statement:

char[] pwd = console.readPassword("[%s]", "Password:");

The preceding statement prints a prompt on the user’s console. The user-entered password is
returned in the pwd character array. The authenticate method verifies the entered password with
the system-stored password. Immediately after obtaining the result of this verification, we clear
the character buffer with spaces:

Arrays.fill(pwd, ' ');

Now, two important things are happening here in regard to security. First, the readPassword
does not echo the characters typed; therefore, even if someone is looking over the user’s shoulder,
the password is not revealed. Second, the password is cleared from system memory immediately
after its use. If we had stored this password in a String variable, nullifying the String object still
might have left the password string in the pool, thus making it available to a malicious resident
program. Clearing the character buffer ensures that the password is removed from system memory.
The idea behind the character array is that a primitive array can be deterministically cleared from
memory, as opposed to a String or other container, thereby minimizing the time the sensitive data
is active in the memory.

Finally, let’s look at the implementation of the authenticate method. This is just a stub. The
method stores the secret password in a character array. In reality, we would store an encrypted
password, or rather the hash of the password, in a database. The equals method of the Arrays class
compares its two arguments for equality. Depending on the outcome of this comparison, we print
an appropriate message to the caller and return a boolean value to the caller.

The StreamTokenizer Class
The StreamTokenizer is another very useful class that parses an input stream into tokens. This
class is not derived from InputStream or OutputStream. Yet, it is classified under the I/O library.
The reason behind this is that it works only with InputStream objects. It tokenizes an underlying
stream or even a reader into tokens. Here’s what we mean by tokenizing: The sentence “Mary
had a little lamb” contains five tokens, because each word is considered a token.

TIP
The process of breaking a file’s contents or a computer language
program into tokens for further processing is called lexing.

Once a given input stream is tokenized, you use the nextToken method in a loop to iterate
through all the tokens. For each token, you can find its kind, value, and so on, with the help of
several predefined fields or attributes. For example, the ttype field indicates the type of token
read, which can be a word, number, or end-of-line. The sval field indicates the string value of

242 Java Programming

a token, and the nval field indicates its numeric value. You will learn to use these fields in the
next program. Before starting the loop, we can set the syntax table to customize what is recognized
and what is ignored; otherwise, we can simply use the default rules. The class recognizes identifiers,
numbers, quoted strings, and C/C++-style comments.

The use of this class is illustrated in the program shown in Listing 10-5.

Listing 10-5 Utility to Count Words and Numbers

import java.io.*;

public class WordAndNumberParser {

 public static void main(String args[]) throws IOException {
 if (args.length < 1) {
 System.out.println("Usage: java WordAndNumberParser <filename>");
 System.exit(0);
 }
 WordAndNumberParser app = new WordAndNumberParser();
 app.parseFile(args[0]);
 }

 private void parseFile(String fileName) {
 int wordCount = 0;
 int numberCount = 0;
 try (FileReader reader = new FileReader(fileName);) {
 StreamTokenizer tokenizer = new StreamTokenizer(reader);
 tokenizer.slashSlashComments(true);
 tokenizer.slashStarComments(true);
 while (tokenizer.nextToken() != StreamTokenizer.TT_EOF) {
 if (tokenizer.ttype == StreamTokenizer.TT_WORD) {
 wordCount++;
 } else if (tokenizer.ttype == StreamTokenizer.TT_NUMBER) {
 numberCount++;
 }
 if (tokenizer.sval != null
 && tokenizer.sval.equals("DataInputStream")) {
 System.out.println(tokenizer.toString());
 }
 }
 } catch (FileNotFoundException fe) {
 System.out.println("File not found: " + fileName);
 return;
 } catch (IOException ioe) {
 System.out.println("Error parsing file");
 }
 System.out.println("Number of words: " + wordCount);
 System.out.println("Number of numerals: " + numberCount);
 }
}

Chapter 10: Advanced I/O 243

The main function, after checking for the proper invocation, creates an application instance
and calls its parseFile method. The parseFile method creates a StreamTokenizer instance by first
opening the given file using the character-oriented reader classes discussed earlier:

FileReader reader = new FileReader(fileName);
StreamTokenizer tokenizer = new StreamTokenizer(reader);

Note that we use the try-with-resources syntax of Java SE 7 for opening the file. Before parsing
the file, we set the following constraints:

tokenizer.slashSlashComments(true);
tokenizer.slashStarComments(true);

The tokenizer now ignores both styles of Java comments (that is, single and multiline). The
tokenizer ignores all the tokens inside these comments. We now set up a while loop to iterate
through all the tokens in the file:

while (tokenizer.nextToken() != StreamTokenizer.TT_EOF) {

For each token, we check whether it is an alphanumeric word or a number by comparing its
ttype field with the predefined constants:

if (tokenizer.ttype == StreamTokenizer.TT_WORD) {
 wordCount++;
} else if (tokenizer.ttype == StreamTokenizer.TT_NUMBER) {
 numberCount++;
}

Accordingly, the program increments the two counters. Within the loop, we also check whether
the current token equals the identifier DataInputStream. If so, we print the line number on which
the token is found:

if (tokenizer.sval != null
 && tokenizer.sval.equals("DataInputStream")) {
 System.out.println(tokenizer.toString());
 }

After the loop terminates, the program prints the word and number count to the console.
A sample, typical output run on the same program listing (that is, Listing 10-5) is shown here:

Token[DataInputStream], line 34
Number of words: 82
Number of numerals: 5

The output shows the word DataInputStream occurred in one place, on line number 34. The
number of words in the entire file is 82, and the number of numerals is five. We can modify the
contents of the comments in the input file to confirm that the tokenizer indeed ignores the comments.
Note that the actual output will vary depending on your input file.

The Object-Oriented Streams
In the last chapter, you saw how to store and retrieve the objects. We’ll now look at a few more
techniques for storing and retrieving objects.

244 Java Programming

The externalizable Interface
The previous chapter covered the use of the Serializable interface for persisting the object state.
We’ll now look at the externalizable interface, which provides control over the serialization
process. If an object implements the Serializable interface, all its fields get persisted unless they are
marked with the transient keyword or are declared static in the class. The transient keyword was
designed to meet this specific requirement of allowing the object’s field containing sensitive data
not to persist. The class may hold some sensitive data, such as credit card number, encryption key,
and so on, in its fields. Also, the class may declare a few instance fields for its own internal
workings and may also contain declarations of some temporary variables. Obviously, you won’t
want to transmit such data over the network or even store it to disk. You would mark such fields
with the transient keyword. When you save or transmit such an object, its entire other state will be
transmitted or saved. Likewise, the fields that are marked with the static keyword are not serialized;
this is because such fields belong to the class and not to an object.

In some situations, you may want to provide your own way to persist the object state, other than
the default algorithm used by the JVM. For example, if your object is of type Customer and contains
credit card numbers in one of its fields, you will not want to save this number as is. Instead, you
would encrypt this field before the Customer object is saved to persistent storage or transmitted over
the network. This is where the interface externalizable comes in handy. This interface has two
callback methods: readexternal and writeexternal. Before the object is persisted, the runtime calls
these two methods. You can perform operations such as encryption and decryption in these two
methods. Also, you need to write code to persist whatever fields you want to save.

The Serializable interface uses the default runtime mechanism to implement the object
serialization, whereas the externalizable interface mandates that the class handle its own
serialization. This means that you need to decide which fields to write (and read) and in what
order. You implement this in the writeexternal (and corresponding readexternal) method.

TIP
Because implementing the Externalizable interface mandates that you
write code for serializing the desired fields of the class, the rest of the
class fields need not be marked transient.

A program that illustrates the use of the externalizable interface is given in Listing 10-6. Note that
the program uses Java’s security API. You need not worry about the security code while learning the
importance of the externalizable interface.

Listing 10-6 Program Illustrating the Externalizable Interface

import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.SecretKeySpec;

public class ExternalizableTestApp {

 public static void main(String args[]) throws IOException {
 try {
 Customer customer = new Customer(1, "1234-5678-9876");
 System.out.println("Before saving object: ");

Chapter 10: Advanced I/O 245

 System.out.println(
 "ID:" + customer.getId()
 + " CC:" + customer.getCreditCard());
 ObjectOutputStream outStream = new ObjectOutputStream(
 new FileOutputStream("customer.dat"));
 outStream.writeObject(customer);
 outStream.close();
 ObjectInputStream inputStream = new ObjectInputStream(
 new FileInputStream("customer.dat"));
 customer = (Customer) inputStream.readObject();
 System.out.println("After retrieving object: ");
 System.out.println("ID:" + customer.getId()
 + " CC:" + customer.getCreditCard());
 inputStream.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

class Customer implements Externalizable {

 private int id;
 private String creditCard;
 private static Cipher cipher;
 private static SecretKeySpec skeySpec;

 static {
 try {
 createCipher();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
 }

 public String getCreditCard() {
 return creditCard;
 }

 public int getId() {
 return id;
 }

 public Customer() {
 id = 0;
 creditCard = "";
 }

246 Java Programming

 public Customer(int id, String ccNumber) {
 this.id = id;
 this.creditCard = ccNumber;
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 try {
 out.write(id);
 encrypt();
 out.writeUTF(creditCard);
 System.out.println("After encryption: ");
 System.out.println("ID:" + id + " CC:" + creditCard);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 try {
 id = in.read();
 String str = in.readUTF();
 decrypt(str);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static void createCipher() throws Exception {
 KeyGenerator kgen = KeyGenerator.getInstance("AES");
 kgen.init(128);
 // Generate the secret key specs.
 SecretKey skey = kgen.generateKey();
 byte[] raw = skey.getEncoded();
 skeySpec = new SecretKeySpec(raw, "AES");
 // Instantiate the cipher
 cipher = Cipher.getInstance("AES");
 }

 private void encrypt() throws Exception {
 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 byte[] buff = cipher.doFinal(creditCard.getBytes());
 creditCard = new String(buff);
 }

 private void decrypt(String str) throws Exception {
 cipher.init(Cipher.DECRYPT_MODE, skeySpec);
 byte[] buff = cipher.doFinal(str.getBytes());
 creditCard = new String(buff);
 }
}

Chapter 10: Advanced I/O 247

The main function creates an instance of the Customer object:

Customer customer = new Customer(1, "1234-5678-9876");

The first parameter to the Customer constructor is the customer ID, and the second parameter
is the credit card number. We will be saving this customer information to a disk file. However,
before saving the customer instance, we must encrypt the credit card information so that anybody
with access to the disk file will not be able to steal the customer credit card information. The main
function creates the customer.dat file for writing the customer data and then writes the Customer
object by calling its writeObject method:

ObjectOutputStream outStream = new ObjectOutputStream(
 new FileOutputStream("customer.dat"));
outStream.writeObject(customer);

Before the object is serialized, the Customer object ensures that its credit card field is encrypted,
as explained shortly. After saving the object, the program closes the data file and reopens it for
reading the saved information:

ObjectInputStream inputStream = new ObjectInputStream(
 new FileInputStream("customer.dat"));

The readObject method now reads back the stored information and re-creates the customer
object:

customer = (Customer) inputStream.readObject();

Before the object is fully initialized, it ensures that its credit card information is decrypted. The
program prints the object’s state to the user console before saving it to disk and after retrieving it
from disk. When we run the program, the following output is shown:

Before saving object:
ID:1 CC:1234-5678-9876
After encryption:
ID:1 CC:\MT?s?/?X|[YQ.
After retrieving object:
ID:1 CC:1234-5678-9876

The output also shows the intermediate state after the credit card field is encrypted. Now,
let’s look at the implementation of the Customer class. This class implements the externalizable
interface:

class Customer implements Externalizable {

As part of the implementation, it must implement the two interface methods writeexternal and
readexternal. We’ll look at the writeexternal method first:

public void writeExternal(ObjectOutput out) throws IOException {
 try {
 out.write(id);
 encrypt();
 out.writeUTF(creditCard);

248 Java Programming

In this method, we first write the id field to the output stream. The encrypt method encrypts the
creditCard field of the Customer class. After encryption, the program writes it to disk by calling the
writeuTF method of the output stream. If we examine the contents of the disk file, we’ll find only
the encrypted version of the credit card information stored in the file.

The readexternal method provides the decryption of the creditCard field:

public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 try {
 id = in.read();
 String str = in.readUTF();
 decrypt(str);

 The method first reads the id, followed by the encrypted credit card information. The decrypt
method decrypts this information and copies the plain text to the creditCard field of the Customer
object. Thus, the program always sees the plain text (the unencrypted version) of the credit card
information. However, the stored data always contains the encrypted version of this field. The
readexternal and writeexternal methods do this trick transparently.

nOTe
The rest of the code in the Customer class uses the security API.
Explaining this code is beyond the scope of this book. Be sure to
refer to the security API in Java documentation for further details.

nested Objects Serialization
A Serializable object may contain references to other objects. You may be wondering if you
serialize an object, whether the nested objects are also serialized. The answer is yes—the nested
objects will also be serialized (unless they are marked transient) along with the top-level object,
provided that all the concerned objects implement the Serializable or externalizable interface.
Listing 10-7 provides an example to illustrate this feature.

Listing 10-7 Serializing Nested Objects

import java.awt.Color;
import java.io.*;

public class NestedObjectsApp {

 public static void main(String args[]) {
 Line line = new Line();
 System.out.println("Before saving object:\n" + line);
 try (ObjectOutputStream outStream = new ObjectOutputStream(
 new FileOutputStream("graph.dat"))) {
 outStream.writeObject(line);
 } catch (IOException ex) {
 System.out.println("Error writing object");
 }
 try (ObjectInputStream inStream = new ObjectInputStream(
 new FileInputStream("graph.dat"));) {

Chapter 10: Advanced I/O 249

 line = (Line) inStream.readObject();
 } catch (IOException ioe) {
 System.out.println("Error reading object");
 } catch (ClassNotFoundException cfe) {
 System.out.println("Casting error");
 }
 System.out.println("\nAfter retrieving object:\n" + line);
 }
}

class Point implements Serializable {

 protected int x;
 protected int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

class ColorPoint extends Point implements Serializable {

 private Color color;

 public ColorPoint(int x, int y, Color color) {
 super(x, y);
 this.color = color;
 }

 @Override
 public String toString() {
 return "Point{" + "x=" + x + " y=" + y + '}'
 + " ColorPoint{" + "color=" + color + '}';
 }
}

class Line implements Serializable {

 private ColorPoint startPoint = new ColorPoint(0, 0, Color.red);
 private ColorPoint endPoint = new ColorPoint(10, 10, Color.blue);

 @Override
 public String toString() {
 return "StartPoint=" + startPoint + "\nEndPoint=" + endPoint;
 }
}

The program declares a class called Point having fields x, y. The class is serializable. The
ColorPoint class inherits the Point class and declares a Color field. This, too, is serializable. The
Line class declares two fields of the ColorPoint type and initializes them.

250 Java Programming

The main function creates a Line object and prints its initial state. It then serializes the created
object to a disk file and closes it. The program reopens the file, reads the data into a Line object,
and prints its state. When you run the program, you will notice that the original state of the Line
object is restored. It indicates that when you save an object, all its nested objects are also saved
along with their inherent states. The program output is given here:

Before saving object:
StartPoint=Point{x=0 y=0} ColorPoint{color=java.awt.Color[r=255,g=0,b=0]}
EndPoint=Point{x=10 y=10} ColorPoint{color=java.awt.Color[r=0,g=0,b=255]}

After retrieving object:
StartPoint=Point{x=0 y=0} ColorPoint{color=java.awt.Color[r=255,g=0,b=0]}
EndPoint=Point{x=10 y=10} ColorPoint{color=java.awt.Color[r=0,g=0,b=255]}

Versioning Objects
We have covered how to persist the object state to a disk file. In many situations, the classes in a
program evolve over time. When a class definition changes, the object’s data saved with previous
versions of the class becomes mostly unreadable. Versioning objects can manage this kind of
situation where you are trying to read from an older version of the class. We will demonstrate this
problem with a typical example in a practical situation. Consider the program shown in Listing 10-8.

Listing 10-8 Program to Serialize the Product Class

import java.io.*;

public class ProductWriter {

 public static void main(String args[]) throws IOException {
 Product p1 = new Product(100);
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("product.dat"));
 os.writeObject(p1);
 os.close();
 }
}

class Product implements Serializable {

 private float price;
 private float tax;

 public Product(float price) {
 this.price = price;
 tax = (float) (price * 0.20);
 }
}

Chapter 10: Advanced I/O 251

 The program declares a Product class that has two fields, price and tax, of type float. The
main function constructs an instance of Product and saves it to a physical disk file. After the data is
saved at a later time, we want to read this data from the disk file and use it in future applications.
For this, we write a Productreader class, as shown in Listing 10-9.

Listing 10-9 Program to Read Serialized Product Data

import java.io.*;

public class ProductReader {

 public static void main(String args[]) throws Exception {
 ObjectInputStream is = new ObjectInputStream(
 new FileInputStream("product.dat"));
 Product p1 = (Product) is.readObject();
 System.out.println(p1.toString());
 }
}

The program simply opens the previously created data file, reads its data into the Product
object, and prints its contents. When we run the program, output similar to the following is shown:

Product@9304b1

Whatever is printed to the console is definitely not what we want. We want the product’s
price and tax to be printed to the console. Therefore, we will now override the default toString
method of the Product class. The modified Product class definition is shown in Listing 10-10.

Listing 10-10 Modified Product Class

class Product implements Serializable {

 private float price;
 private float tax;

 public Product(float price) {
 this.price = price;
 tax = (float) (price * 0.20);
 }

 public String toString() {
 return ("Price:" + price + " Tax:" + tax);
 }
}

252 Java Programming

Now, let’s run the Productreader application again. We’ll see the following error printed to
the console:

Exception in thread "main" java.io.InvalidClassException: Product; local class
incompatible: stream classdesc serialVersionUID = -4609301823165882715, local
class serialVersionUID = -3424249794808075076

This is because the Product state was saved with the previous version of the Product class.
Java assigns a unique identifier (serialversionuID) to every serializable class during compilation.
Thus, when we change the class definition, the object state information we had saved becomes
incompatible with the new version of the class. This problem can be solved by adding the
serialversionuID (which represents the stream unique identifier, or SUID) of the original class to
the modified class definition. To determine the serialversionuID of a class, run the following
command on the command prompt:

C:\360\ch10>serialver Product
Product: static final long serialVersionUID = -3424249794808075076L;

The utility gives us the serial version UID of the specified class. Copy the following statement
into the new class definition:

static final long serialVersionUID = -3424249794808075076L;

Note that the ID generated on your machine will differ from what’s shown here. The modified
Product class is shown in Listing 10-11.

Listing 10-11 Product Class Having the Same Serial Version UID

class Product implements Serializable {

 private float price;
 private float tax;
 static final long serialVersionUID = -3424249794808075076L;
 public Product(float price) {
 this.price = price;
 tax = (float) (price * 0.20);
 }

 public String toString() {
 return ("Price:" + price + " Tax:" + tax);
 }
}

Recompile the Product class and re-run your Productreader application. You will see the
following output:

Price:100.0 Tax:20.0

The new class now uses the serialVersionuID of the earlier class. The compiler in this case
does not generate the new ID for the modified class. Thus, the objects created with earlier
versions now remain compatible with the newer versions as far as serialization is concerned.

Chapter 10: Advanced I/O 253

CAuTIOn
If you modify the class fields, add a new field, or delete an existing
field, the object’s saved state will become incompatible with the
earlier version of the class. The earlier objects will still be readable
with the modified class definitions as long as you maintain the
same serialVersionUID across the different versions of a class.
Your program should take care of the newly added fields or the
missing fields when you read the data stored in earlier versions.

Summary
This chapter covered many important classes of the java.io package. The PushbackInputStream
class allows you to read ahead in the buffer. This class is very useful in compiler construction and
in general for parsing text documents. The SequenceInputStream class allows you to combine
multiple streams into a single stream. The PrintStream class provides functions for printing
primitive data types and also formatted strings. The data input/output stream classes facilitate the
reading/writing of primitive data types.

Under the character-oriented streams, we covered four important classes. The CharArray
reader/writer classes operate on character array data and are equivalent to ByteArray input/output
stream classes that operate on byte data. The Console class provides several useful methods to
output primitive data types to the user console. The StreamTokenizer class facilitates parsing the
file contents into tokens. Besides numeric and alphanumeric data, it also recognizes both types
of Java comments. Therefore, this class is very useful for parsing the source code.

Under the object-oriented streams, we discussed the use of the externalizable interface. This
interface allows you to control the object serialization process. When you serialize an object, all
the referenced objects within it also get serialized. Thus, the entire object tree can be serialized
and deserialized easily via the serialization mechanism.

Finally, this chapter described the problems encountered in object serialization when classes
evolve over a period of time. Maintaining the same serial version ID across the different versions
resolves this problem.

Chapter
11

Enums, Autoboxing,
and Annotations

255

256 Java Programming

t this point in the book, you have learned many features of the Java language. Most
of these features are part of the original language specification. The language itself
has evolved substantially over last several years. Many new features have been
added to the language throughout the various versions of Java SE. Java SE 6 and
some of the releases prior to J2SE 5.0 did not add anything new to the language.

We studied some of these features, such as enhanced for loops and varargs, in the previous
chapters. We will now look at some more advanced features. Although the list is long, it is not
exhaustive, and you will continue learning more language features in the chapters to follow.

In particular, this chapter covers the following features:

Typesafe enumerations■■

Primitive data type wrappers ■

Bit manipulations using wrapper classes ■

The NaN (Not-a-Number) infinity definitions ■

Character manipulations using character class ■

Autoboxing and unboxing ■

Annotating your code ■

Types of annotations ■

Creating your own annotations ■

Annotating your annotations■■

Typesafe Enumerations
Oftentimes, you need a fixed set of constants in your application. Examples might include the
days of the week and the colors in a rainbow. To create such sets, you create integer patterns in
your code. In this section, we discuss these integer patterns—how they are created and what their
drawbacks are—before looking at the new enum construct.

Creating Integer Patterns for Enumerations
To declare enumerations for the colors of a rainbow, we would declare the following sort of
int pattern:

public static final int COLOR_VIOLET = 0;
public static final int COLOR_INDIGO = 1;
public static final int COLOR_BLUE = 2;

Using such an int pattern poses many problems. In the first place, they are not typesafe. We
could simply pass in any int value where a color in a rainbow is required. Even worse, we could do
some arithmetic on these colors, which is obviously meaningless. Second, to avoid name collisions
with other constants in our application, we need to prefix their names, which is why the COLOR
prefix is used in this example. Third, such enumeration types are brittle in the sense that they are
compiled on the client. Later on, if we change their order or simply add a new constant, the client
would require a recompilation. If not recompiled, the client would behave unpredictably. Finally, if

A

Chapter 11: Enums, Autoboxing, and Annotations 257

we print these constants in our program, what we get are simply integer values, which don’t convey
what they represent or their type.

NOTE
Sir Isaac Newton originally named only five primary colors
(red, yellow, green, blue, and violet) in a rainbow. Later he added
orange and indigo. Thus, even in such rare cases, the constants in
an enumeration type could change.

The enum Type
The issues we just discussed are now resolved with the introduction of the enum type in J2SE 5.0.
The enum type in Java is more enhanced compared to similar-looking enumerations in other
languages. In most other languages, an enumeration is simply a list of named integer constants. In
Java, enum is a full-fledged class and thus offers all the benefits of declaring a class, as discussed
so far in this book. It allows you to add arbitrary methods and fields, to implement arbitrary
interfaces, and much more. The objects of the enum type can be compared to each other and
can be serialized—the serialization withstands arbitrary changes in the enum type. To illustrate
these benefits, let’s look at some concrete examples.

Listing Enumeration Constants
Suppose we want to create a list of the days in a week. We would do so with the following
declaration:

enum WeekDays {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;
}

This declaration assigns integer ordinal values to the constants. Thus, MONDAY takes a value
of 0, TUESDAY takes a value of 1, and so on. If we try to print a list of days in a for loop, the output
would simply list these ordinal values. With the new facilities available in enum, we can overcome
this problem easily by adding an overloaded toString method to the declaration. This can be seen in
Listing 11-1.

Listing 11-1 Enumerating the Days of the Week

public class WeekDaysList {

 public static void main(String[] args) {
 System.out.println("Days of week:");
 for (DaysOfTheWeek day : DaysOfTheWeek.values()) {
 System.out.printf("%s ", day);
 }
 System.out.println();
 }
}

enum DaysOfTheWeek {

258 Java Programming

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;

 @Override
 public String toString() {
 //only capitalize the first letter
 String s = super.toString();
 return s.substring(0, 1) + s.substring(1).toLowerCase();
 }
}

The DaysOfTheWeek enumeration, after declaring the seven constants pertaining to the days
of the week, adds a definition of the overloaded toString method. Here, we obtain the string
representation of each constant by calling super.toString. We then retain the first letter of the string
and convert the rest into lowercase. The modified string is returned to the caller. In the main
function, we iterate through all the elements of the enum using a foreach loop:

for (DaysOfTheWeek day : DaysOfTheWeek.values()) {
 System.out.printf("%s ", day);
}

The values method returns an array that contains a list of enumeration constants. When we
print the element day, its toString method is called by default. Our overridden toString method
prints each constant in its string format with only the first letter capitalized. The program output
is shown here:

Days of week:
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

This takes care of one of the problems mentioned earlier—the string representation of each
enumeration constant is returned rather than its ordinal number (an integer).

Adding Properties to an Enumeration
To add a property to an enumeration constant, we would need to define its constructor.

NOTE
The enum class has only a single protected constructor that cannot be
invoked by a programmer.

To illustrate, let’s create an enumeration of apples. Apples come in several varieties. Each variety
has a specific name and a price that may be different from the other varieties. A constructor for Apple
will facilitate setting its price at the time of its construction. We can also define a method to retrieve
the price of each apple. This program is shown in Listing 11-2.

Listing 11-2 Adding Custom Properties to an Enumeration

enum Apple {

 AURORA(10), BELMAC(12), CORTLAND(15), EMPIRE(8), GRAVENSTEIN(11);
 private int price;

Chapter 11: Enums, Autoboxing, and Annotations 259

 // Constructor
 Apple(int price) {
 this.price = price;
 }

 int getPrice() {
 return price;
 }
}

public class ApplesEnum {

 public static void main(String args[]) {
 System.out.println("Apple price list:");
 for (Apple apple : Apple.values()) {
 System.out.println(apple + " costs "
 + apple.getPrice() + " cents.");
 }
 }
}

The Apple enumeration declares five different varieties:

AURORA(10), BELMAC(12), CORTLAND(15), EMPIRE(8), GRAVENSTEIN(11);

Each constant declaration now accepts a parameter. In fact, each time a constant is declared, its
constructor is called, and this parameter is sent as an argument to the constructor. The constructor is
declared the same way as for any other class declaration:

Apple(int price) {
 this.price = price;
}

The parameter price is copied to a private instance variable. Thus, when we declare the
constant AURORA, its price will be set to its input parameter value, which is 10. Likewise,
BELMAC gets a price of 12, and so on. We also define a getPrice method that returns this price
to the caller.

In the main function, we print the name and price of each apple using a foreach loop:

for (Apple apple : Apple.values()) {
 System.out.println(apple + " costs " + apple.getPrice() + " cents.");
}

Note that the call to apple in this print statement calls its default toString method. The explicit
call to getPrice returns the price of the specified instance.

NOTE
We could easily add more apple varieties to this enumeration and/or
change the order of these varieties without breaking the client code.
This solves the problem with the integer pattern for enumerations
discussed earlier.

260 Java Programming

The ordinal and compareTo Methods
The two most useful methods of the enum class are ordinal and compareTo. The ordinal
method returns the ordinal value of the current enumeration constant, which is its position in
the list of constants. The first constant in the list takes an ordinal value of 0. Thus, MONDAY in
the DaysOfTheWeek enumeration has an ordinal value of 0, TUESDAY has a value of 1, and so
on. The compareTo method compares this enumeration with another object for its order in the
enumeration. The method returns a negative integer, zero, or a positive integer, depending on
whether the current object appears before, is equal to, or appears after the specified object.
For example, if the current day instance is DaysOfTheWeek.WEDNESDAY and we compare it
with DaysOfTheWeek.SATURDAY, the function returns a value of –3. If we compare it with
DaysOfTheWeek.MONDAY, the return value is +2.

Attaching Methods to Enumerations
Suppose we want to convert a user-specified weight in pounds to a different unit of measure,
such as kilograms, carats, or ounces. To convert pounds into kilograms, for example, we would
multiply the given value by the constant 0.45359237. To convert pounds into carats, you would
multiply the given value by the constant 2267.96185. Thus, we could be tempted to declare the
following type of enumeration:

enum Converter {

 0.45359237, 2267.96185, 453.59237, 16, ..., ...
}

Now, we will need to remember that the first conversion factor converts the given pounds into
kilograms, the second converts it into carats, the third converts it into grams, and so on. In the
future, if we change this order or insert one more conversion factor between two existing ones, we
cannot be assured that the conversions performed in the client application will be accurate for all
measurement units. We can easily overcome this problem by using the class features of the enum
declaration. For each constant, we define a conversion method. To understand how this is done,
refer to the complete conversion utility given in Listing 11-3.

Listing 11-3 Attaching a Method to an Enumeration Constant

public class UnitsConverter {

 private static double numberToConvert = 0;

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println(
 "Usage: java UnitsConverter <weight in pounds>");
 System.exit(0);
 }
 numberToConvert = Double.parseDouble(args[0]);
 System.out.println("lbs " + args[0] + " equals:\n");
 for (Converter conv : Converter.values()) {
 System.out.printf("%s: %f%n",

Chapter 11: Enums, Autoboxing, and Annotations 261

 conv, conv.performConversion(numberToConvert));
 }
 }
}

enum Converter {

 KG("KG") {

 double performConversion(double f) {
 return f *= 0.45359237;
 }
 },
 CARAT("carat") {

 double performConversion(double f) {
 return f *= 2267.96185;
 }
 },
 GMS("gms") {

 double performConversion(double f) {
 return f *= 453.59237;
 }
 },
 OUNCE("ounce") {

 double performConversion(double f) {
 return f *= 16;
 }
 },
 STONE("stone") {

 double performConversion(double f) {
 return f *= 0.071428571429;
 }
 };
 private final String symbol;

 Converter(String symbol) {
 this.symbol = symbol;
 }

 @Override
 public String toString() {
 return symbol;
 }

 abstract double performConversion(double f);
}

262 Java Programming

In this code, we declare an enumeration called Converter. We also define an abstract method
called performConversion, as follows:

abstract double performConversion(double f);

Each constant defined in the Converter will now have to implement this method. Look at the
KG declaration, shown here:

KG("KG") {

 double performConversion(double f) {
 return f *= 0.45359237;
 }
},

The declaration implements the performConversion method, which multiplies the input
number by a predefined constant. This constant value is the same as the one specified earlier to
convert pounds into kilograms. The name of the constant is KG. Its instance is created by calling
the constructor as follows:

KG ("KG")

The constructor takes a string argument that will be used in printing the name or the description
of the respective constant. For this, we define a private constructor, as in the earlier case, that copies
the input parameter into an instance variable. We also override the toString method, as in the
earlier case, to return the appropriate name to the caller.

Likewise, we add the definitions of other conversions such as CARAT, GMS, OUNCE, and so
on. In the main function, we simply iterate through all the elements of this Converter enumeration
to print the conversions of a given value to different units. Typical program output is shown here:

lbs 5.0 equals:

KG: 2.267962
carat: 11339.809250
gms: 2267.961850
ounce: 80.000000
stone: 0.357143

In the future, if we want to add more conversion units, we can do so easily by adding a new
constant definition anywhere we want. For example, to add a troy ounce conversion after the ounce
conversion, we add the following constant declaration between the ounce and stone declarations:

TROYOUNCE("troy ounce") {

 double performConversion(double f) {
 return f *= 14.583333333;
 }
},

When you run the client program after this new addition is done, in the output you will see
the given pounds converted into troy ounce.

Chapter 11: Enums, Autoboxing, and Annotations 263

NOTE
Whenever we add a new constant in the Converter enumeration,
we need to provide the implementation of the performConversion
method because this method has been declared an abstract method
in the Converter enumeration. This makes the enumeration definition
foolproof.

Serializing enum Types
Earlier you learned that objects of the enum type can be serialized and compared to each other.
Suppose we create an enumeration for the colors used in a drawing program. Such an enumeration
may look like this:

enum ColorPalette {

 RED, GREEN, BLUE
}

We can select the color green for the current drawing with the following declaration:

ColorPalette drawingColor = ColorPalette.GREEN;

We can now save the drawingColor object to a setting file by calling the writeObject method
of the ObjectOutputStream class (refer to the previous chapter). The code might look like this:

ObjectOutputStream outStream = new ObjectOutputStream(
 new FileOutputStream("Settings.dat"));
outStream.writeObject(drawingColor);

Later on, to read the settings from the Settings.dat file, we would use the following code:

ObjectInputStream inStream = new ObjectInputStream(
 new FileInputStream("Settings.dat"));
System.out.println("Retrieved object: "
 + (ColorPalette) inStream.readObject());

This prints GREEN to the terminal. Note that the message printed to the console is the string
name of the constant rather than its ordinal value. The default implementation of the toString
method of the enum class does this for you.

Earlier you learned that serialization withstands arbitrary changes in the enum type. So now,
let’s modify our definition of the ColorPalette enumeration as follows:

enum ColorPalette {

 RED, YELLOW, GREEN, MAGENTA, BLUE, VIOLET
}

Note that we have now added a new color (yellow) before green. If we read the previous
Settings.dat file, GREEN is still printed to the console, although the ordinal value of GREEN has
now changed. The trivial code for testing this is provided in Listing 11-4.

264 Java Programming

Listing 11-4 Serializing Enumeration Constants

import java.io.*;

public class EnumSerialization {

 public static void main(String[] args) {
 ColorPalette drawingColor = ColorPalette.GREEN;

 try {
 System.out.println("Saving color setting");
 ObjectOutputStream outStream = new ObjectOutputStream(
 new FileOutputStream("Settings.dat"));
 outStream.writeObject(drawingColor);
 outStream.close();
 ObjectInputStream inStream = new ObjectInputStream(
 new FileInputStream("Settings.dat"));
 System.out.println("Retrieved object: "
 + (ColorPalette) inStream.readObject());
 inStream.close();
 } catch (IOException e) {
 System.out.println("Error reading/writing object");
 } catch (ClassNotFoundException cfe) {
 System.out.println("Class casting error");
 }
 }
}

enum ColorPalette {

 RED, GREEN, BLUE
}

We will now discuss the next vital addition to Java language that eases coding effort to a great
extent—autoboxing.

Autoboxing
J2SE 5.0 introduced a new feature called autoboxing and unboxing that automatically converts
between the primitive data types and their wrapper classes. To understand this feature and appreciate
its importance, you need to understand the previously used wrapper classes.

Wrapper Classes
As you know, Java is highly object oriented. But what about its primitive data types? Are these
objects? The answer to this question is no; the primitive data types in Java are not classes. Therefore,
you lose the advantages that you have with classes when using the primitive data types. Here are
some of the disadvantages:

The simple data types are not part of the ■■ Object hierarchy and therefore cannot be used
as objects, as you would do with any other class in the Object hierarchy.

Chapter 11: Enums, Autoboxing, and Annotations 265

You cannot pass a primitive data type to a Java method by reference; it is always sent ■
by value.

Two different methods in your program cannot refer to the same instance of a simple ■
data type.

Some classes can use only objects and cannot use simple data types. For example, the ■■
Vector class we covered previously cannot hold a list of numbers.

To overcome this and other limitations, Java provides type wrappers for all its primitive data
types. The Integer class wraps an int data type, the Float class wraps a float data type, and so on.
Each of the primitive data types is wrapped into a class having the same name as the data type
but with the first letter capitalized. The exceptions are char, for which the wrapper class is called
Character, and the int type, for which the wrapper class is Integer. All these wrapper classes are
derived from the Number class.

Let’s go over a few important fields and methods of these wrapper classes that you will use
frequently. The MAX_VALUE and MIN_VALUE fields define the maximum and the minimum
values for the data type being wrapped. The parseInt method (and the parseXxx methods for other
data types) takes a string argument with an optional radix argument and returns the corresponding
data type to the caller after converting the value specified in its argument. The valueOf method
takes a primitive data type as its argument and returns an object of the corresponding wrapper
class. The toString method returns the string representation of the value of the wrapped primitive
data type. These classes also provide a xxxValue() method that returns the wrapped primitive type.
For example, the booleanValue method of the class Boolean will return a boolean data type, and
the intValue method of the class Integer will return an int variable.

TIP
For simple tasks, primitives are easy to use because you can use many
of the operators on them, rather than calling methods.

To wrap a primitive type into one of these classes, you use the provided class constructor.
Generally, each of these classes provides two constructors: one that takes a primitive type and
one that takes a string as a parameter. For example, you can wrap an integer data type using any
of the following statements:

Integer n1 = new Integer(5);
Integer n2 = new Integer("10");

In the first statement, an integer argument is used, and in the second statement a string
argument is used.

You can retrieve and print the value contained in these two objects by using the following
program statements:

int i1 = n1.intValue();
int i2 = n2.intValue();

The intValue method returns an integer representation of the contained number; the println
method converts this to a string and prints it to the console.

266 Java Programming

Because n1 and n2 are objects, you can compare them for equality. For example, the following
program statement prints false on comparing the two objects:

System.out.println(n1 + " = " + n2 + " is " + n1.equals(n2));

However, if you had set the value of n2 equal to the integer value held by n1 (both being
equal to, say, integer constant 5), will the comparison return true? Yes, the overloaded equals
method compares the values of the objects and returns true if they are equal, even though the
two objects are different. The Integer class also provides a compareTo method that provides a
better comparison between the two objects of its type. The method returns a value less than 0
if this integer is numerically less than the argument integer, and it returns a value greater than 0
otherwise; however, if the two Integer objects hold the same numeric value, it returns 0. The
following comparison will print –1 to the terminal:

System.out.println (n1.compareTo(n2));

And the following comparison will print 1 to the terminal:

System.out.println (n2.compareTo(n1));

The Integer class also provides a very useful method called parseInt that parses an input
string to extract its int representation. You may also specify the radix while parsing the string.

NOTE
Radix is a Latin word meaning “root,” which is considered a synonym
for “base” in the arithmetical sense. For a decimal system, the radix
is 10. For an octal system, it is 8.

This is a static method of the class, so you call it without instantiating the class. When you
execute the following two statements, the first statement prints 245 to the terminal and the second
statement prints 255 to the terminal:

System.out.println("The string holds int value: "
 + Integer.parseInt("245"));
System.out.println("The string holds int value: "
 + Integer.parseInt("FF", 16));

Note that in the second statement, the second parameter specifies the radix that is used
during parsing. Thus, the input string FF is considered as a hex number and its decimal value is
printed to the terminal. If the given string cannot be parsed in the specified radix, the method
will throw a NumberFormatException. For example, Integer.parseInt ("FF", 10) will throw an
exception. You may specify a radix of your choice while parsing the string. The following
statement parses the specified string using octal conversion and prints the corresponding
decimal number 64 to the console:

System.out.println("The string holds int value: "
 + Integer.parseInt("100", 8));

Chapter 11: Enums, Autoboxing, and Annotations 267

NOTE
You may specify a radix of your choice. For example,
Integer.parseInt("Jim", 27) is a valid statement that returns an
integer value of 14359. Here, the radix is 27. Thus, to convert
the string "Jim" you evaluate it as J × 272 + i × 271 + m × 270.

CAUTION
The statement Integer.parseInt("Java", 27) raises a
NumberFormatException error because the value of the
expression evaluates to the maximum size that an integer
variable can hold.

The program given in Listing 11-5 summarizes our discussion in this section.

Listing 11-5 Demonstrating Wrappers for Primitive Data Types

public class TypeWrapperApp {

 public static void main(String args[]) throws Exception {
 // object construction
 Integer n1 = new Integer(5);
 Integer n2 = new Integer("10");
 // object value
 System.out.println("n1 holds value: " + n1.intValue());
 System.out.println("n2 holds value: " + n2.intValue());
 // object equality
 System.out.println(n1 + " = " + n2 + " is " + n1.equals(n2));
 // object comparison
 System.out.println(n1 + " compared to " + n2 + " returns "
 + n1.compareTo(n2));
 System.out.println(n2 + " compared to " + n1 + " returns "
 + n2.compareTo(n1));
 // parsing a string
 System.out.println("The string holds int value: "
 + Integer.parseInt("245"));
 System.out.println("The string holds int value: "
 + Integer.parseInt("FF", 16));
 System.out.println("The string holds int value: "
 + Integer.parseInt("100", 8));
 System.out.println("The string holds int value: "
 + Integer.parseInt("Jim", 27));
 }
}

268 Java Programming

Here is the program output:

n1 holds value: 5
n2 holds value: 10
5 = 10 is false
5 compared to 10 returns -1
10 compared to 5 returns 1
The string holds int value: 245
The string holds int value: 255
The string holds int value: 64
The string holds int value: 14359

TIP
Here are some features of these wrapper classes worth noting: All
the methods of the wrapper classes are static; a wrapper class does
not contain constructors; and the objects of the wrapper classes are
immutable, which means that once a value is assigned to a wrapper
class object, it cannot be changed.

A Few Additions in J2SE 5.0
The type wrapper classes were provided in Java libraries since its first release. J2SE 5.0 made
several useful additions to its methods. For example, the Integer class now provides methods for
bit manipulations. The rotateRight method rotates the represented number to the right. The
rotation is performed on the Two’s Complement binary representation of the number. Thus, the
rightmost bit that is rotated out reenters on the left side. Similarly, the rotateLeft method rotates
the represented number to the left. The bit shifted out reenters on the right side. A rotateRight
operation by one digit results in arithmetic division by two, and a rotateLeft operation results in
multiplication by two. The following code snippet illustrates the use of these methods:

Integer n1 = new Integer(0x100);
Integer n2 = new Integer(0x1);
n1 = Integer.rotateRight(n1, 1);
n2 = Integer.rotateLeft(n2, 1);

The second parameter to the rotate operation specifies the number of bits by which the
rotation is to be performed. If you rotate the number by 32, its value remains unaffected.

J2SE 5.0 also introduced a few bit-manipulation methods: The bitCount method returns
the number of 1’s in the Two’s Complement binary representation of its input argument; the
numberOfLeadingZeros and numberOfTrailingZeros methods return the count of leading and
trailing zeros, respectively, as indicated by their names. The toBinaryString method returns a string
containing the binary representation of the specified number. This representation does not print the
leading zeros. Likewise, the toHexString and toOctalString methods return the hexadecimal and
octal representations. You could also use the toString method to obtain a string representation of
a number to any arbitrary radix. For example, the following code fragment prints the string “3333”
to the console:

Integer n = new Integer(255);
System.out.println("Radix4: " + Integer.toString(n, 4));

Chapter 11: Enums, Autoboxing, and Annotations 269

Additional Functionality
The functionality of the wrapper classes mentioned so far applies to most of the wrapper classes in
this category. A few wrapper classes provide additional functionality, as detailed in this section.

The Double class that wraps a double data type contains three fields: NaN (Not-a-Number),
POSITIVE_INFINITY, and NEGATIVE_INFINITY. It also provides the isNaN and isInfinite methods
to test for NaN and Infinity conditions. For example, the following two statements print true to the
console in each case:

System.out.println(Double.isNaN(new Double(0 / 0.0)));
System.out.println(Double.isInfinite(new Double(1 / 0.0)));

CAUTION
If you attempt 0/0 or 1/0, it is treated as integer division and results in
a divide-by-zero ArithmeticException. This is the reason behind using
0.0 in the preceding expressions, which is a double number by its
default representation.

The Character class that wraps a char data type provides several utility methods to operate on
character data. You can test whether the given character is a digit, a letter, a lowercase character,
and so on. The simple program given in Listing 11-6 illustrates the use of some of these methods.

Listing 11-6 Demonstrating the Unique Functionality of a Character Wrapper

public class CharWrapper {

 public static void main(String args[]) throws Exception {
 int digitCount = 0, letterCount = 0, lcCount = 0, ucCount = 0,
 wsCount = 0;
 for (int i = 0; i < 0xFF; i++) {
 if (Character.isDigit(i)) {
 digitCount++;
 }
 if (Character.isLetter(i)) {
 letterCount++;
 }
 if (Character.isLowerCase(i)) {
 lcCount++;
 }
 if (Character.isUpperCase(i)) {
 ucCount++;
 }
 if (Character.isWhitespace(i)) {
 wsCount++;
 }
 }
 System.out.println("No of digits: " + digitCount);
 System.out.println("No of letters: " + letterCount);

270 Java Programming

 System.out.println("No of lower case letters: " + lcCount);
 System.out.println("No of upper case letters: " + ucCount);
 System.out.println("No of white space characters: " + wsCount);
 }
}

The program tests each character in the numeric range 0 to 255 for a digit, a letter, a lowercase
letter, an uppercase letter, and a white space. It counts the occurrence of each of these types and
finally prints the result to the user console.

When we run the program, we see the following output:

No of digits: 10
No of letters: 116
No of lower case letters: 60
No of upper case letters: 56
No of white space characters: 10

Extended Support for Unicode Code Point
Unicode characters that occupy 16 bits have now been extended to 32 bits to accommodate
more characters. Thus, now the characters range from 0 to 0x10FFFF. The characters having
values greater than 0xFFFF are called supplemental characters. Let’s again run the program
given in Listing 11-6, but this time modifying the loop count to 0x10FFFF, as follows:

for (int i = 0; i < 0x10FFFF; i++) {

The program output after this modification is shown here:

No of digits: 268
No of letters: 90547
No of lower case letters: 1415
No of upper case letters: 1190
No of white space characters: 27
No of digits: 420
No of letters: 100520
No of lower case letters: 1918
No of upper case letters: 1478
No of white space characters: 26

The output will vary depending on your OS and the selected character set.
The new Character class has overloaded many of its existing methods that operate on the

char type (which is a 16-bit number) to use an int type (which is 32 bits wide). Besides these,
the Character class has also introduced several new methods that allow you to work on the
new Unicode character set.

TIP
You can obtain more information on the new Unicode character set at
www.unicode.org.

http://www.unicode.org

Chapter 11: Enums, Autoboxing, and Annotations 271

The Void Wrapper
Lastly, let’s discuss the wrapper on the void data type. The Void class has one field called Type.
This field holds a reference to the Class object that represents the void type. You cannot instantiate
the Void class. You can simply print its class type as follows:

System.out.println("The Class for Void is " + Void.TYPE);

This prints the following message to the terminal:

The Class for Void is void

Now, it’s time to discuss the most important feature, which is why we went through all these
wrapper classes. The new feature, called autoboxing, makes the use of wrapper classes totally
redundant. However, an understanding of wrapper classes is required to appreciate the usefulness
of autoboxing.

Autoboxing/Unboxing
You have just seen the use of type wrappers in wrapping the primitive data types. Beginning in
J2SE 5.0, you will not have to explicitly perform such wrapping. The wrapping/unwrapping is
now implicit and automatic.

For example, to wrap an integer constant 100 into an Integer type, prior to J2SE 5.0 you
would use the following code:

Integer a = new Integer(100);

Now, with the autoboxing feature introduced in J2SE 5.0, you can achieve the same with the
following code:

Integer a = 100;

Here, the number 100 is encapsulated into an Integer type and assigned to the variable a.
There is no need to use the new keyword.

To unwrap the contents of Integer, prior to J2SE 5.0, you would have used the following
statement:

int ii = a.intValue();

Now, you would simply type the following:

int ii = a;

Very neat and clean, isn’t it?
The process of wrapping a primitive data type into its corresponding type wrapper class is

called autoboxing, and the opposite process of extracting the wrapped primitive type from an
object is called unboxing.

This implicit boxing/unboxing works in all situations wherever such an action is necessary.
For example, you can freely mix the objects and the primitive types in an arithmetic expression.
Consider the following code fragment:

Integer a = new Integer(100);
int b = 200;
Integer c = a + b;

272 Java Programming

This code compiles without errors and produces the expected result of c equals 300. Note
that the expression a + b adds an int variable and an Integer object. In this case, the Integer
object a is implicitly converted to an int type. The program then performs the addition of two int
data types and assigns this to variable c of type Integer. During assignment, the autoboxing
converts the int type to the Integer type.

The autoboxing/unboxing also applies to method parameters and the return type. For example,
consider the following method declaration:

private static Integer adder(Integer a, Integer b) {
 return a + b;
}

The method takes two arguments of type Integer and returns an Integer result. You may call
this method with the following statement:

int result = adder (100, 200);

You are passing int-type parameters rather than Integer objects to the method. Inside the
method, these parameters are converted to Integer objects. In the evaluation of the expression
a + b, the objects are unboxed into int types. The return statement boxes the result into an
Integer type. The returned value is unboxed and assigned to result, which is an int type variable.
This entire process is demonstrated in the trivial example shown in Listing 11-7.

Listing 11-7 Demonstrating Autoboxing/Unboxing

public class Autobox {

 public static void main(String args[]) throws Exception {
 System.out.println
 ("Demonstrating power of autoboxing/unboxing");
 Integer a = 100;
 int b = 200;
 int c = a + b;
 System.out.println
 ("Autoboxing in action: arithmetic expressions");
 System.out.printf("%d + %d = %d%n%n", a, b, c);
 System.out.println("Autoboxing in action: "
 + "method parameters and return types");
 System.out.printf("%d + %d = %d%n", a, b, adder(a, b));
 }

 private static Integer adder(Integer a, Integer b) {
 return a + b;
 }
}

Chapter 11: Enums, Autoboxing, and Annotations 273

TIP
The autoboxing/unboxing feature now frees you completely from
using the tedious wrapper classes.

We’ll now discuss the next important addition to the Java language—annotation and
Annotation types.

Annotations
One of the major goals of any IDE such as NetBeans or Eclipse is to enhance ease of development.
The IDE generally provides the boilerplate code for many types of applications so that the developer
can focus on the core functionality of the application. However, having source code that does not
contain any boilerplate code makes it easier to maintain and create a bug-free application.
Annotations help achieve this goal by facilitating the tool vendors in generating the boilerplate
code. Besides this, annotations help in code analysis and checking. Other uses of annotations
include documenting your code for the benefit of fellow developers and providing vital runtime
information to testing tools. You’ll learn all these benefits as you read this section.

Annotations are like meta-tags—a data about data. One such annotation (meta-tag) you
have already come across in Java’s documentation is @Deprecated. J2SE 5.0 added many more
annotations, as well as added the facility for creating your own annotations. This section covers
the built-in annotations and how to create your own annotations.

An annotation is a mechanism in the Java language that allows developers to attach information
to different parts of their code. Two instances of annotations you might have noticed while surfing
through Java’s documentation are @Override and @Deprecated. Annotations do not become a part
of your code in the sense that they do not alter the code behavior at runtime. They also do not
change the code semantics. They are helpful in indicating whether your methods are dependent on
other methods, whether your methods are incomplete, whether your classes have references to
other classes, and so on. They simply help tool vendors to assist you in writing error-free code.
Deployment tools such as the EJB (Enterprise JavaBeans) deployer can also use annotations to
achieve error-free deployment.

We will discuss the annotations relevant to the Java language and not consider the ones used
by deployment tools.

Built-in Annotations
In this section we cover the following three built-in annotations:

@Deprecated■■

@Override ■

@SuppressWarnings■■

The @Deprecated Annotation
The Java API over the years has deprecated quite a few classes and methods. This means new
methods and classes have been added that provide a better way to achieve the same task; therefore,
the deprecated classes and methods need not be used any more by developers. Such entities are

274 Java Programming

marked with the @Deprecated annotation. One such class is StringBufferInputStream. Let’s see
what happens when we use this class in the program code given in Listing 11-8.

Listing 11-8 Demonstrating the @Deprecated Annotation

public class DeprecatedAnnotation {

 public static void main(String[] args) {
 java.io.StringBufferInputStream in =
 new java.io.StringBufferInputStream("A sample string");
 }
}

We compile this code with the following command line:

javac -Xlint:deprecation DeprecatedAnnotation.java

The compiler output is shown here:

DeprecatedAnnotation.java:9: warning: [deprecation] StringBufferInputStream
in java.io has been deprecated

java.io.StringBufferInputStream in =
 ^
DeprecatedAnnotation.java:10: warning: [deprecation] StringBufferInputStream
in java.io has been deprecated
new java.io.StringBufferInputStream("A sample string");
 ^
2 warnings

The compiler generates two warnings, showing us the lines in our program where we have
used the deprecated class. You can even use this @Deprecated annotation in your own code for
marking the elements you want to phase out eventually. Consider the code shown in Listing 11-9.

Listing 11-9 Using the @Deprecated Annotation

public class DeprecatedAnnotationDemo {

 public static void main(String[] args) {
 MyTestClass testObject = new MyTestClass();
 testObject.doSomething();
 testObject.doSomethingNew("Bowling");
 }
}

class MyTestClass {

Chapter 11: Enums, Autoboxing, and Annotations 275

 @Deprecated
 public void doSomething() {
 }

 public void doSomethingNew(String SomeFun) {
 }
}

Here, we have defined a class called MyTestClass with two methods. In this scenario, we
initially have only one method in this class, called doSomething. Later on, though, we decide to
provide a better implementation for this method, which requires sending a String-type parameter
to the method. Therefore, we write another method called doSomethingNew that takes a String
parameter. In this test application, we call both the old and new methods. Now, when we
compile this code, the compiler generates the following output:

javac -Xlint:deprecation DeprecatedAnnotationDemo.java
DeprecatedAnnotationDemo.java:10: warning: [deprecation] doSomething() in
MyTest Class has been deprecated
testObject.doSomething();
 ^
1 warning

Note that the -Xlint switch is used on the command line to get warning errors on deprecated
elements. In this situation, the compiler gave us the warning that the doSomething method has
been deprecated. This is how you’ll use the @Deprecated annotation in your classes to mark any
methods you do not want your developers to use in their future code while ensuring at the same
time that their existing code does not break. Note that this @Deprecated annotation can also be
applied to classes like the one we’ve seen for the StringBufferInputStream class. This is the
mechanism Java uses to discourage developers from using certain classes and methods in their
future code.

The @Override Annotation
The @Override annotation indicates that the annotated method is required to override a method
in its superclass. If it does not do so, the compiler will flag an error. We discuss the importance
of this annotation after looking at the code in Listing 11-10.

Listing 11-10 Demonstrating the @Override Annotation

public class OverrideAnnotationDemoApp {

 public static void main(String[] args) {
 Cat c = new Cat();
 c.saySomething();
 }
}

class Animal {

276 Java Programming

 void saySomething() {
 System.out.println("Animal talking");
 }
}

class Cat extends Animal {

 @Override
 void saySomething() {
 System.out.println("meow... meow");
 }
}

Here, the Animal class defines one method called saySomething. Cat is a subclass of Animal
that redefines the method’s implementation. In the subclass definition, we mark this method with
the @Override annotation. When we compile this code, it compiles without any warnings and
errors, which is good. Now let’s take out the @Override line from the source and recompile the
code. It again compiles without any errors. So what’s the use of the @Override annotation? To
find out, let’s now modify the method name in the Cat definition to saySomethng—a simple
spelling mistake. Now, let’s once again compile the code. The code compiles without errors.
However, when we run the code, we see the following output:

Animal talking

What happened here? We were expecting the cat to say “meow… meow.” Such types of
errors are hard to find, and programmers have spent many sleepless nights on such trivial-looking
errors. Okay, now let’s add the @Override annotation, as before, and recompile the code. Now
the compiler throws the following error to the terminal:

OverrideAnnotationDemoApp.java:22: method does not override or implement a
method from a supertype
@Override
^
1 error

Now, we would probably know that we do not have an overridden method that matches the
signature of a method in its superclass. We can easily save ourselves a lot of valuable time by
marking those methods we are overriding in a subclass with the @Override annotation.

The @SuppressWarnings Annotation
The use of this annotation tells the compiler not to spit out the specified warnings in its output.
To understand its use, let’s go back to our DeprecatedAnnotationDemoApp program. The
compilation of this program gives us the method deprecation warning we observed earlier.
Now, add the following line before the main function declaration:

@SuppressWarnings({"deprecation"})
public static void main(String[] args) {

Chapter 11: Enums, Autoboxing, and Annotations 277

Save the file and recompile the code. The deprecation warning error vanishes from the
output. You can use this feature judiciously to avoid cluttering the compiler output with
unwanted messages.

Having seen the built-in simple annotations, it is time now to create your own annotations.
Why would you create your own annotations? As you must have noticed, the built-in annotations
allow you to do so little that, for all practical purposes, you would want to create your own. In
the following section, you learn the entire process of creating your own annotations and see why
doing so is important. You also learn how to annotate your annotations.

Declaring Annotations
To facilitate the creation of a custom annotation, Java language has added a new type—the
annotation type. It looks like an ordinary class, but it has some unique properties. The definition
looks like an interface definition, except that the interface keyword is preceded by an @ sign. The
annotations can be of three different types—one without any elements, one with a single element,
and one with multiple elements. You will learn how to create all three types of annotations in this
section. First, we’ll start with a simple case of an annotation with no members.

Marker Annotations
This type of annotation does not have any elements. The following statement illustrates how to
declare such an annotation:

public @interface WorkInProgress {}

To use this in code, we would use the following syntax:

@WorkInProgress
public static float computeTax (float amount, float rate) {
 // to be implemented
 return 0;
}

The @WorkInProgress annotation would probably be used to indicate to our fellow
developers that the annotated method is yet to be implemented.

Single-Value Annotations
At this point, we might want to add what is yet to be done in the method’s implementation.
For this, we’ll create another annotation, called Task, as shown here:

@interface Task {

 String value();
}

We can now annotate the computeTax method as follows:

@Task("Implement tax computations")

These types of annotations are called single-element annotations because they take only a
single-value type. (We also have multivalue types of annotations that have multiple data members.)

278 Java Programming

In case of a single-element annotation, the data member is specified with the word value. The
syntax for specifying a member is similar to declaring a method. A few restrictions apply to
member declarations—these are discussed later. For now, let’s see what happens if we use any
word other than value in the preceding definition. The new definition looks like this:

@interface Task {

 String description();
}

We now need to annotate our method using the following syntax:

@Task(description = "Implement tax computations")

Note that this time, we had to explicitly spell out the member name—description. In the
earlier case, where we used the default name value, we specified only the target string, omitting
the member name. If we don’t do so, the compiler will generate an error during compilation.

Multivalue Annotations
Now let’s add a few more data members to our Task annotation:

@interface Task {

 String description();

 String targetDate();

 int estimatedHours();

 String additionalNote();
}

The description member instructs the developer about the nature of the task. The targetDate
member sets the expected deadline. The estimatedHours member specifies the number of
man-hours required to complete the job, and the additionalNote member may be used to specify
any additional instructions to the developer. We can now annotate our method as follows:

@Task(description = "Implement tax computations",
targetDate = "Jan 1, 2012",
estimatedHours = 50,
additionalNote = "This implementation is critical for the final launch")

See how all four members are specified using data=value syntax? These types of annotations
are called multivalue annotations.

Setting Default Values
We are now allowed to specify the default values for any of the data members. We do so by using
the default keyword. For example, in the modified definition of Task shown here, we have set the
default targetDate:

@interface Task {

 String description();

Chapter 11: Enums, Autoboxing, and Annotations 279

 String targetDate() default "Jan 1, 2012";

 int estimatedHours();

 String additionalNote();
}

When we annotate our code using this modified Task annotation, we need not specify the
targetDate member unless we want to assign a different value to it.

Custom Annotation Program
The full program that contains the concepts discussed thus far is given in Listing 11-11.

Listing 11-11 Creating Our Own Annotation

public class CustomAnnotation {

 @WorkInProgress
 @Task(description = "Implement tax computations",
 targetDate = "Jan 1, 2012",
 estimatedHours = 50,
 additionalNote = "This implementation is critical for the final launch")
 public static float ComputeTax(float amount, float rate) {
 return 0;
 }
}

@interface WorkInProgress {
}

@interface Task {

 String description();

 String targetDate();

 int estimatedHours();

 String additionalNote();
}

Rules for Defining Annotation Types
To summarize our discussion about creating annotations, here are the rules for defining annotation
types:

An annotation declaration starts with ■■ @interface, followed by the annotation’s name.

To create parameters for an annotation, you declare methods in its type. ■

Method declarations should not contain any parameters. ■

Method declarations should not contain any ■ throws clauses.

280 Java Programming

Return types of the method should be one of the following: ■

Primitive■■

String■■

Class■■

Enum■■

An array of the preceding types■■

Annotating an Annotation
When you create your own annotations, their purpose may not be always self-evident. You might
want to supply some sort of metadata (another annotation) on your newly created annotation type
so that a tool can introspect and reveal this intended functionality or a compiler can enforce the
intended functionality during compilation. The Java language defines four annotation types for
this purpose:

Target■■

Retention ■

Documentation ■

Inherited■■

These are called meta-annotations and are used for annotating your annotations. We discuss
each one in detail in this section.

The Target Annotation
The Target annotation specifies which elements of your code can have annotations of the defined
type. A concrete example will help explain this concept. Add the Target annotation to the Task
annotation we defined earlier, as shown here:

@Target(ElementType.METHOD)
@interface Task {

 String description();
 ...
}

Now, the Task annotation can only be applied to a method. Let’s verify this. Modify the
CustomAnnotation class defined earlier to add a private taxID field. Apply the Task annotation
to this field. The modified class definition is shown here:

public class CustomAnnotation {

 @Task(description = "Assign ID",
 estimatedHours = 0,
 additionalNote = "The IDs are available from IRS")
 private int taxID;

Chapter 11: Enums, Autoboxing, and Annotations 281

 @WorkInProgress
 @Task(description = "Implement tax computations",
 estimatedHours = 50,
 additionalNote = "This implementation is critical for the final launch")
 public static float ComputeTax(float amount, float rate) {
 return 0;
 }
}

When you compile this code, the compiler throws an error indicating that the annotation type
is not applicable to this kind of declaration, where you have defined the taxID field. The application
of the Task annotation on the ComputeTax method compiles without errors.

Here are the other types of targets that can be specified in place of ElementType.METHOD:

ElementType.TYPE■■ —Can be applied to any element of a class

ElementType.FIELD ■ —Can be applied to a field

ElementType.PARAMETER ■ —Can be applied to method parameters

ElementType.CONSTRUCTOR ■ —Can be applied to constructors

ElementType.LOCAL_VARIABLE ■ —Can be applied to local variables

ElementType.ANNOTATION_TYPE■■ —Indicates that the declared type itself is an
annotation type

The Retention Annotation
This annotation sets the visibility of the annotation to which it is applied. The visibility can be set
for three different levels: compilers, tools, and runtime. The visibility is set with the help of another
built-in annotation called @Retention. You set the annotation visibility using the following syntax:

@Retention(RetentionPolicy.RUNTIME)
@interface Task {

As shown, the @Retention annotation precedes the annotation declaration. It has one field
that is set to a predefined constant of the RententionPolicy enumeration.

The RetentionPolicy enumeration defines three constants—SOURCE, CLASS, and RUNTIME.
If you select SOURCE, the annotation will be visible to the compiler and will not be available in
the .class files and to the runtime. The compiler uses this annotation to detect errors and suppress
warnings. After its use, the compiler discards the annotation. When you use the CLASS identifier,
the annotation will be recorded in the .class file; however, the virtual machine (VM) need not
retain it at runtime. This is the default policy. Lastly, if you use the RUNTIME identifier, not only
is the annotation recorded in the .class file, but it is also made available to the runtime by the
VM. Thus, a running program can introspect this annotation and display its values to the user.
This feature is demonstrated in the example that follows.

Annotations at Runtime
The program presented here uses the introspection and reflection feature of the Java language.
Let’s briefly discuss this feature so that you will not have any difficulties in understanding how
annotations are discovered at runtime. A more detailed treatment on introspection and reflection
is available in Chapter 21.

282 Java Programming

When the JVM loads a class in memory, it creates an object of the Class type for the loaded
class. This object contains all the details about the class, which are available in its source program.
You obtain a reference to this Class object by calling the getClass method on an object loaded in
memory. You can introspect the various methods of the loaded class by calling the getMethods
method on the Class object. The method returns an array of Method objects. Method is a class that
defines the physical representation of a method of a class. For example, the getName method of
the Method class returns its name; the getParameterTypes method returns an array of Class objects
that represent the formal parameter types; and the getReturnType method returns a Class
object that represents the formal return type of the method. In the program that follows, we
use the getAnnotation method to obtain the annotation, if any, associated with the method. With
this little introduction to introspection and reflection, you are now ready to learn the runtime
discovery of annotations. You are encouraged to refer to the javadocs API for a full treatment of
introspection and reflection.

Let’s now look at the program in Listing 11-12, which discovers the annotations on various
elements at runtime.

Listing 11-12 Discovering Annotations at Runtime

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.reflect.Method;

@WorkInProgress
public class RuntimeAnnotation {

 @WorkInProgress
 @Task(description = "Implement tax computations",
 estimatedHours = 50,
 additionalNote = "This implementation is critical for the final launch")
 public static float ComputeTax(float amount, float rate) {
 return 0;
 }

 public static void main(String args[]) {
 try {
 RuntimeAnnotation obj = new RuntimeAnnotation();
 Class cls = obj.getClass();
 WorkInProgress annotation =
 (WorkInProgress) cls.getAnnotation(WorkInProgress.class);
 System.out.println("Class " + cls.getName());
 if (cls.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println("\tThis class is not fully implemented");
 }

 System.out.println("\nList of methods:");
 Method[] methods = cls.getMethods();
 for (Method method : methods) {
 System.out.println(method.getName());

Chapter 11: Enums, Autoboxing, and Annotations 283

 if (method.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println(
 "\tThis method is not fully implemented");
 }

 if (method.isAnnotationPresent(Task.class)) {
 Task annotationTask =
 (Task) method.getAnnotation(Task.class);
 System.out.printf("\tWhat TODO: "
 + annotationTask.description()
 + "%n\tTarget date: "
 + annotationTask.targetDate()
 + "%n\tEstimated hours: "
 + annotationTask.estimatedHours()
 + "%n\tNote: " + annotationTask.additionalNote()
 + "%n");
 }
 }
 } catch (Exception e) {
 System.out.print(e.getMessage());
 }
 }
}

@Retention(RetentionPolicy.RUNTIME)
@interface WorkInProgress {
}

@Retention(RetentionPolicy.RUNTIME)
@interface Task {

 String description();

 String targetDate() default "Jan 1, 2012";

 int estimatedHours();

 String additionalNote();
}

Like in earlier cases, we declare two annotations—WorkInProgress and Task—both having
the same definitions as in the earlier examples. However, we apply a retention policy on both
with the following statement:

@Retention(RetentionPolicy.RUNTIME)

Thus, these annotations are now available at runtime, which is what we want for this
demonstration. The main application class is RuntimeAnnotation. We apply the WorkInProgress
annotation to it by preceding the class declaration with the @WorkInProgress annotation.
In the class definition, first we define the method ComputeTax, to which we apply the two

284 Java Programming

annotations—WorkInProgress and Task. Next, we define the main method. We do not apply
any annotations to it because we have fully implemented this method. In the main method, we
create an instance of RuntimeAnnotation. Now comes the important part of introspection and
displaying the annotation information at runtime. To do this, the program obtains the type of the
created object by calling its getClass method:

Class cls = obj.getClass();

NOTE
The getClass method is defined in the Object class. It returns the
runtime class of this object. Every object in Java has an associated
class that is represented by a class called Class. The getClass method
returns a reference to this Class object.

The program now obtains the associated annotation by calling the getAnnotation method on
the obtained Class object:

WorkInProgress annotation =
 (WorkInProgress) cls.getAnnotation(WorkInProgress.class);

The getAnnotation method takes one parameter that specifies the annotation class type.
Therefore, the method retrieves the annotation of the specified type, and if it is not found, null is
returned. The program now retrieves the class name by calling its getName method for display to
the user:

System.out.println("Class " + cls.getName());

Next, we check whether this element (the class) has an annotation present by calling the
isAnnotationPresent method on the Class object; if it does, we print an appropriate message to
the user:

if (cls.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println("\tThis class is not fully implemented");
}

We now introspect the class object cls to discover all the methods defined in it. This is done
by calling the getMethods method on the Class object:

Method[] methods = cls.getMethods();

The method returns an array of Method objects. A Method is a class defined in the java.lang.
reflect package and represents a method declaration in a class.

NOTE
The process of retrieving the Class for an object and its methods and
fields is called introspection and reflection. You introspect a class to
obtain its details, and the class reflects upon itself by providing the
methods getMethods, getFields, getConstructors, and so on.

Chapter 11: Enums, Autoboxing, and Annotations 285

The method returns us the array of all the methods defined for the class. We iterate through
this list by using a foreach loop:

for (Method method : methods) {

For each method, we print its name:

System.out.println(method.getName());

For each method, we check whether WorkInProgress annotation has been applied to it:

if (method.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println("\tThis method is not fully implemented");
}

Next, we check whether the Task annotation has been applied:

if (method.isAnnotationPresent(Task.class)) {

If so, we get the various members of the Task annotation and print their values to the console:

Task annotationTask = (Task) method.getAnnotation(Task.class);
System.out.printf("\tWhat TODO: "
 + annotationTask.description()
 + "%n\tTarget date: " + annotationTask.targetDate()
 + "%n\tEstimated hours: "
 + annotationTask.estimatedHours()
 + "%n\tNote: " + annotationTask.additionalNote()
 + "%n");

NOTE
The annotation fields are retrieved using the method call syntax.
This method call cannot have any parameters.

When we run the application, we see the following output:

Class RuntimeAnnotation
 This class is not fully implemented

List of methods:
main
ComputeTax
 This method is not fully implemented
 What TODO: Implement tax computations
 Target date: Jan 1, 2012
 Estimated hours: 50
 Note: This implementation is critical for the final launch
wait
wait
wait

286 Java Programming

equals
toString
hashCode
getClass
notify
notifyAll

In the output, observe how the messages for the two annotations are printed and how the
values of different members of the Task annotation are printed to the console.

TIP
The real use, and one of the applications of the runtime discovery of
annotations, comes in software testing. A test runner tool can run all of
the class’s annotated methods reflectively by calling Method.invoke.
The isAnnotationPresent method can tell the tool which methods
to run.

The Documented Annotation
The Documented annotation indicates that an annotation with this type should be documented by
the Javadoc tool. Javadoc is a documentation generator provided as a part of the JDK that helps in
generating API documentation in HTML format from Java source code. In Syntax Reference 1,
we discussed the use of /** … */ for commenting the code. This is a Javadoc comment. Javadoc
defines several tags, such as @author, @version, @param, @return, and so on. You use these tags
to describe the corresponding elements.

By default, the Javadoc tool includes annotations in the generated document. Applying the
@Documented annotation allows Javadoc-like tools to include the annotation type information
in the generated documentation. Incidentally, this is a Marker-type annotation because it does
not have any members. To understand how this works, add the @Documented annotation to
the WorkInProgress and Task annotations we have created previously. Now, generate the
documentation for the RuntimeAnnotation class by executing the following command on the
command prompt:

c:\360\ch11>javadoc RuntimeAnnotation.java

Executing this javadoc command will generate quite a few HTML files in the current folder.
Open the index.html file in your favorite browser and examine the documentation for the
ComputeTax method, which uses both annotations. The output is shown in Figure 11-1.

As you can see in the output, both annotations are documented.

The Inherited Annotation
When a class is inherited, the subclass inherits all the nonprivate properties of its superclass.
Does this happen in the case of annotations too? In other words, if a class is annotated, are the
annotations of the parent class inherited by the subclass? Let’s look at an example. Suppose we
have a class called Shape that implements a few drawing primitives. The Shape class is not yet
fully implemented, so we add the @WorkInProgress annotation we have been using so far. We’ll
now extend the Shape class to create a Line class. We would naturally expect and want the
Line class to inherit the WorkInProgress annotation because this class is yet to be implemented.

Chapter 11: Enums, Autoboxing, and Annotations 287

Does this happen naturally? No, this inheritance takes place only if the WorkInProgress annotation
is annotated with @Inherited. To better understand this concept, let’s look at the program in
Listing 11-13.

Listing 11-13 Inheriting Annotations

import java.lang.annotation.*;

@WorkInProgress
class Shape {

 public void drawShape() {
 }
}

public class drawShape extends Shape {

 @Override
 public void drawShape() {
 }

 public static void main(String[] args) {
 Shape shape = new Shape();
 Class cls = shape.getClass();
 if (cls.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println("Shape class does require some work");
 WorkInProgress progress = (WorkInProgress) cls.getAnnotation(
 WorkInProgress.class);
 System.out.println(progress.doSomething());
 } else {
 System.out.println("Shape is fully implemented");
 }
 System.out.println();

FIGURE 11-1. Annotations documented by javadoc

288 Java Programming

 drawShape line = new drawShape();
 cls = line.getClass();
 if (cls.isAnnotationPresent(WorkInProgress.class)) {
 System.out.println("Line class does require some work");
 WorkInProgress progress = (WorkInProgress) cls.getAnnotation(
 WorkInProgress.class);
 System.out.println(progress.doSomething());
 } else {
 System.out.println("Line is fully implemented");
 }
 System.out.println();
 }
}

@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@interface WorkInProgress {

 String doSomething() default "\tDo what?";
}

The WorkInProgress annotation defines one property (doSomething) and is annotated with
Retention, Documented, and Inherited. The Shape class is annotated with WorkInProgress. The Line
class inherits the Shape class, but does not contain an explicit WorkInProgress annotation. In the
main method of the Line class, we print the status of annotations by using the reflection mechanism
discussed earlier. We create instances of both Shape and Line classes. We obtain the Class instances
of both classes by using the getClass method of Object, as used previously. We check whether the
annotation is present by calling the isAnnotationPresent method of Class. If the annotation is present,
we print the value of doSomething to the user console; otherwise, we print the message that the class
is fully implemented. When we run the program, we see the following output:

Shape class does require some work
 Do what?

Line class does require some work
 Do what?

 From this output, we can clearly see that Line class has inherited the WorkInProgress
annotation applied only to its parent class—Shape. Now, comment out the @Inherited annotation
in the declaration of the WorkInProgress annotation. Run the program and you will see the
following output:

Shape class does require some work
 Do what?

Line is fully implemented

The output now indicates that the Line is fully implemented, indicating that it does not have
the WorkInProgress annotation in effect. It is assumed that the developer has implemented the
Line class without first completing the Shape class—which may be true in some situations.

Chapter 11: Enums, Autoboxing, and Annotations 289

NOTE
It may not always be wise to inherit the annotations by default.
For example, it is meaningless to inherit the Task annotation we used
previously in the subclasses. Therefore, by default, the annotations are
not inherited; you must apply the @Inherited annotation if you wish a
particular annotation to be inherited by the subclasses of the class that
uses this annotation.

In general, these annotations are very useful in documenting your code, for compilers to
generate appropriate warnings, and for runtime tools to provide better testing of an application.

Summary
This chapter presented many of the additions made to the Java language, beginning in J2SE 5.0.
Now, it has the typesafe enum in its repertoire. The enumerations in Java differ from their
equivalents in other languages. In Java, an enumeration is declared as a class and thus derives
all the benefits of using classes in your programs. The enumeration is declared using the
java.lang.Enum class. This class implements the Serializable interface, and objects of Enum can
be serialized and deserialized without any extra piece of code to save and retrieve their state.

The chapter also described the type wrapper classes for primitive data types. Java provides a
class for wrapping each of its primitive data types, thus extending the benefits of object-oriented
programming in the use of primitive types. Although these classes were available in Java right
from the start, their functionality was greatly enhanced in J2SE 5.0. The new classes now allow
for bit and character manipulations, including support for extended Unicode. J2SE 5.0 has also
added the autoboxing/unboxing feature, which allows implicit conversions between primitive
types and their corresponding wrapper classes. The autoboxing feature makes the use of wrapper
classes somewhat redundant.

Finally, the chapter described the annotation feature. Annotations are better structured and are
therefore preferred over the conventional documentation methods that have been used for many
years. You create annotations using the @interface keyword. You can apply annotations to classes,
methods, fields, and other program elements. The compilers and tools can use these annotations.
The annotation visibility may be set to the source, class, or runtime level. You learned how to
retrieve the applied annotations at runtime using the introspection and reflection feature of Java.

In the next chapter, we cover another vital addition to the Java language—generics.

Chapter
12

Generics

291

292 Java Programming

n the previous chapter, you learned several new features introduced in the Java
language beginning in J2SE 5.0. One important addition to the language we did
not cover in the previous chapter is generics. As a matter of fact, the topic of
generics is so vast it deserves a dedicated chapter to itself. Therefore, this chapter
deals with the various aspects of generics.

In particular, you will learn the following in this chapter:

Understanding what generics are■■

Understanding why you would use generics ■

Using built-in generic classes ■

Creating your own generic types ■

Understanding erasures and raw classes ■

Creating bounded types ■

Using wildcards ■

Understanding bounded wildcards ■

Using generics with multiple parameters ■

Understanding typecasting between generic types ■

Creating generic methods ■

Declaring generic interfaces ■

Restrictions in generics■■

Generics
Generics refers to a parameterized type. At this point, you have definitely heard about collections,
and you have used some of their classes in previous chapters. The collection classes use generics.
It is a very vast topic, as you will see shortly.

What Are Generics?
So what are generics? In a literal sense, a generic is a parameterized type. Generics enable you to
create generalized classes, interfaces, and methods that can operate on any type of data specified
as a parameter. You’ll learn about the importance of this generalization in the following section.
Many times, library developers use this feature extensively. One such example of generics is the
classes defined in the Collections framework, which was introduced in J2SE 5.0 platform libraries.

NOTe
The Collections framework is discussed in depth in Chapter 16. You
do not need to know everything about Collections to understand the
material presented in this chapter.

A typical example of a class defined in the Collections framework is the java.util.LinkedList<e>
class. Note that the class declaration has angular brackets and a parameter, e, declared within them.

I

Chapter 12: Generics 293

The parameter e is called the type parameter and represents the type of element stored in the list.
This class is a generic type. You instantiate it by replacing the parameter e with an actual type, such
as String or Integer. Developers do this kind of instantiation by specifying the desired type in their
code. For example, if we wanted to create a LinkedList that stores only Integer values, we would
make the following statement in our code:

LinkedList<Integer> list = new LinkedList<Integer>();

Declarations, such as LinkedList<Integer> or a LinkedList<String>, are called parameterized
types.

Why Do We Need Generics?
Using generic types in our program code helps the compiler enforce better type checking on
our code. Java has always been known as a very strongly typed language—something you have
already observed in the previous chapters. Type safety is one of the key features of the Java
language. This characteristic has been extended further with the help of generics. To explain
how, let’s look at an example. Suppose we want to maintain a list of famous quotes in an array
of strings. Rather than maintaining the list in a fixed-size array, we will use the ArrayList class,
where the list size can grow dynamically. The following code fragment illustrates how to create
such a list:

void buildList() {
 listOfFamousQuotes = new ArrayList();
 listOfFamousQuotes.add(
 "Where there is love there is life - Mahatma Gandhi");
 listOfFamousQuotes.add(
 "A joke is a very serious thing - Winston Churchill");
 listOfFamousQuotes.add(
 "In the end, everything is a gag - Charlie Chaplin");
}

To print this list to the terminal, we would use the following code:

void printList() {
 Iterator listIterator = listOfFamousQuotes.iterator();
 while (listIterator.hasNext()) {
 String quote = (String) listIterator.next();
 System.out.println(quote);
 }
}

The Iterator interface, which is covered in Chapter 16, makes it easy to iterate through all the
elements of a collection. The next method of the Iterator interface returns an Object type. We
must typecast it before assigning it to a String type variable. If we do not typecast, the compiler
throws an error.

Now, let’s modify the preceding code to use the generic type: ArrayList<e>. We can create
the list using the following code fragment:

private static ArrayList<String> listOfFamousQuotesTypechecked;
void buildCheckedList() {
 listOfFamousQuotesTypechecked = new ArrayList<String>();

294 Java Programming

 listOfFamousQuotesTypechecked.add(
 "Where there is love there is life - Mahatma Gandhi");
 listOfFamousQuotesTypechecked.add(
 "A joke is a very serious thing - Winston Churchill");
 listOfFamousQuotesTypechecked.add(
 "In the end, everything is a gag - Charlie Chaplin");
}

Note how the parameter String is used in the declaration of the variable
listOfFamousQuotesTypechecked. Also note how the String parameter is specified in the
instantiation of the ArrayList class. To iterate and print the elements of the list, we use the
following code:

void printCheckedList() {
 Iterator<String> quoteIterator = listOfFamousQuotesTypechecked.iterator();
 while (quoteIterator.hasNext()) {
 String quote = quoteIterator.next();
 System.out.println(quote);
 }
}

The quoteIterator is declared as a parameterized type having the parameter type String. Note
that now the next method does not require a typecast before assigning its return value to a String
variable. This is because the compiler knows for sure that each element that it retrieves from the
list is of type String. How does the iterator know this? We declared the quoteIterator of type
Iterator<String>, indicating that each element retrieved by the iterator is the String type. The
quoteIterator operates on listOfFamousQuotesTypechecked, which is a list of String objects. When
you insert elements into this list, the compiler ensures that only the String type variables are added
to the list. Therefore, the quoteIterator clearly knows that the elements over which it iterates are
guaranteed to be of type String. With this information, the compiler itself is able to enforce the type
checking rather than waiting for a running program to generate typecasting errors at runtime.

Because the listOfFamousQuotesTypechecked is declared with a parameter of type String,
adding any other data type to the list will produce a compile-time error. For example, the following
statement would result in a compile-time error:

listOfFamousQuotesTypechecked.add (100);

Let’s now look at another use for generics. Suppose we want to write a method to remove all
quotes by Winston Churchill from the list of quotes created earlier. Let’s assume we are not using
generics. In this case, we would write the method as follows:

void expurgate(Collection c, String strAuthor) {
 for (Iterator i = c.iterator(); i.hasNext();) {
 if (((String) i.next()).contains(strAuthor)) {
 i.remove();
 }
 }
}

Note that each element retrieved from the collection is typecast to the String type before
the check for the author. If the list contains a data type other than String, the program will

Chapter 12: Generics 295

break with a ClassCastexception. You can try this by adding an Integer object to the list using
the following statement:

listOfFamousQuotes.add(100);

Now, compare the preceding method with the version that uses generics, shown next:

void expurgateCheckedList(Collection<String> c, String strAuthor) {
 for (Iterator<String> i = c.iterator(); i.hasNext();) {
 if (i.next().contains(strAuthor)) {
 i.remove();
 }
 }
}

Note how the Iterator is declared to receive a String-type parameter. In this case, we do not
typecast the retrieved element before checking for the presence of the specified author name.
Also, we are assured that the code will not break at runtime with a ClassCastexception because
all elements in the list are guaranteed to be of the String type.

A Sample Generics Program
So you can experiment with the concepts discussed thus far, the complete program is given in
Listing 12-1.

Listing 12-1 Using Built-in Generic Types

import java.util.*;

public class FamousQuotes {

 private static ArrayList listOfFamousQuotes;
 private static ArrayList<String> listOfFamousQuotesTypechecked;

 public static void main(String[] args) {

 FamousQuotes app = new FamousQuotes();

 System.out.println("Without using generics\n");
 app.buildList();
 app.printList();
 System.out.println();

 System.out.println("With generic classes\n");
 app.buildCheckedList();
 app.printCheckedList();

 System.out.println("\nNon-generics version of expurgate\n");
 String strAuthor = "Winston Churchill";
 System.out.println("After removing quotes by " + strAuthor);
 app.expurgate(listOfFamousQuotes, "Winston Churchill");
 app.printList();

296 Java Programming

 System.out.println("\nGenerics version of expurgate\n");
 System.out.println("After removing quotes by " + strAuthor);
 app.expurgateCheckedList(listOfFamousQuotesTypechecked, strAuthor);
 app.printCheckedList();
 }

 void buildList() {
 listOfFamousQuotes = new ArrayList();
 listOfFamousQuotes.add(
 "Where there is love there is life - Mahatma Gandhi");
 listOfFamousQuotes.add(
 "A joke is a very serious thing - Winston Churchill");
 listOfFamousQuotes.add(
 "In the end, everything is a gag - Charlie Chaplin");
// listOfFamousQuotes.add(100); // add this to generate runtime error
 }

 void buildCheckedList() {
 listOfFamousQuotesTypechecked = new ArrayList<String>();
 listOfFamousQuotesTypechecked.add(
 "Where there is love there is life - Mahatma Gandhi");
 listOfFamousQuotesTypechecked.add(
 "A joke is a very serious thing - Winston Churchill");
 listOfFamousQuotesTypechecked.add(
 "In the end, everything is a gag - Charlie Chaplin");
 }

 void printList() {
 Iterator listIterator = listOfFamousQuotes.iterator();
 while (listIterator.hasNext()) {
 String quote = (String) listIterator.next();
 System.out.println(quote);
 }
 }

 void printCheckedList() {
 Iterator<String> quoteIterator =
 listOfFamousQuotesTypechecked.iterator();
 while (quoteIterator.hasNext()) {
 String quote = quoteIterator.next();
 System.out.println(quote);
 }
 }

 void expurgate(Collection c, String strAuthor) {
 for (Iterator i = c.iterator(); i.hasNext();) {
 if (((String) i.next()).contains(strAuthor)) {
 i.remove();
 }
 }
 }

Chapter 12: Generics 297

 void expurgateCheckedList(Collection<String> c, String strAuthor) {
 for (Iterator<String> i = c.iterator(); i.hasNext();) {
 if (i.next().contains(strAuthor)) {
 i.remove();
 }
 }
 }
}

When you run the program, you see the following output:

Without using generics

Where there is love there is life - Mahatma Gandhi
A joke is a very serious thing - Winston Churchill
In the end, everything is a gag - Charlie Chaplin

With generic classes

Where there is love there is life - Mahatma Gandhi
A joke is a very serious thing - Winston Churchill
In the end, everything is a gag - Charlie Chaplin

Non-generics version of expurgate

After removing quotes by Winston Churchill
Where there is love there is life - Mahatma Gandhi
In the end, everything is a gag - Charlie Chaplin

Generics version of expurgate

After removing quotes by Winston Churchill
Where there is love there is life - Mahatma Gandhi
In the end, everything is a gag - Charlie Chaplin

Experiment in the code to see how generics help in detecting errors early.
What you have seen so far is just the tip of the iceberg. The real power of generics can be seen

when you use different classes in Java’s Collections framework, or for that matter any generalized
classes created by others. Likewise, you may generalize your own classes so that others can
experience the power of generics when they use your classes in their programs. Generics make the
code more reliable in the face of runtime typecasting exceptions. You will understand this power
as you read further in this chapter.

Type Safety
As we have seen so far, the primary use case for generics is to instruct the compiler to type check
the contents of collections; this was the initial motive behind the design of generics. However,
the use of generics is not restricted to the Collections framework. It is now applied to many other
classes, such as java.lang.ref, several interfaces and classes of the java.util.concurrent package,
and so on. These classes use generic types in their parameters; you specify the actual type during
its use (instantiation, as it is called) in your source program. The compiler replaces the generic

298 Java Programming

types with the real types during precompilation. Later on, we discuss this process further by
looking at the intermediate files created by the compiler.

Before we conclude this section, let’s briefly discuss static versus dynamic typing. Java uses
static typing, also known as strong typing. The Java compiler checks whether proper data types
are assigned to variables—remember the implicit typecast mandated by Java while assigning a
variable to its subclass type. This puts more load on the programmer but enables catching the
errors early. Contrast this with the dynamic (or weak) typing used by some languages such as
Ruby and PHP, which allow different type values to be assigned to variables. Such a variable has
a type of the last assigned value. It is argued by some people that this benefits the developers
because they don’t have to worry about getting the types correctly specified in the code, thus
making development quicker. With test-driven development (TDD), any bad assignments can
nevertheless be quickly discovered and fixed. Rather going further into the debate on the merits
of static versus dynamic typing, let’s focus on what is implemented in Java. Java uses static/strong
typing, and the introduction of generics allows even stronger typing.

 The type safety is just one of the benefits of using generics. You’ll learn more benefits as you
read on.

Creating a Parameterized Stack Type
So far, you have seen how to use the types created by others that use generics. Now, you will
learn how to create your own parameterized type, something like an ArrayList. But first, let’s
discuss why you would create one. Consider a stack data structure in a program where you push
and pop some data. Now, suppose you want to create a stack that operates only one particular
data type. This means you would push and pop only the Integer data type or the String data type,
as an example. The purpose behind creating such a type-safe stack is to safeguard against runtime
errors when you push a certain data type and pop it to another type. You would want to make
your stack type safe so that you can push and pop only one type of data. Trying to push any other
type should generate a compile-time error.

Before going any further, let’s look at the syntax for creating a parameterized type.

Declaration Syntax
You declare a parameterized type using the syntax

class ClassName <type> {
 ...
}

where type is generally a single capital letter to distinguish it from the rest of the identifiers, which
are generally more descriptive. Therefore, to declare a generic class called Stack that takes a single
parameter, you would use the following declaration:

class Stack<T> {

 ...
}

To instantiate the Stack class, you would use the following declaration:

Stack<Integer> integerStack;

Chapter 12: Generics 299

In some situations, you might want to create a class that operates on more than one data type.
For example, a map data structure requires two elements—the key and the corresponding value.
An implementation of this in Java is the HashMap class, which is defined as

class HashMap<K, V> {

 ...
}

where K specifies the type of keys maintained by this map and V specifies the type of mapped
values. You would instantiate HashMap as follows:

HashMap<String, Integer> map1 = new HashMap<String, Integer>();
HashMap<Integer, String> map2 = new HashMap<Integer, String>();

In map1, the key is a String type and its value is an Integer type. In map2, the key is an Integer
type and its value is a String type. Thus, while instantiating the class, a developer specifies the type
of parameters.

The generic class can, however, take any number of parameters. The general syntax for a
generic class is

class className <paramList> {...}

where className specifies the name of the generic class and paramList consists of one or more
parameters separated by commas. Here is the general syntax for instantiating a generic class:

className <ArgumentList
opt
> varName = new className < > (argList);

Now that we have looked at the syntax for creating a parameterized type, let’s move to our
example of a generic Stack class.

A Generic Stack Class
The definition of a generic Stack class is given in Listing 12-2.

Listing 12-2 A Stack Class That Uses Generics

class Stack<T> {

 protected T[] stack = (T[]) new Object[100];
 int ptr = -1;

 void push(T data) {
 ptr++;
 stack[ptr] = data;
 }

 T pop() {
 return (T) stack[ptr--];
 }
}

300 Java Programming

The Stack class takes one parameter, specified by the identifier T. The class declares a variable
called stack, which is an array of T types:

protected T[] stack = (T[]) new Object[100];

NOTe
This is declared protected only for the reverse-engineering process
discussed later; ideally, this should be private.

We initialize this to an array of the Object class having a size equal to 100. Note that this
array is typecast to an array of T types. Next, we declare a ptr variable, which is our stack pointer.
The push method takes one parameter called data of type T. Likewise, the pop method returns
data of type T. This T type would be replaced with the actual data type during precompilation,
as demonstrated shortly.

To instantiate the Stack class, we use the following declaration:

Stack<Float> floatStack;

When we use this declaration, the compiler replaces every occurrence of T in the Stack
definition with Float. We will now use a reverse-engineering technique to gain some insight on
this precompilation process.

examining Intermediate Code
Compile the Stack class of Listing 12-2 using javac compiler. Now, run the javap utility on the
generated class files with the following command:

C:\360\ch12>javap Stack

The output of this command is shown here:

Compiled from "Stack.java"
class Stack extends java.lang.Object{

 protected java.lang.Object[] stack;
 int ptr;
 Stack();
 void push(java.lang.Object);
 java.lang.Object pop();
}

The javap utility provides the reverse engineering on a .class file and produces the .java code.
The screen output shows that our definition of the class variable stack of type T[] is now replaced
with the following statement:

protected java.lang.Object[] stack;

Similarly, the push method, which we declared to take a parameter of type T, now takes a
parameter of type java.lang.Object and the pop method, which did return a variable of type T
but now returns an object of type java.lang.Object.

Chapter 12: Generics 301

When we instantiate the Stack class with parameter of type Integer, we specify the real data type
in place of the generic type T. The compiler now further replaces the declaration of the variable type
stack and the parameter to the push method with the specified real data type. Thus, we would
see the following two statements (provided only if we could examine the intermediate output):

protected Integer[] stack;
void push(Integer);

If you specify the Float data type at the time of instantiation, these two statements would be
replaced with the following:

protected Float[] stack;
void push(Float);

These discussions explain how the compiler replaces the generic types with the real types at
the precompilation stage.

NOTe
The compiler erases all the angle bracket syntax and replaces the type
variables with an Object type that can work with any other Java type
at runtime. This feature is called erasure.

TIP
The compiler, when it erases the type information, does not create
multiple classes for each instantiated real data type. It maintains the
information on the real type in the bytecode and uses an appropriate
typecast wherever necessary.

NOTe
The compiler treats each parameterization of a generic type as a truly
different type at compilation. However, only one real type exists at
runtime. For example, Stack<Integer> and Stack<Float> share the
same plain-old Java class Stack. The Stack is called the raw type
(class) of the generic Stack<T> class.

Testing the Stack Class
The code for instantiating the Stack class with different data types is given in Listing 12-3.

Listing 12-3 Testing the Generic Stack Class

import java.math.*;

public class StackDemoApp {

 public static void main(String args[]) {

302 Java Programming

 // long type stack
 System.out.println("Creating 'long' stack:");
 Stack<Long> longStack = new Stack<Long>();
 System.out.println("Pushing 5");
 longStack.push(5L);
 System.out.println("Pushing 10");
 longStack.push(10L);
 System.out.println("Emptying stack");
 System.out.println(longStack.pop());
 System.out.println(longStack.pop());
 System.out.println();

 // float type stack
 System.out.println("Creating 'float' stack:");
 Stack<Float> floatStack = new Stack<Float>();
 System.out.println("Pushing 5.0");
 floatStack.push(5.0f);
 System.out.println("Pushing 10.0");
 floatStack.push(10.0f);
 System.out.println("Emptying stack");
 System.out.println(floatStack.pop());
 System.out.println(floatStack.pop());
 System.out.println();

 // BigDecimal type stack
 System.out.println("Creating 'BigDecimal' stack:");
 Stack<BigDecimal> bigDecimalStack = new Stack<BigDecimal>();
 System.out.println("Pushing bigdecimal 12.5E+7");
 bigDecimalStack.push(new BigDecimal("12.5E+7"));
 System.out.println("Pushing bigdecimal 125");
 bigDecimalStack.push(new BigDecimal(125, MathContext.DECIMAL128));
 System.out.println("Emptying stack");
 System.out.println(bigDecimalStack.pop());
 System.out.println(bigDecimalStack.pop());
 System.out.println();

 // Stack without using generics
 Stack oldtypeStack = new Stack();
 oldtypeStack.push(10);
 oldtypeStack.push("test string");
 for (int i = 0; i < 2; i++) {
 String str = (String) oldtypeStack.pop();
 System.out.println(str);
 }
 }
}

class Stack<T> {

Chapter 12: Generics 303

 private T[] stack = (T[]) new Object[5];
 private int ptr = -1;

 void push(T data) {
 ptr++;
 stack[ptr] = data;
 }

 T pop() {
 return (T) stack[ptr--];
 }
}

In the main function, first we create a Stack that holds only the Long data type:

Stack<Long> longStack = new Stack<Long>();

Note how the Long data type is specified in both the declaration of the variable and the class
instantiation. We push a few items on the stack by calling its push method. The push method takes
a long-type parameter, which is automatically converted into a Long data type by the autoboxing
feature (covered in the previous chapter). We pop these pushed items from the stack by calling its
pop method. The pop method returns a Long data type that gets converted automatically into a
long data type by the unboxing feature. If we try pushing any other data type onto this stack, a
compile-time error is produced.

Next, we create a float-type stack for testing by executing the following statement:

Stack<Float> floatStack = new Stack<Float>();

To create a stack that holds BigDecimal numbers, we use the following statement:

Stack<BigDecimal> bigDecimalStack = new Stack<BigDecimal>();

Finally, the code demonstrates what happens when we do not use a generic type in the Stack
creation. We now construct the stack the old way (without using generic types) and push two values
onto it:

Stack oldtypeStack = new Stack();
oldtypeStack.push(10);
oldtypeStack.push("test string");

Note that the first value is of type long and the second is of type String. The compiler or the
runtime will not generate any errors on these statements. Now, let’s see what happens when we
pop these values from the stack and try to use them somewhere in our code. We use a for loop
to pop these two values:

for (int i = 0; i < 2; i++) {
 String str = (String) oldtypeStack.pop();
 System.out.println(str);
}

The code simply typecasts the popped value to a String and prints it to the console. The last
pushed value is popped first; thus, we will see the message “test string” printed to the console.

304 Java Programming

However, when we pop the next value, a typecasting error occurs. Such runtime errors can be
avoided only by the proper ordering of push and pop methods, remembering the type of data
pushed and popped each time. By using generics, we are able to create a type-safe stack that
catches errors at compile time.

In general, when data is stored in a data structure such as an array, stack, or list, only the
programmer knows what types of objects are stored and is therefore responsible for proper
typecasting when the stored objects are retrieved. If he makes a mistake in this typecasting,
runtime errors are produced. Using generics will detect such errors at compile time, thus making
the code more robust.

Bounded Types
In the previous section, you saw how to create a generic class to store any type of data. Now, what
if you want to create a generic class that operates on a specified range of types? Using generics,
you are able to restrict the range of data types on which your class can operate. These are called
bounded types, because you bound the class with a certain range of data types to operate on. This
is a typical use for generics, so let’s look at how to create such a generic class.

In the previous section, we designed a Stack class that can operate on any data type, including
a String type. What if we want to restrict Stack to operate only on numeric types? To place this
restriction, we declare our generic Stack class as follows:

class NumberStack<T extends Number>

Here, the NumberStack class takes one parameter, called T, that extends Number.

NOTe
In general, T may extend any other class where the inheritance
hierarchy exists under it.

Thus, the NumberStack class can operate on any data type that derives from the Number
class, which is the superclass of all numeric data types in Java. We can create instances of the
NumberStack class with the following kinds of declarations:

NumberStack<Long> longStack;
NumberStack<Float> floatStack;

The first statement creates an instance of the NumberStack class that operates on the Long
data type, and the second statement creates an instance that operates on the Float data type.
Now, what if we try the following?

NumberStack<Character> characterStack; // invalid

The compiler will throw an error indicating that the Character is not within the bounds of the
class because Character does not inherit Number. We can, however, specify any other class that
derives from Number. For example, the BigDecimal class inherits Number. Thus, the following
declaration is valid:

NumberStack<BigDecimal> bigDecimalStack;

Chapter 12: Generics 305

NOTe
The BigDecimal class is defined in the java.math package and
represents immutable, arbitrary-precision signed decimal numbers.

Next, we write the NumberStack class itself. To restrict this class to using certain types of
data, we do not have to do anything special in its implementation. We will use our previously
defined Stack class and perform the necessary modifications to add the new restriction. The
modified Stack class is shown here:

class NumberStack<T extends Number> {

 private Number[] stack = new Number[100];
 private int ptr = -1;

 void push(T data) {
 ptr++;
 stack[ptr] = data;
 }

 T pop() {
 return (T) stack[ptr--];
 }
}

Note that the only change we made was to replace the allocation of the Object array with
a Number-type array:

private Number[] stack = new Number[100];

The rest of the class code remains the same.

Using Wildcards
Now, let’s suppose we want to write a general method that dumps the entire contents of our
NumberStack class from the previous example. We could write such a method easily, as follows:

static void dumpStack(NumberStack<Number> stack) {
 for (Number n : stack.stack) {
 System.out.println(n);
 }
}

The dumpStack method receives a parameter of type Stack<Number>. Note the parameter
specified in the type declaration. Because NumberStack is a generic type, we specify the data type
on which the NumberStack will operate. Because Number is the least common superclass of all the
real types used in our NumberStack class definition, we use Number in the parameter declaration.
Thus, we should be able to pass on a NumberStack object of any type to the dumpStack method.
Wait a minute! This is not quite true, as you’ll see shortly.

306 Java Programming

Now, let’s instantiate the NumberStack class with Number as the real type and push a Long
number on it:

NumberStack<Number> numberStack = new NumberStack<Number>();
numberStack.push(10L);

Let’s dump this stack by calling our dumpStack method:

dumpStack(numberStack);

The code will compile and run without any errors. Now, let’s consider our earlier
instantiation of a NumberStack class that stores the Long numbers:

NumberStack<Long> longStack = new NumberStack<Long>();

Try dumping this stack using our dumpStack method:

dumpStack(longStack);

The compiler complains with the following error:

dumpStack(NumberStack<java.lang.Number>) in WildCardDemoApp cannot be applied
to (NumberStack<java.lang.Long>)

The dumpStack method expects a parameter of type NumberStack<Number>. In our method
call, we pass an instance of NumberStack <Long>. You might think that because Long is a subclass
of Number, this should be acceptable to the compiler. However, the main purpose of generics is to
guard against such errors by providing type safety. Thus, the compiler rightly generates an error
here. Now, how do we solve this problem so that our dumpStack method will work on any instance
of the NumberStack class? To make this happen, we simply change the definition of the dumpStack
method to the following:

static void dumpStack(NumberStack<?> stack)

Here, we have replaced the Number argument with a question mark (?). This is called a
wildcard. It tells the compiler to accept an instance of the NumberStack class that operates on
any permissible data type. If we recompile the code after making this change, it compiles without
any errors. The full code, along with the code for the NumberStack class for testing, is given in
Listing 12-4.

Listing 12-4 Program Demonstrating the Use of Wildcards

public class WildCardDemoApp {

 public static void main(String args[]) {
 System.out.println("Creating 'Long' stack:");
 NumberStack<Long> longStack = new NumberStack<Long>();
 longStack.push(5L);
 longStack.push(10L);

 System.out.println("Creating 'Number' stack:");
 NumberStack<Number> numberStack = new NumberStack<Number>();

Chapter 12: Generics 307

 numberStack.push(10L);
 System.out.println("\nDumping 'Long' stack");
 dumpStack(longStack);
 System.out.println("\nDumping 'Number' stack");
 dumpStack(numberStack);
 }

 static void dumpStack(NumberStack<?> stack) {
 for (Number n : stack.getStack()) {
 System.out.println(n);
 }
 }
}

class NumberStack<T extends Number> {

 private Number stack[] = new Number[5];
 private int ptr = -1;

 public Number[] getStack() {
 return stack;
 }

 void push(T data) {
 ptr++;
 stack[ptr] = data;
 }

 T pop() {
 return (T) stack[ptr--];
 }
}

When we run the program, we see the following output:

Creating 'Long' stack:
Creating 'Number' stack:

Dumping 'Long' stack
5
10
null
null
null

Dumping 'Number' stack
10
null
null
null
null

308 Java Programming

Note that the stack size is 5. In the first instance, we had pushed two values on the stack,
and in the second instance we had pushed only one value on the stack. Therefore, the rest of
the elements on the stack show a null value.

Bounded Wildcards
So far, you have learned about the bounded types and wildcards. A bounded type sets the
restriction on a type used by a generic to a certain class hierarchy. A wildcard allows you to
substitute any of the allowed types in the generic parameter type. In some situations, you may
want to set both the upper and lower bounds on the range of classes used in generics. As an
example of this, look at the class hierarchy in Figure 12-1.

The JPasswordField class derives from several superclasses. Suppose in your application
you want to write a method to describe the features of a component that is an instance of
java.awt.Component or any of its subclasses. You might also want to set up the restrictions on
the component type that you pass to this method. For this, you could create upper and lower
bounds for the range of components. For example, you may want to accept components only
in the range of the Container and JTextField classes, which means the allowed classes would
be Container, JComponent, JTextComponent, and JTextField.

To achieve this purpose, you may define a generic class called CustomComponent, as follows:

class CustomComponent<T>

While defining a generic, when you declare a type parameter such as T as in the preceding
example, it can be substituted with any of the Java classes because all Java classes derive from
java.lang.Object.

To restrict T to use a certain set of classes, you can use the extends clause, as shown here
(remember our earlier example where we extended the Number class):

class CustomComponent<T extends Component>

FIGUre 12-1. A class hierarchy to illustrate bounded wildcards

Java.lang.Object

Java.awt.Component

Java.awt.Container

Javax.swing.JComponent

Javax.swing.text.JTextComponent

Javax.swing.JTextField

Javax.swing.JPasswordField

Chapter 12: Generics 309

In this case, T can be substituted with Component or any of its subclasses. This, as you saw
earlier, is called a bounded type. When you declare a method that takes a generic type as its
parameter, you use the wildcard to allow the method to accept an object of any of the allowed
classes in the specified hierarchy. The method declaration is made as follows:

void describeComponent(CustomComponent<?> component)

This method will accept a CustomComponent object that operates on Component or any
of its subclasses. Now, if you want to restrict this parameter to operate on a certain type and
its subclasses, you make the following declaration:

void describeComponent(CustomComponent<? extends JTextField> ref) {
 //...
}

Here, JTextField refers to the class shown in the hierarchy in Figure 12-1. Now, the method
describeComponent will take a parameter of CustomComponent that operates on JTextField
and its subclasses. This means you can input a parameter of the JTextField and JPasswordField
types only. The CustomComponent that operates on Component, Container, JComponent, and
JTextComponent will not be an acceptable parameter. This is called a bounded wildcard,
where the lower bound is set to JTextField.

Just the way you set a lower bound, you can also set an upper limit by using the following
syntax:

void describeComponent(CustomComponent<? super Container> ref) {
 ...
}

In this case, all the superclasses of Container will be acceptable parameters. Thus, the method
can take a CustomComponent instance that operates on Object and Component. Note that
Container itself is omitted, along with all its subclasses. To achieve the goal of restricting only
the classes Container, JComponent, JTextComponent, and JTextField, you would declare your
method as follows:

void describeComponent(CustomComponent<? super JPasswordField> ref) {
 //...
}

Note that JPasswordField, which is a superclass of JTextField, itself is omitted in the list of
permissible objects. You would also need to declare CustomComponent as follows:

class CustomComponent<T extends Container>

This ensures that CustomComponent can accept only Container and its subclasses. Thus, with
these two declarations, you are able to create upper and lower bounds for the range of classes that
the describeComponent method can operate on.

310 Java Programming

raw Types
In the FamousQuotes application from Listing 12-1, we created the list using the following
statement:

ArrayList listOfFamousQuotes = new ArrayList();

Here, we did not specify a parameter to ArrayList, which takes one generic parameter, by its
definition. When you use a generic type without parameters, it is called a raw type. The ArrayList
class existed even prior to J2SE 5.0, where generics were introduced. By not allowing you to
specify the parameters, code written prior to J2SE 5.0 is ensured to compile in new versions of
Java. However, because the new compiler expects you to use generic types with parameters, it
issues warnings thinking you have probably forgotten to substitute parameters for generic types
with some actual types. When you compile FamousQuotes.java, you get following warning error:

FamousQuotes.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

If you do not want the new compiler to generate this warning, you have the following three
choices:

Use the ■■ –source 1.4 switch during compilation. This compiles the code, considering it
to be JDK 1.4 code. This means your code cannot contain generics or any other J2SE 5.0
features.

Use the ■ @SuppressWarnings ("unchecked") annotation discussed in Chapter 11. You may
place this annotation just before the class declaration.

Replace your raw type declarations to use ■ Object as the actual type wherever a generic
type is required, as in the following declaration:

ArrayList<Object> listOfFamousQuotes = new ArrayList<Object>();

 The raw types are essentially created for backward compatibility.

More on Generic Types
In this section, we look at some more features of generics. We start with generic types that take
more than one parameter. You learn how to use a built-in HashMap generic class that requires two
parameters. You also learn what the restrictions are while casting a generic type, what happens
during assignments and comparisons of two generic types, and what the generic methods are.
Finally, you learn how to declare generic interfaces.

Class with Two Generic Parameters
The HashMap class is defined in J2SE 5.0 as follows:

class HashMap<K, V>

Here, K and V are the type parameters that can be substituted with any Java object at the
time of instantiation. The HashMap class is used for storing key/value pairs. The K parameter
specifies the key, and the V parameter specifies its value. Both K and V can be of any Java type.
To illustrate how to use this two-parameter generic class, let’s build a hashmap of the planets in

Chapter 12: Generics 311

our solar system. Each planet in our solar system has a fixed position. We will create a hashmap
that defines the position as the key and the planet name as its value. This can then be used easily
to find out which planet exists at what position. The PlanetMap program is given in Listing 12-5.

Listing 12-5 Program Demonstrating the Use of a Two-Parameter HashMap Class

import java.util.*;

public class PlanetMap {

 public static void main(String args[]) {
 HashMap<Integer, String> mapOFPlanets =
 new HashMap<Integer, String>();

 mapOFPlanets.put(1, "Mercury");
 mapOFPlanets.put(2, "Venus");
 mapOFPlanets.put(3, "Earth");
 mapOFPlanets.put(4, "Mars");
 mapOFPlanets.put(5, "Jupiter");
 mapOFPlanets.put(6, "Saturn");
 mapOFPlanets.put(7, "Uranus");
 mapOFPlanets.put(8, "Neptune");

 System.out.println("Enter the desired position: ");
 Scanner scanner = new Scanner(System.in);
 int i = scanner.nextInt();
 System.out.printf("Solar system position %d is taken by %s%n",
 i, mapOFPlanets.get(i));
 }
}

We create our hashmap by instantiating the HashMap class:

HashMap<Integer, String> mapOFPlanets = new HashMap<Integer, String>();

Note how the two parameters are specified in the declaration of the mapOfPlanets variables
and the instantiation of the class HashMap. Although we want to store an integer value in the first
parameter, we have specified an Integer wrapper class because the generic parameter needs to
be a subclass of Object and cannot be a primitive type. We add the planets and their positions in
the map as follows:

mapOFPlanets.put(1, "Mercury");
mapOFPlanets.put(2, "Venus");

Note the first parameter is specified in integer format, which is autoboxed to the Integer type.
Next, we ask the user to input a number. Calling the get method of the HashMap class retrieves
the name of the planet at this position:

System.out.printf("Solar system position %d is taken by %s%n",
 i, mapOFPlanets.get(i));

312 Java Programming

We could also use the same HashMap class to reverse the planet position and its name in the
list. The purpose would be to enable the user to find out what the position is of a given planet.
For this, we create our map as follows:

HashMap<String, Integer> mapOFPlanets = new HashMap<String, Integer>();

Note that we simply specify the first parameter to be of type String and the second parameter
to be of type Integer. This is permitted because the HashMap class can take any Java object in
either of its parameters. You can appreciate the flexibility that generics provides in defining the
HashMap class. To build the list, we use the statements as follows:

mapOFPlanets1.put("Mercury", 1);

To retrieve the planet position once again, we use the get method, this time specifying a
String as an argument.

Casting Types
An important point you must consider while using generic types is the casting of one type to
another. It may seem obvious to perform a cast by merely considering the class hierarchy. But,
in most situations such a cast will not be valid and will generate a compile-time error. Consider
our earlier example of a Stack class. The class was defined as follows:

class NumberStack<T extends Number> {

You may now create two instances of the NumberStack class using the following declarations:

NumberStack<Long> longStack = new NumberStack<Long>();
NumberStack<Number> numberStack = new NumberStack<Number>();

The longStack operates on Long numbers and the numberStack operates on Number. Because
Long is a subclass of Number, you might think that the following casting is valid:

numberStack = (NumberStack<Number>) longStack; // generates compile-time error
longStack = (NumberStack<Long>) numberStack; // generates compile-time error

Both statements generate a compile-time error. Any implicit or explicit typecasting, even within
the same class hierarchy, is invalid.

Now, let’s make another declaration:

NumberStack<Long> longStackNew = new NumberStack<Long>();

The following assignment statements will be valid:

longStack = longStackNew;
longStackNew = longStack;

In both situations, we have assignment variables of the same type, and the compiler knows
that both variables refer to an instance of the NumberStack class that operates on a Long data type.
Consider the declaration from our earlier PlanetMap example in Listing 12-5:

HashMap<String, Integer> mapOfPlanets = new HashMap<String, Integer>();

Chapter 12: Generics 313

You may have another declaration, as follows:

HashMap<Integer, String> mapOfPlanetsNew = new HashMap<Integer, String>();

Now, if you attempt the following assignment, it will produce a compile-time error:

mapOfPlanets = mapOfPlanetsNew;

Although both mapOfPlanets and mapOfPlanetsNew are instances of the HashMap class, they
operate on a different set of parameters and are therefore incompatible for the shown assignment.

TIP
Beginning in Java SE 7, you can replace the type argument required
to invoke the constructor of a generic class with an empty set of type
parameters, as long as the compiler can infer the type of arguments
from the context. Thus, our previous declaration can now become
the following:

HashMap<String, Integer> mapOfPlanets = new HashMap<>();

This pair of angle brackets (<>) is informally called the diamond.

Comparing and Assigning Generic Types
Consider the following simple generic type declaration for a universal data type that can hold any
data type as its value. This is equivalent to a universal data type in PHP:

class UniverseType<T> {

 T a;

 UniverseType(T a) {
 this.a = a;
 }
}

The following two statements instantiate this class using Float and Double as actual parameters:

UniverseType<Float> f = new UniverseType<Float> (5f);
UniverseType<Double> d = new UniverseType<Double> (5.0);

Both f and d have been assigned the same numeric value of 5.0. Now, let’s look at the various
assignments and comparisons between these two objects. If you perform the comparison f.equals(d),
what will it return? It returns false, indicating that the two objects are not equal, even though they
hold the same numeric value. What if you try an equality operation such as if (f == d)? Rather than
getting a runtime error, you will get a compile-time error in this case because the two objects are
incomparable. The object f operates on a Float and the object d operates on Double. Therefore, they
cannot be compared. What if you try an assignment such as f = d? This, too, will generate a compile-
time error because you are trying an assignment between two incompatible types. What if you try
d = f? This looks like a promotion—assigning a float to a double. This, too, generates a compile-
time error.

314 Java Programming

Generic Methods
A generic method takes parameters of a generic type or returns a generic value. Such a method may
be defined in a generic or a nongeneric class. You have seen several examples of generic methods
so far in this chapter. For example, the push and pop methods of our generic Stack class used type
parameters and are therefore known as generic methods. The two definitions are reproduced here:

void push(T data) {...}
T pop() {...}

The push method uses a generic type argument, and the pop method returns a generic type
value. The dumpStack method from our earlier example in Listing 12-4 is a generic method
defined in a nongeneric class:

static void dumpStack(NumberStack<Number> stack) {

The generic method may be declared static, as in the case of dumpStack.

Declaring Generic Interfaces
The same way you create a generic class and method, you can create interfaces that operate
on generic data types. A good example of this is the Map interface defined in the Collections
framework. The interface is declared as follows:

public interface Map<K,V>

The Map interface uses two generic types. The implementing class will use these two types in
its implementation. The HashMap class implements this interface. HashMap is declared as follows:

public class HashMap<K,V>extends AbstractMap<K,V>
 implements Map<K,V>, Cloneable, Serializable

The class implements the Map interface using the implements keyword. Besides this generic
interface, it also implements the two nongeneric interfaces Cloneable and Serializable. Thus, a
class can implement any number of generic and nongeneric interfaces in its declaration.

NOTe
The declaration of the HashMap class also indicates that it inherits
from the AbstractMap class. The extends word indicates this
inheritance. The AbstractMap class itself is generic. Thus, a class
can extend another generic class.

restrictions in Generics
When you use generics in your programs, you must obey certain restrictions that apply. In this
section, we discuss these restrictions.

Creating Arrays
Look at our earlier generic NumberStack class, the partial definition of which is reproduced here:

class NumberStack<T extends Number> {

 private Number stack[] = new Number[100];

Chapter 12: Generics 315

You might be wondering why we created a Number array. Couldn’t we create an array of
T types in the class constructor, as shown here?

public Stack () {
 stack = new T[100];
}

This is illegal. You cannot create an array of generic types. You could, however, create a variable
of the generic array type and assign it to an array of real data types at runtime. To understand this,
consider the following class declaration:

class NumberStack<T extends Number> {

 T stack[];

 Stack(T[] stack) {
 this.stack = stack;
 }
}

The class NumberStack declares an array of T types as its class variable. The class constructor
receives a reference to an array of generic type T and assigns it to the class variable stack. The
main program that uses this class can now create an array of real data types and assign it to stack
at runtime, as shown here:

Double[] doubleArray = new Double[100];
NumberStack<Number> doubleStack = new NumberStack<Number>(doubleArray);

In this example, we create an array of Double and pass it as a parameter to the NumberStack
constructor. Couldn’t we create an array of generic types directly, as follows?

NumberStack<Double> doubleStack = new NumberStack<Double>[10]; // illegal

This is illegal because the creation of generic arrays is not permitted.

Instantiating Type Parameters
Consider our previous definition of NumberStack:

class NumberStack<T extends Number> {

The class uses one generic parameter, T. It is illegal to try to instantiate this parameter anywhere
in the class definition. In other words, you cannot call new T() anywhere in the code. The generic
parameters are replaced by the actual parameters during the precompilation stage. Therefore,
creating an object of a generic type is not permitted.

Use of the static Keyword
To understand the restrictions on the use of the static keyword in generic classes, consider the
following class definition:

class WordDefinition<W, M> {

 static W word; // illegal

316 Java Programming

 M meaning; // allowed

 W get() {
 return word;
 }

 static void showMeaning() {
 System.out.println(meaning); // illegal
 }
}

The class WordDefinition defines a word and its meaning. It takes two generic parameters, W and
M. We define two variables, word and meaning, in the class definition. Because these two variables
are of the generic type, their actual types will only be defined at the time of class instantiation. Making
these variables static produces a compile-time error because the variables of generic types are always
treated as nonstatic and their real types are substituted during the precompilation stage.

Likewise, you cannot mark the get method as static because it returns a generic type, which
is a nonstatic variable.

Similarly, a class method that is declared static, such as showMeaning, cannot use a variable
of the generic type, as shown here:

System.out.println(meaning); // illegal

These restrictions on the use of static are easily understandable because the static variables
and methods are always attached to the class implementation and not its instances.

Summary
Java has always been known as a very strongly typed language. Generics enable stricter type
checking at compile time. J2SE 5.0 introduced the Collections framework, where several existing
classes were reintroduced using generics. They made two important contributions to the existing
classes. First, they added type checking to collection types at compile time, thus ensuring that the
type of objects a collection can hold is restricted to the type passed to it. Second, they eliminated
the need for typecasting when retrieving an element from a collection.

Generics were introduced in the Java language core features beginning with J2SE 5.0. A generic
is a parameterized type. You use generics to help enforce better type safety in your programs. At the
time of instantiation, you provide a real data type in the place of a generic type. The compiler erases
the generic type from the source program and creates a raw Java class. The compiler does not
generate multiple classes, each for the specified real type. Instead, it creates only one raw class and
provides an appropriate typecast wherever required. The generic parameters can be bounded with
both upper and lower limits. You use wildcards to specify that a generic method can accept any of
the allowable real types. The generics feature is extensively used in the Collections framework. You
will learn more about its use in Chapter 16.

We have covered many features of Java language so far. Now, it is time to move into real-world
application development—which is the topic of the next chapter.

Chapter
13

Event Processing
and GUI Building

317

318 Java Programming

n all the earlier chapters, Java programs we discussed were console based. These
console-based applications make it easier to focus on learning the language syntax.
However, in real life, application users demand a better interface than the one
provided in a console-based application. The graphical user interface (GUI) has
been in existence now for a few decades, and your users will certainly expect one

in the applications you develop. Practically all applications, from Microsoft Office to OpenOffice,
provide a graphical interface. It is now time to learn how to develop a graphical interface in Java
for your own applications. In this chapter, you learn how to create GUI-based applications in Java.
Then, going forward, the rest of the chapters in this book will contain a mix of both console- and
GUI-based applications.

A typical GUI-based application consists of a few windows, dialog boxes, and other elements
and contains many controls such as labels, edit controls, list boxes, and so on. Java provides a rich
set of controls to develop such GUI applications. Before you start learning to use these controls in
your applications, it is necessary to understand the processing model for such applications. GUI
programs are event driven. This means that after a GUI application is started, it simply waits for
some event to occur. When an event occurs, event-handler code in the application gets executed.
After the event handler finishes, the application once again waits for another event to occur. This
process continues for the entire life of the program. A typical example is your word processing
application. When you start such an application, a blank document window opens on your screen
and the application simply waits for you to enter something on the keyboard. When you press a
character key, it is displayed on the screen and then the program again waits for more input.
Pressing a key is considered an event that is external to the word processing application.
Understanding the key press and displaying the appropriate character on the screen is the event
processing. As a developer, you need to learn the different types of external events that occur in
your system, how to capture such events in your applications, and how to write event handlers for
processing these events. In short, you must understand the event-processing model defined in Java
in order to develop GUI-based applications.

In this chapter, you learn the Java event-processing model and a few of the controls you can
use in your application. The next chapter focuses on placing these controls on your screen to
create a pleasing and usable interface for your application. These two chapters together will
prepare you for creating GUI applications.

In this chapter, you will learn the following:

The delegation event model of Java■■

Event sources and listeners ■

Processing events ■

Registering on multiple event sources ■

Understanding event types and defining handlers ■

Using adapter classes ■

Using inner classes and anonymous classes in event handling ■

Building GUI applications ■

Using Swing components such as ■■ JButton, JTextField, and JList

I

Chapter 13: Event Processing and GUI Building 319

Hierarchical Event Model
JDK 1.0 used the hierarchical event model. In this model, an event propagates up the container
hierarchy. To understand what container hierarchy means, we first need to discuss the concept
of events.

In an event-driven programming model, each application defines an event queue. The
main function within the application keeps scanning this queue for events. The operating
system posts the events for the application in its queue. If an event is pending in the queue,
the main function picks up the event and dispatches it to the appropriate event handler
defined within the application.

Let’s illustrate this with an example: Consider what happens when you click a button in an
application displayed on your desktop. The operating system decides where the event should
be dispatched, depending on the position of the mouse click on the screen. The event will be
dispatched to the active application under the mouse click position. Next, the application
determines the component at the mouse click position. If the component is unable to handle
the event, the event is transferred to its parent container, which could be a dialog box or a
window on which the button is placed. If this parent container also does not handle the event,
the event is further transferred to its parent container. If this container also does not handle the
event, it is further transferred to its parent, and so on. Thus, the event moves up the container
hierarchy until it is handled somewhere in the application (see Figure 13-1).

Figure 13-1 shows a typical Windows desktop. The active application on the screen is
Microsoft Word with its Insert Hyperlink dialog box opened up. The user has opened up
another dialog box—called Set Hyperlink ScreenTip—that is subordinate to it. This dialog
box has two buttons: OK and Cancel. Now, let’s suppose the user clicks the OK button.
Basically, as far as the operating system is concerned, the user has clicked the mouse on a
certain location on the screen. The OS now has to determine what lies at this location. It finds
out from the list of currently displayed applications that the current click position is on the OK
button of the ScreenTip dialog box within Microsoft Word. It now dispatches the click
event to Microsoft Word. The event gets added to the end of the event queue maintained by
Word. The application, at some later time, will process this event. When it does so, it first
finds out whether an event handler is available for the OK button. If the developer has not
provided an event handler for the OK button, the event will be passed on to the ScreenTip
dialog box, which is the parent container of the OK button. If this dialog box does not
provide the event handler, the event is propagated to the next parent container, which is the
Insert Hyperlink dialog box. If it, too, is unable to process the event, the event is passed on to
the main application window (that is, the parent of the Insert Hyperlink dialog box). If the
main application window is also unable to handle this event, the event is finally propagated
to the desktop, where eventually it is lost as far as Microsoft Word is concerned.

Thus, in the hierarchical event model, the event propagates up the container hierarchy.
The hierarchical event model, though simple enough, has several disadvantages:

Event Processing Model
When Java was introduced in 1995, it used the conventional event-processing model of that time,
which was the same one used by Microsoft Windows. This model is known as the hierarchical event
model, where events move up in a container hierarchy until they are consumed or eventually lost.

320 Java Programming

If none of the application containers in the hierarchy handle the event, the event is ■
lost. This causes the consumption of unnecessary CPU cycles.

If the container is not interested in a particular event, it still has to process all ■
events occurring on its child components.

A component at the top of the hierarchy (that is, a child component) may accidently ■
consume an event that was not meant for it but rather for its parent component.

If the component on which the event occurs wishes to consume the event, the ■
component must be subclassed. For example, if you want to create a customized
picture button, you need to subclass the java.awt.Button class and provide your
own event handlers. This unnecessarily adds the creation of several subclasses
in your code. Refer to javadocs for a list of subclasses created under java.awt
.Component to provide for the custom event handling for each type of component.

FIGurE 13-1. Event propagation in the container hierarchy

Chapter 13: Event Processing and GUI Building 321

This model is now deprecated and not recommended for use in Java. (See the preceding sidebar for
more information on this model. You’ll also get a good understanding of event processing in
general as well as an appreciation for the importance of the new event model.) The legacy code
written in JDK 1.0 that uses this hierarchical event model still runs on a modern JVM. If you are
interested in learning only the current event-processing model, you could certainly skip the sidebar
without affecting your learning of GUI application development.

Due to several disadvantages of the hierarchical event model used in JDK 1.0, Java’s event-
processing model was changed in the very next version of the JDK. The new model is called the
delegation event model and has been in effect since JDK 1.1. Therefore, only JDK 1.0 code does
not support the new model. This new model solves most of the problems of the earlier event
model and provides much better performance.

NOTE
Creating a sophisticated, multithreaded GUI toolkit could solve most
of these problems, but this still remains a dream for many creators of
GUI libraries, not just Java creators. Using events is still the preferred
way for GUI development.

Delegation Event Model
The delegation event model is based on the concept that for every event, there is an event source
and an event listener. This is illustrated in Figure 13-2.

In the delegation event model, we clearly define an event source and an event listener. An
event source either generates an event on its own or is subject to the occurrence of an external
event. The event source transmits such events to the event listeners. Rather than being transmitted
up the container hierarchy, events are transmitted to preregistered event listeners. Any object may
act as an event source, an event listener, or both. For example, a button, when clicked, acts as an
event source and sends the click event to its registered listeners. A button may also change its

FIGurE 13-2. Event source and a listener

Event
Listener

Button
External Click

Event
Source

322 Java Programming

caption when another button somewhere in the window is clicked. In this case, the first button acts
as a listener for the click event generated by the second button. Thus, a single component (a button
in this case) can act as both a source and a listener of events.

The Event Source
An event source is a component that generates an event. Figure 13-3 shows two different types of
event sources: a button and a radio button.

An event source generates an event subject to the occurrence of an external event. For example,
when you click a Button control, a “mouse click” event occurs on the button. This is an external
event; the button consumes this and transmits another event called ActionEvent to its listeners. The
button, which acts as an event listener here, can decide what to do in reaction to an external event
before sending an ActionEvent to its registered listeners. For example, it may send out an e-mail in
its own event-processing code. For this, you would need to subclass the button.

When you click a radio button, once again a “mouse click” event occurs. The radio button, in
turn, generates an ItemEvent and sends it to its listeners. The type of event generated is solely
decided by the event source. We discuss the different event types later.

An event source may generate an event due to its own internal working. Depending on the
result of some computation, a component may generate and transmit an event to the external world.
For example, suppose an event source object is counting down to zero; when the count reaches
zero, the object may generate and transmit an event to its listeners. Here’s another example: When
the temperature rises above a certain threshold, an alarm may be raised as an event.

The JButton, JCheckbox, JTextArea, and JTextField classes in the Swing package are a few
examples of event sources. All classes that derive from java.awt.Component are candidate event
sources in your application.

The Event Listener
For every event source there may be one or more registered listeners. The objects that are interested
in the occurrence of a particular event will register themselves with the corresponding event source.
This means that an interested event listener sends its own object reference to the event source.
The event source copies this reference into its own storage and calls a specified callback method
on the event listener whenever it generates an event. This is illustrated in Figure 13-4.

Figure 13-4 shows a button that generates an event to the external world whenever it is clicked.
The figure also shows three more objects—Listener1, Listener2, and Listener3—that could be
possible listeners for this event. Out of these three listener objects, the first two listener objects
(Listener1 and Listener2) have registered with the button event source. As the figure shows, the
button object maintains a list of registered listeners. Now, when the user clicks the button, the
button will generate an event that gets transmitted to Listener1 and Listener2; however, it does
not propagate to the Listener3 object, which is not registered with the button event source for

FIGurE 13-3. Different event sources generating different types of events

When clicked generates
ActionEvent

When clicked generates
ItemEvent

Chapter 13: Event Processing and GUI Building 323

the click event. The event source essentially calls a predefined callback method on each of the
registered listeners. The listeners implement these callback methods to provide their own processing
of the external event.

Thus, the event source is responsible for maintaining the list of registered event listeners and is
also responsible for transmitting the appropriate event to these listeners whenever such an event is
generated. The event source will not transmit an event to unregistered listeners. Therefore, the
events are essentially transmitted to objects that are interested in that event. This saves lot of
unnecessary processing of events by objects interested in them and thus takes care of one of the
problems that exists in the earlier hierarchical event model (refer to the earlier sidebar).

Event Processing Sequence
The multiple listeners obviously register with the event source in a certain order. However, when
an event is transmitted to the listeners, you cannot assume the order in which event listeners will
receive it—there is no first-come-first-serve guarantee in the Java model. All the registered listeners
will receive the event, but in an unpredictable order. It is possible that some event listeners may
not receive the event at all, as explained next.

Whenever an event source generates an event, it transmits the event to the registered listener
by calling a method of the listener object. Note that for this purpose, the event source holds the
object reference to the registered listener. The event source uses this reference to call a method on
it. This method receives a parameter that details the type of event and other relevant information
(more details later). Thus, the event source keeps on calling the method on each and every
registered listener. When the program returns after a method call on the first listener, the method
on the second listener is called, and so on. Now, consider a situation where one of the listener
methods is badly written (say, for example, the method creates an infinite loop). In this case, the
methods on the remaining listeners cannot be called. This blocks further event propagation, and
your application will stop responding to any future events. Fortunately, a separate event thread is
created by the JVM to process these application events. This thread blocks in a malfunctioning
method. However, the rest of the applications under the JVM continue to run and in effect will not
cause the system to hang.

FIGurE 13-4. Transmitting an event to the registered listeners

Events are transmitted to
the registered listeners.

Listener1

Listener2

Listener3

Not transmitted to
unregistered listeners.

List of registered
listeners is maintained

in the event source.

Button
External click

Listener 1
Listener 2

324 Java Programming

registering on Multiple Event Sources
An event listener is an object that is interested in the occurrence of a particular external event and
registers itself with the desired event source. A listener may be interested in more than one event
occurring from more than one event source. In such a case, the event listener registers itself with
all the desired event sources, as illustrated in Figure 13-5.

Each event source will transmit an event to the listener whenever it generates one. The event
source sends information about itself in an event object transmitted to the listener. The event
listener is responsible for investigating this event object to determine who sent the event.

Multiple Event Types
Java classifies events into multiple types. For example, an event may be classified as a mouse
event, a keyboard event, a window event, and so on. As shown in Figure 13-6, whenever the
mouse enters the component body, a mouseEntered event is generated. When the mouse exits
the component body, a mouseExited event occurs. When you click the mouse on a component,
a mouseClicked event occurs. Likewise, events are classified into different categories to simplify
their processing.

For each event type, a distinct event object is generated. For example, for action events, an
ActionEvent object is generated; for mouse click events, a MouseEvent object is generated; for
mouse motion events, a MouseMotionEvent object is generated. Therefore, Java defines several
classes for describing these event types.

A unique event handler is provided to handle each type of event. For example, an
actionPerformed method is called for processing ActionEvents, and an itemStateChanged
method is called for processing ItemEvents. We cover event handling in detail through several
programming examples that follow. The important point to note here is that the events come in

FIGurE 13-5. An event listener registering with multiple sources

Button

Event
Listener1

Event Source 1

Button

Event Source 2

Receives events
from both the

sources.

Listener has to
resolve event

source.

Chapter 13: Event Processing and GUI Building 325

different types because they carry different kinds of information, according to what they represent.
The listeners also have different event-processing methods to match the different event types.

Building a GuI
In the early days of computing, all the applications were text based. The user would input data into
the program from the console and generally receive the program output on the console itself. We
have been using such console-based programs throughout this book. The current trend in
computing is to create applications that have a graphical interface. The main two types of
applications we see in today’s world are browser based (HTML) and rich GUI applications based
on Swing in Java or other libraries on other platforms. These GUI applications provide for easier
human interaction. The graphical interface provides a rich experience to the application user.
To create a graphical interface for an application, Java provides several classes. The important
package supplied by Java in its early days was AWT (Abstract Windowing Toolkit). Although
AWT is still available in the current versions of the JDK, its use in creating GUI applications was
replaced by a toolkit called Swing. In this chapter, we use Swing classes to build GUI applications.
Both packages provide several components, such as label controls (javax.swing.JLabel), buttons
(javax.swing.JButton), list boxes (javax.swing.JList), and so on. The components in AWT use low-
level API classes of the operating system, whereas Swing is mostly Java based. Therefore, Swing
components are considered lightweight components. As far as developers are concerned, both
Swing and AWT are platform independent; however, because parts of AWT use native widgets of
the underlying platform, they are sometimes considered heavyweight components.

The Swing library is very vast, providing several components. To make learning easier, the
programs in the following sections are simple. Each program introduces you to a certain set of
components in the Swing library. By the end of the next chapter, you will have learned how to
create powerful GUI applications that have real-life value.

FIGurE 13-6. Classifications of mouse events

The mouseClicked method
is called when the mouse

is clicked.

The mouseExited event
occurs when the mouse

leaves the container.

The mouseEntered event
occurs when the mosue enters

the boundaries of the container.

Button

326 Java Programming

Creating the user Interface
A graphical user interface requires a window. You create a window in your Java application by
using the JFrame class provided in the Swing libraries. You display a window for your application
by using the following code snippet:

JFrame frame = new JFrame();
frame.setVisible(true);

The JFrame class provides the windowing functionality. Typically, you subclass JFrame to add
your application-specific functionality. Once a JFrame object is created, you call its setVisible
method to show the window on the screen. By passing the false parameter to the setVisible method,
you cause the window to be hidden from the screen. Note that hiding the window does not destroy
it. A hidden window can be brought back to the screen by calling the setVisible method with the
true parameter.

To create a user interface for your application, you need to place a few controls on the
window. You place the controls by instantiating the various control classes provided in the
Swing libraries and adding the created objects on the window. The added controls follow
certain predefined placement rules, and a layout manager determines their positions. The layout
manager is responsible for arranging the components based on predefined rules of placement.
Java provides several layout managers for your use. We will be using a few layout managers in
the programs that follow this section.

You can place various types of controls on a window. For example, to display simple text,
you use a label control (an instance of JLabel). To accept user input, you use an edit control
(an instance of JTextField). To show a list of items, you use a list box (an instance of JList), and
so on. You learn the use of these controls and how to process events generated by them in the
following sections.

Demonstrating the Button Control
In this section, we develop a simple application that displays a button with the caption “Show”
(or “Hide”) on a window. When you click the Show button, a message is displayed on the window
and the button text itself changes to “Hide.” When you click the button one more time, the message
is hidden. The action is repeated for every click of the button. Additionally, we provide one more
button, called Close. Clicking this button results in the application terminating. The user interface
for the application is shown in Figure 13-7.

FIGurE 13-7. Demonstrating the use of button controls

Chapter 13: Event Processing and GUI Building 327

The program that creates this interface and processes the button events is given in Listing 13-1.

Listing 13-1 Building a GUI and Demonstrating a Button Control

import javax.swing.*;
import java.awt.event.*;

public class ButtonDemo {

 public static void main(String[] args) {
 MyFrame frame = new MyFrame("Button Demo");
 frame.setSize(200, 200);
 frame.setVisible(true);
 }
}

class MyFrame extends JFrame implements ActionListener {

 private JButton closeButton = new JButton("Close");
 private JButton messageButton = new JButton("Hide");
 private JLabel label = new JLabel(
 "Java Programming is easy", JLabel.CENTER);

 public MyFrame(String str) {
 super(str);
 add(messageButton, "North");
 add(closeButton, "South");
 add(label, "Center");
 messageButton.addActionListener(this);
 closeButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource().equals(messageButton)) {
 if (messageButton.getText().equals("Show")) {
 label.setVisible(true);
 messageButton.setText("Hide");
 } else {
 label.setVisible(false);
 messageButton.setText("Show");
 }
 } else if (evt.getSource().equals(closeButton)) {
 System.exit(0);
 }
 }
}

328 Java Programming

To use the Swing classes in an application, we first need to import the Swing package in our
program, as follows:

import javax.swing.*;

Note that the Swing package is defined in the javax package. In early versions of the JDK, all
Java packages were defined in the java package. Now, many packages are defined in the javax
package. The Swing package is one of them.

To include the event-processing classes, we need to include the event package in our code,
as follows:

import java.awt.event.*;

To create an application window for our application, we create a class called MyFrame that
extends from JFrame:

class MyFrame extends JFrame implements ActionListener {

The class MyFrame also implements an interface called ActionListener, because it will be
made responsible for handling the click events for the buttons placed on it. A button click causes
an ActionEvent to be generated. A listener must implement the ActionListener interface and
provide the implementation for the event-processing methods offered in the listener interface.

In the MyFrame class, we first create two buttons:

private JButton closeButton = new JButton("Close");
private JButton messageButton = new JButton("Hide");

A button is created by instantiating the JButton class. One of the class constructors takes a
parameter of a String type that holds the text to be displayed on the button. The JButton class
provides other constructors besides the one used here.

We create a label object for displaying some text to the user by instantiating the JLabel class:

private JLabel label = new JLabel("Java Programming is easy", JLabel.CENTER);

The JLabel constructor used here accepts two parameters. The first parameter specifies the
text to be displayed on the label. The second parameter specifies the text alignment. Using the
predefined constant in the JLabel class specifies the center alignment.

Next, we define a constructor for our MyFrame class:

public MyFrame(String str) {

The constructor takes a parameter of the String type. The contents of this parameter will be
used for displaying the window title. The first statement in the constructor is a call to its super
class constructor:

super(str);

Note from earlier chapters that a call to super must be the first statement in our constructor.
The super call passes the str argument to its superclass constructor, which uses its value for
constructing the window title.

We now add two buttons to our window:

add(messageButton, "North");
add(closeButton, "South");

Chapter 13: Event Processing and GUI Building 329

The first button is added to the “North” region of the window, and the second button is added
to the “South” region of the window. The window is considered to be divided into five different
regions, as shown in Figure 13-8.

Note that each Swing component that can contain other components has a layout manager
that decides how the contained components are arranged spatially. The default layout manager
for a JFrame is BorderLayout. This layout manager splits the window into five different regions, as
illustrated in Figure 13-8. Using this layout manager, we can place up to five visible components
on the window. Placing an additional component in any region results in setting the earlier placed
component behind the newly placed component, effectively hiding it from the user’s view.

CAuTION
Since JDK 1.4, the five regions in a BorderLayout are specified using a
different set of constants, which you will study in the next chapter.

We then add the label control to the center region of the window:

add(label, "Center");

After adding the components, we set the event listener for our buttons:

messageButton.addActionListener(this);
closeButton.addActionListener(this);

To add an action event listener for the button, we call its addActionListener method. This
method takes one parameter that refers to the instance of the desired listener. In our case, we
specify this as the parameter to the addActionListener method. The this parameter indicates the
instance of the current object, which is MyFrame. Thus, the MyFrame object listens to and
processes the action events generated by two buttons.

NOTE
If you forget to add a listener and the user clicks the button, the
generated event is not processed at all. For a user, this means that
nothing happens when he clicks the button; the rest of the application
will still work as expected.

Next, we need to provide the implementation for all the abstract methods defined in the
ActionListener interface. The ActionListener interface declares only one method, called

FIGurE 13-8. Component positions in the default layout manager of JFrame

330 Java Programming

actionPerformed, that receives one parameter of type ActionEvent. We provide its implementation
as follows:

public void actionPerformed(ActionEvent evt) {

The Java runtime calls this actionPerformed method whenever the user clicks either of the
two buttons in our application. The runtime passes an ActionEvent object to this method that
contains the action details. We call its getSource method to check which button is clicked:

if (evt.getSource().equals(messageButton)) {

If the event was generated by the messageButton, we check its current label by calling its
getText method:

if (messageButton.getText().equals("Show")) {
 label.setVisible(true);
 messageButton.setText("Hide");

If the current label is “Show,” we show the label control by calling its setVisible method. We
also set the new text for the messageButton by calling its setText method. The next time the user
clicks the same button, the preceding if condition will fail. In this case, we execute the else clause,
where we hide the label and set the button control text back to “Show.”

If the user clicks the Close button, we call the exit method of the System class to close the
application:

else if (evt.getSource().equals(closeButton)) {
 System.exit(0);
}

 Finally, let’s discuss the main method of our ButtonDemo class, which is the starting point
of our application. In the main method, we create an instance of the MyFrame class:

MyFrame frame = new MyFrame("Button Demo");

The text that is passed to the constructor of the MyFrame class is displayed as a caption in our
application window. We set the initial size for the window by calling its setSize method. The size
is specified in terms of pixels:

frame.setSize(200, 200);

Finally, we show the window to the user by calling its setVisible method:

frame.setVisible(true);

To quit the application, click the Close button.
In this simple program, you learned the use of the JLabel, JButton, and JFrame classes. You

also got a brief introduction to one of the layout managers, which places these controls on an
instance of JFrame. This layout manager, called the BorderLayout manager, is the default for
JFrame. You learn more about this layout manager in the next chapter.

Demonstrating the Edit Control
In this section, you learn to use a JTextField control. The JTextField control is nothing but an
edit control you have used elsewhere. The JTextField control accepts a single line of text input

Chapter 13: Event Processing and GUI Building 331

from the user. We create a simple integer adder using this control. Our application contains two
JTextField controls. The user enters the two values to be added in these controls and clicks
the addition operator button to see the result of the operation. The application GUI is shown in
Figure 13-9.

The program that creates the user interface shown in Figure 13-9 and processes the application
events is given in Listing 13-2.

Listing 13-2 Demonstrating the Use of the Edit Control

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class TextFieldDemo {

 public static void main(String[] args) {
 MyFrame frame = new MyFrame("Integer Adder");
 frame.setVisible(true);
 frame.setSize(500, 100);
 }
}

class MyFrame extends JFrame implements ActionListener, WindowListener {

 private JTextField number1 = new JTextField();
 private JTextField number2 = new JTextField();
 private JButton adder = new JButton("+");
 private JLabel result = new JLabel("0.0", JLabel.RIGHT);

 public MyFrame(String str) {
 super(str);
 this.setLayout(new GridLayout(2, 4));
 add(new JLabel("Number1", JLabel.CENTER));
 add(new JLabel("Number2", JLabel.CENTER));
 add(new JLabel("Operator", JLabel.CENTER));
 add(new JLabel("Result", JLabel.CENTER));
 add(number1);
 add(number2);
 add(adder);
 add(result);

FIGurE 13-9. An application interface for demonstrating the use of edit controls

332 Java Programming

 adder.addActionListener(this);
 this.addWindowListener(this);
 }

 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource().equals(adder)) {
 try {
 int num1 = Integer.parseInt(number1.getText());
 int num2 = Integer.parseInt(number2.getText());
 int answer = num1 + num2;
 result.setText(String.valueOf(answer));
 } catch (NumberFormatException ne) {
 System.out.println("Number parsing error "
 + ne.getMessage());
 }
 }
 }

 public void windowActivated(WindowEvent e) {
 }

 public void windowClosed(WindowEvent e) {
 }

 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }

 public void windowDeactivated(WindowEvent e) {
 }

 public void windowDeiconified(WindowEvent e) {
 }

 public void windowIconified(WindowEvent e) {
 }

 public void windowOpened(WindowEvent e) {
 }
}

As in the earlier example, we first import the required packages. The class MyFrame extends
JFrame and implements the ActionListener interface to process the action events. Additionally, it
implements the WindowListener interface for processing window events:

class MyFrame extends JFrame implements ActionListener, WindowListener {

In the earlier example, we used the Close button for closing the application window. If you
click the close icon in the upper-right corner of the window, the window would normally disappear
from the screen, but your application might not necessarily close. To close the application via the
click of the window’s close icon, you need to process window events.

Chapter 13: Event Processing and GUI Building 333

TIP
If you use the Java Desktop Application template in NetBeans to
create a Windows application, clicking the close window icon
will terminate it. This facility is provided by the NetBeans built-in
framework.

A designated listener handles window events. You create a listener by implementing the
WindowListener interface. We discuss the various methods of the WindowListener interface after
discussing the rest of the program code.

In MyFrame, we create the two JTextField instances, as follows:

private JTextField number1 = new JTextField();
private JTextField number2 = new JTextField();

We also create a button and a label control. In the class constructor, we set the layout manager
to grid layout using the following statement:

this.setLayout(new GridLayout(2, 4));

In the grid layout, the container on which the components are placed is visualized as a grid
consisting of rows and columns. You create a grid layout manager by instantiating the GridLayout
class. The GridLayout class declares several constructors. The one used in our example takes two
arguments. The first argument specifies the number of rows in our imaginary grid, and the second
argument specifies the number of columns. When we add the components to this imaginary grid,
the first component is added in the first cell of the grid (that is, Row 1, Column 1). The second
component is added to Column 2 in Row 1, the third component to Column 3 in Row 1, and so
on until the first row is completely filled. The next component will now be added to Row 2,
Column 1, and so on. This continues until the second row is filled. If our imaginary grid has more
declared rows, the further components will be added in the next row, column-wise. In other
words, until a row is completely filled, no component will be added to the next unfilled row.

After setting the layout manager, we add the four label controls to this imaginary grid:

add(new JLabel("Number1", JLabel.CENTER));
add(new JLabel("Number2", JLabel.CENTER));
add(new JLabel("Operator", JLabel.CENTER));
add(new JLabel("Result", JLabel.CENTER));

Note how we have created the label control in the call to the add statement itself. Each label
control sets its own text and alignment. The text alignment in our case is “center” for all four controls.
These four controls now form the first line of our application user interface. Next, we add the two
JTextField controls—a button control and a label control—with the following program statements:

add(number1);
add(number2);
add(adder);
add(result);

These components now form the second line of our application interface. Finally, we add the
listener for handling the button events:

adder.addActionListener(this);

334 Java Programming

The event handler, in our earlier case, is the frame itself. Finally, we look at the implementation
of the actionPerformed method. In this method, we check the event source by calling the getSource
method of the Event class:

if (evt.getSource().equals(adder)) {

The getSource method returns an object reference, which is unique in the context of the frame.
We compare this object reference with the reference to the adder object. If the comparison returns
“true,” it indicates that the adder button has been clicked. We now obtain the two operands entered
by the user via the following two statements:

int num1 = Integer.parseInt(number1.getText());
int num2 = Integer.parseInt(number2.getText());

The getText method of the TextField class returns the current text contents. The text contents
are returned as a String value. We need to convert this string into an integer value. We do this by
calling the parseInt method of the Integer class, which is a wrapper of the int data type, as detailed
in the previous chapter. parseInt is a static method of the Integer class and therefore can be invoked
without instantiating the Integer class. The parseInt method takes a string argument as a parameter
and converts it to an integer value.

We add the two numbers and assign this to the result label by calling its setText method:

int answer = num1 + num2;
result.setText(String.valueOf(answer));

We convert the integer value into a string by calling the valueOf static method of the
String class.

Now, let’s look at how the window events are processed by our application frame. First, we set
the listener for window events using the following statement:

this.addWindowListener(this);

NOTE
You need not give an explicit object reference (this) while calling the
addWindowListener method.

We want the MyFrame window object to process all its window events. Thus, we add the
listener to MyFrame by specifying this.addWindowListener. The listener object is specified in the
parameter list to the addWindowListener method. In our case, we want the MyFrame class itself to
handle these events. Therefore, we pass the this parameter to the addWindowListener class. The
MyFrame class must now implement the WindowListener interface and provide the implementation
of all the abstract methods of the interface. The WindowListener interface declares several methods,
such as windowActivated, windowClosed, and so on. Each of these methods is implemented with
an empty body:

public void windowActivated(WindowEvent e) {
}

Chapter 13: Event Processing and GUI Building 335

Note that unless all the methods declared in the interface are implemented, the class itself
will become abstract. We provide the implementation for the windowClosing method as follows:

public void windowClosing(WindowEvent e) {
 System.exit(0);
}

Whenever the user clicks the close icon for the window, the windowClosing event is called.
In this method, we call the exit method of the System class to close the application. This closes
the application window and properly terminates it. You will be able to guess from the name of
each of the methods in the WindowListener interface as to when it is called.

In this section, you learned a new control, JTextField, for accepting user input. You also studied
how to process the window events by implementing the WindowListener interface. In addition,
you got an introduction to the GridLayout manager, the full treatment of which is given in the next
chapter. In the next section, you learn how to use a list box control.

Demonstrating the List Box Control
In this section, you learn to use one more Swing component, called JList. The JList component
maintains a list of items such as strings. You can add and remove items to and from a JList
through your program. We create two list boxes in our application and also provide two buttons,
Add and Remove, on the application interface. Initially, one of the list boxes, we call it “source,”
is filled with a few items, and the other list box, we call it “destination,” is empty. When you click
the “add” button, a selected item from the source list box gets transferred to the destination list
box. The transferred item is removed from the source. When you click the “remove” button, the
selected item in the destination list box is transferred to the source list box. The application user
interface is shown in Figure 13-10.

The full program that creates the user interface shown in Figure 13-10 and processes the various
application events is given in Listing 13-3.

FIGurE 13-10. User interface to demonstrate the list box controls

336 Java Programming

Listing 13-3 Demonstrating the Use of List Box Controls

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class ListDemoApp {

 public static void main(String[] args) {
 MyFrame frame = new MyFrame("List Demo");
 frame.setBounds(20, 50, 400, 300);
 frame.setVisible(true);
 }
}

class MyFrame extends JFrame implements ActionListener {

 private DefaultListModel sourceModel;
 private DefaultListModel destModel;
 private JList source;
 private JList dest = new JList();
 private JButton addButton = new JButton(">>");
 private JButton removeButton = new JButton("<<");

 public MyFrame(String title) {
 super(title);
 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

 sourceModel = new DefaultListModel();
 sourceModel.addElement("Banana");
 sourceModel.addElement("Apple");
 sourceModel.addElement("Orange");
 sourceModel.addElement("Mango");
 sourceModel.addElement("Pineapple");
 sourceModel.addElement("Kiwi");
 sourceModel.addElement("Strawberry");
 sourceModel.addElement("Peach");
 source = new JList(sourceModel);

 source.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 source.setBorder(BorderFactory.createTitledBorder
 (BorderFactory.createLineBorder(Color.DARK_GRAY, 5), ""
 + "Shop", 0, 0, null, Color.RED));
 source.setSelectedIndex(0);
 source.setSelectionBackground(Color.BLACK);
 source.setSelectionForeground(Color.WHITE);

Chapter 13: Event Processing and GUI Building 337

 destModel = new DefaultListModel();
 dest.setModel(destModel);
 dest.setSelectionBackground(Color.BLACK);
 dest.setSelectionForeground(Color.WHITE);
 dest.setBorder(BorderFactory.createTitledBorder
 (BorderFactory.createLineBorder(Color.DARK_GRAY, 5), ""
 + "Fruit Basket", 0, 0, null, Color.RED));

 // Building GUI
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(4, 1, 20, 20));
 panel.add(new JLabel());
 panel.add(addButton);
 panel.add(removeButton);
 panel.add(new JLabel());
 this.setLayout(new GridLayout(1, 3, 20, 20));
 add(source);
 add(panel);
 add(dest);

 // Setting event handlers
 addButton.addActionListener(this);
 removeButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource().equals(addButton)) {
 if (source.getSelectedValue() != null) {
 String str = (String) source.getSelectedValue();
 if (str != null) {
 destModel.addElement(str);
 dest.setSelectedIndex(0);
 sourceModel.removeElement(str);
 source.setSelectedIndex(0);
 }
 }
 }
 if (evt.getSource().equals(removeButton)) {
 if (dest.getSelectedValue() != null) {
 String str = (String) dest.getSelectedValue();
 if (str != null) {
 sourceModel.addElement(str);
 source.setSelectedIndex(0);
 destModel.removeElement(str);
 dest.setSelectedIndex(0);
 }
 }
 }
 }
}

338 Java Programming

Like in earlier examples, in the main method we create an instance of the MyFrame class and
make it visible to the user after setting the initial size for the window:

MyFrame frame = new MyFrame("List Demo App");
frame.setBounds(20, 50, 400, 300);
frame.setVisible(true);

MyClass extends JFrame and implements ActionListener to process the events generated by
the two buttons. We declare two private variables of type DefaultListModel. These are used for
storing the data items in the two list boxes:

private DefaultListModel sourceModel;
private DefaultListModel destModel;

After this, we create two variables of the JList type:

private JList source;
private JList dest = new JList();

The variable source is not initialized, whereas the variable dest is initialized with an object
reference of the JList type. This is done for the purpose of demonstrating the two different
initialization techniques for list boxes and is discussed further.

We then create two button objects, as follows:

private JButton addButton = new JButton(">>");
private JButton removeButton = new JButton("<<");

Now let’s discuss the class constructor. The constructor takes a string parameter and passes it
on to its superclass constructor. The string is displayed in the window title.

public MyFrame(String title) {
 super(title);

Next comes the important code for creating an anonymous class. Remember in the previous
example that our MyFrame class implemented the WindowListener interface by providing the
empty implementation to the different methods declared in the interface. This was required;
otherwise, the class would have become abstract. Only one method called windowClosing was
implemented, with some useful implementation that terminates the application gracefully.

Many listener interfaces define several methods that may not be required by your application.
However, whenever you implement an interface you must provide the implementation for all its
methods (refer to Chapter 6). The designers of the Swing APIs came up with the idea of Adapter
classes for event processing, which save you the trouble of implementing the various interface
methods. A typical Adapter class implements a certain listener interface and provides empty
implementation to all its methods. You simply need to extend your class from the Adapter class and
override the desired methods to achieve whatever application functionality your application needs.
This is exactly what we have done in the current application. Look at the following code snippet:

addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
});

Chapter 13: Event Processing and GUI Building 339

We call the addWindowListener method on the current object instance. (Note that the this
object reference is implicit in the current context.) The addWindowListener requires an object
reference as a parameter. The object reference refers to the object that will listen to window
events generated by the current object. We create this object reference by instantiating the
WindowAdapter class. Immediately following this instantiation, we write the code to override the
windowClosing method. Note that we did not create a class that extends the WindowAdapter
class. However, the compiler would generate a separate class for this WindowAdapter code. This
class is anonymous because we have not named it. It is also treated as an inner class because its
definition is available only within the context of the current class. Because the class is not named,
we cannot create another instance at any other place in our program code. In the overridden
method, we gracefully exit the application by calling the exit method of the System class.

After we have set the window listener for gracefully exiting the application on the click
of the Close button, we now proceed to fill our source list box. We first create an instance
of DefaultListModel:

sourceModel = new DefaultListModel();

We then add several items of the String type to the created data model:

sourceModel.addElement("Banana");
sourceModel.addElement("Apple");
...

We next create an instance of JList by passing the preceding data model as a parameter to its
constructor:

source = new JList(sourceModel);

We set the selection mode for selecting the items from the source list box using the following
program statement:

source.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

The list box allows the user to select multiple items. The various modes of selection are
available as static constants in the ListSelectionModel class. We set the initial selection to the first
item using the following statement:

source.setSelectedIndex(0);

We then create the data model for our other list box by instantiating the DefaultListModel class:

destModel = new DefaultListModel();

We set the data model for the dest list box by calling its setModel method:

dest.setModel(destModel);

TIP
Setting the model allows you to replace the contents of a list box
at runtime.

340 Java Programming

Now, we begin building the GUI. As shown in Figure 13-10, we have split the screen vertically
into three equal portions. On the left we show the source list box, and on the right we show the
destination list box. In the center, we show two buttons: “add” and “remove.” To achieve the
desired position for the buttons, we create a panel and place it in the center of the screen. On the
panel, we place two buttons, one below the other, as shown in the figure. First, we create a panel
object by instantiating the JPanel class:

JPanel panel = new JPanel();

A panel serves the purpose of a container in which the components can be placed. The same
way we set the layout manager for our window for placing components on it, we create a layout
manager for placing components on the panel:

panel.setLayout(new GridLayout(4, 1, 20, 20));

We create an instance of the grid layout manager for this purpose. The imaginary grid consists
of four rows and one column. We place two labels with no captions in the first and last rows to
get some whitespace in the layout. In the two middle rows, we place the two buttons:

panel.add(new JLabel());
panel.add(addButton);
panel.add(removeButton);
panel.add(new JLabel());

After adding the buttons to the panel, we then create a layout manager for the window using
the following program statement:

this.setLayout(new GridLayout(1, 3, 20, 20));

The layout used here is again a grid layout consisting of one row and three columns. We add
the source list box to the first column, the panel to the second column, and the destination list
box to the last column:

add(source);
add(panel);
add(dest);

This completes the creation of the user interface. However, we need to complete one last
thing—adding the event listener for our buttons, which we do using the following program
statements:

// Setting event handlers
addButton.addActionListener(this);
removeButton.addActionListener(this);

Now, let’s discuss the event-handling code for our buttons. We implement the actionPerformed
method as follows:

public void actionPerformed(ActionEvent evt) {

We check the event source by calling the getSource method of the ActionEvent object:

if (evt.getSource().equals(addButton)) {

Chapter 13: Event Processing and GUI Building 341

If the user clicks the “add” button, the following processing is performed. We retrieve the
current selection in the source list box by calling the getSelectedValue method of the JList class:

if (source.getSelectedValue() != null) {

The getSelectedValue method returns the current selection as an object. It returns null if the
user has not selected any item from the list. We copy the selected value in a string variable and
check whether it equals null:

String str = (String) source.getSelectedValue();
if (str != null) {

We add the retrieved element to the destination list’s data model:

destModel.addElement(str);

We set the current index in the destination list box to its first item:

dest.setSelectedIndex(0);

We remove the transferred data item from the source list box by calling the removeElement
method on the data model:

sourceModel.removeElement(str);

Finally, we set the selection in the source list to the first item:

source.setSelectedIndex(0);

If the user wants to move an item from the destination list box to the source list box, she has
to select an item in the destination list and click the “remove” button. You provide the event
handling for the “remove” button’s click event as follows:

if (evt.getSource().equals(removeButton)) {
 if (dest.getSelectedValue() != null) {
 String str = (String) dest.getSelectedValue();
 if (str != null) {
 sourceModel.addElement(str);
 source.setSelectedIndex(0);
 destModel.removeElement(str);
 dest.setSelectedIndex(0);
 }
 }
}

This code is similar to the code for the “add” button’s click event, except that the item from
the destination list is transferred to the source list box.

In this section, you learned to use the JList control, which holds a list of items. You learned
the use of Adapter classes, which provide null implementations to listener interface methods.
You also learned to build complex layouts using a mixture of layout managers.

342 Java Programming

TIP
You will use several panels in creating a complex GUI. Each
panel uses its own layout manager to get the desired placement of
components. The panels themselves are placed in the parent container
using one of the layout managers. You will learn this technique in the
next chapter.

Summary
All graphical interface applications are event driven. The events may be generated internally by an
application or they may be generated externally. For example, when you click a button or move
the mouse, an external event occurs. An application may generate an event on its own for others
to consume whenever a certain internal condition is satisfied. JDK 1.0 used the hierarchical event-
processing model, where the event propagates up the container hierarchy until it gets consumed
somewhere along the way. From JDK 1.1 onward, the event model changed to the delegation event
model. In this model, we define event sources and listeners. An event source is an object that
generates an event, and a listener is the one that waits for an event to occur and, when it does,
consumes it. Any object can act like an event source, a listener and consumer, or both. A listener
has to register with an event source for the type of event it is interested in. Whenever a source
generates an event, it is dispatched to all the registered listeners. The event source maintains a list
of registered listeners. Java classifies the events into different types, depending on the context. For
example, you can have a set of events related to mouse clicks and mouse motion, a different set
for window processing, another set for button or list box events, and so on.

Java provides the AWT and Swing classes to create GUI-based applications. The AWT
components are considered heavyweight, whereas Swing components are considered lightweight
because they are mostly written in Java itself. You create a GUI application by creating an
application window. You place the various controls—buttons, labels, edit boxes, and so on—on
the window using different layout managers. You implement the predefined interfaces to provide
the event handlers in your classes. Java provides the adapter classes that provide the blank
implementations for most of the event listener interfaces. This simplifies your coding because you
only need to override the desired methods of the interface. The ActionListener interface has only
one method; therefore, there is no need to define an adapter class for it. Many times, the event
handlers are defined by creating inner anonymous classes.

In the next chapter, we cover in detail the various layout managers for building
sophisticated GUIs.

Chapter
14

Creating Layouts

343

344 Java Programming

n the last chapter, you learned about building a graphical user interface (GUI). GUI
applications use several components that are placed on the container using a layout
manager. You briefly studied a couple layout managers in Chapter 13. This chapter
will equip you with other layout managers for creating more advanced GUI screens.
In particular, you will learn the following:

Why you should use layout managers■■

How layout managers work ■

Using tools to create a layout ■

Using BorderLayout, FlowLayout, CardLayout, GridLayout, GridBagLayout, and BoxLayout ■

Creating a tabbed dialog box ■

Using advanced layout managers such as GroupLayout and SpringLayout ■

Turning off layout managers for absolute placements■■

Layout Managers
As discussed in the previous chapter, a layout manager takes the responsibility of placing the
components at the appropriate positions on a container. In addition, the layout manager resizes
and realigns these components when the user resizes the application window or whenever the
container size varies according to the underlying platform. More than a decade ago, we had
display monitors with different resolutions, such as CGA, EGA, and VGA. Developers had to port
their applications to these different devices, which essentially meant developing a different GUI
screen for each device. With the rise of layout managers, display device independence was
achieved. Nowadays, with the introduction of mobile apps, this benefit is vanishing again
because developers have to redesign the layouts of existing desktop applications for the small
screen sizes of mobile phones and tablets. Learning about layout managers is still important
because they offer true device independence when you’re developing desktop applications.

So, what exactly is a layout manager? It is an object that controls the size and position of
components in a container. The LayoutManager interface sets the standard for laying out
containers. All layout managers implement this interface. Each type of container has some layout
manager attached to it. As you saw in the previous chapter, for panel objects the default layout
manager is FlowLayout. For window objects, the default layout manager is BorderLayout. If you
do not use a layout manager, the components are placed using absolute coordinates. In such a
case, when the parent container is resized, or when a user sets preferences such as font and
locale, the relative positions of the components placed on the container do not adjust well and
some overlaps in the component placements may occur.

Types of Layout Managers
In the early days, Java had only a few layout managers. Today, several layout mangers are available
for your use. Each layout manager has its own purpose, and each one lays out components using
its own predefined rules. As you have seen, the FlowLayout manager lays out components row-
wise; when a row is filled, the next component added is placed in the next row. The components
in a row may be added left to right, right to left, or centered with leading and trailing justification.

I

Chapter 14: Creating Layouts 345

The BoxLayout manager is similar to the FlowLayout manager but provides additional functionality.
BorderLayout can place a maximum of five visible components along the four borders and the
center of the container. The GridLayout manager places the components in the cells of an
imaginary grid, the size of which is decided by you. The CardLayout manager stacks components
on top of each other like playing cards. This is very useful for creating tabbed dialog interfaces and
wizards; however, due to the demand for creating tabbed dialog boxes, Java has introduced a class
called JTabbedPane especially for this purpose. GridBagLayout is a very powerful layout manager
that provides lots of flexibility in creating complex layouts but is complex to use. Although several
layout managers are provided that have unique functionalities and purposes, developers typically
use multiple layout managers on a single container to create sophisticated and complex layouts.

Building the GUI
To create the desired graphical user interface for your application, you first need to apply a layout
manager to the application window. Next, you add the components to this window, which is
essentially a container for them. These components are placed using the predefined rules in the
layout manager. However, a component may provide size and alignment hints to the manager,
which may or may not honor these requests. You can also control the space between these
components. To support different locales in your application, you may wish to set the container’s
orientation. For example, Arabic is right-to-left, whereas English and most other languages are
left-to-right.

Let’s now look at the various steps in building a GUI. In the previous chapter, we applied the
layout managers to the containers—a panel and a window. These have a default layout manager
set. To apply a different layout manager, you would use code similar to

Container contentPane = frame.getContentPane();
contentPane.setLayout(new FlowLayout());

where frame is an object of type JFrame on which you want to arrange the components. To add a
component, you use the code similar to this:

contentPane.add(aComponent);

In some situations, you may need to specify additional parameters in the add method. With
some layout managers such as GridBagLayout and SpringLayout, you need to follow elaborate
setup procedures before adding components. The Swing containers provide an API to add
components to them. Before adding a component, you may specify its size preferences by calling
the size hint methods: setMinimumSize, setPreferredSize, and setMaximumSize. Many layout
managers do not honor these requests. However, BoxLayout and SpringLayout do. You may also
provide alignment hints by calling the component’s setAlignmentX and setAlignmentY methods,
or by overriding its getAlignmentX and getAlignmentY methods.

TIP
Each component has a minimum, maximum, and preferred size.
A component class defines these sizes. A user can obtain these sizes
by calling the respective get methods. To change the default values set
by the component, you need to subclass it and override the respective
set methods. Layout managers do not necessarily honor these sizes.

346 Java Programming

In some layout managers such as GridLayout and BorderLayout, you can specify the space
between components. Some layout managers do this automatically. In some situations, you may
also want to add some invisible components to get extra whitespace in your layout. The BoxLayout
manager facilitates this. You may also create the apparent whitespace between components by
adding empty borders to them, especially on panels and labels that do not have default borders.

To control the orientation of your layout, use the setComponentOrientation and
applyComponentOrientation methods. The following code applies the right-to-left orientation
to the content pane and its child components:

Container contentPane = this.getContentPane();
contentPane.applyComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

Now that you have a general idea how to set up the layout manager and add components to
a container using predefined constraints, let’s move to the internal workings of a layout manager.

How Do Layout Managers Work?
The two primary tasks of a layout manager are to calculate the minimum/preferred/maximum sizes
for a container and to lay out the container’s child components. While laying the components, the
manager looks at the designer-provided constraints, the container’s properties, and the minimum/
preferred/maximum sizes requested by the child components. A child component may itself be a
container. In this situation, a child determines its own size based on the preceding factors and lays
out components within itself. Thus, the system first determines the sizes of the containers at the
bottom of its hierarchy. These sizes then percolate up the hierarchy, eventually determining the
super-container’s size. You need to call the Window.pack method to lay out the component
hierarchy for the first time. Later on, you may use the Container.validate method to validate an
invalid container. A container is considered valid if all its children are already laid out and valid.
A child container may be considered invalid when it changes its size, alignment, or position. The
isValid method can be used for testing validity. The validate method triggers the layout for the
container and all its child containers down the component hierarchy. Eventually the container will
be marked as valid.

When the component size changes—say, due to a font change or an explicit modification
through the code—the component must be resized and repainted via calls to the revalidate and
repaint methods. A revalidate request is passed up the container hierarchy until it encounters a
top-level container or a container such as scroll pane that should not be affected by the current
resizing. The container is then laid out again, resizing all affected components.

Let’s now move on to the individual layout managers and study how each one works.

Using Layout Managers
In this section we cover how to use the layout managers we have discussed so far as well as the
rationale behind using them. We will also look at a simple program example for each layout
manager. So let’s start with BorderLayout.

BorderLayout
A border layout fits components into five regions: North, South, East, West, and Center. Each
region can contain no more than one component. If you place an additional component in a

Chapter 14: Creating Layouts 347

previously occupied region, the last added component will be shown on top and the previous
component is completely hidden. Each region is identified with a constant: NORTH, SOUTH,
EAST, WEST, and CENTER. While adding a component, you need to specify one of these
constants. For a component placed in the center, specifying this constant is optional.

After the components have been placed, if you enlarge the window, the center area gets as
much of the available space as possible. The components on the edges then fill up all the
remaining space. Typically you won’t use all the five regions. In general, developers use only the
center area so that the component automatically resizes to the size of the window. Along with the
center region, you may choose to use the South region to place status text for your application.

In the previous chapter, you used the BorderLayout manager. The component placements in
this layout are shown in Figure 14-1.

When you used this layout manager in the previous chapter, the four regions were named after
their directional orientation: North, South, East, and West. The remaining region was called Center.
With JDK 1.4 onward, these regions are now called PAGE_START, PAGE_END, LINE_START,
LINE_END, and CENTER, as shown in Figure 14-1.

NOTE
It is recommended that you use the new constants because they
are now considered standard and also enable programs to adjust
to different languages having different orientations.

Using NetBeans to Build the GUI
Because you have already hand-coded the placement of components using the BorderLayout
manager in the previous chapter, we will now look at another way of creating GUIs using
NetBeans. NetBeans enables you to create GUIs with ease without hand-coding the layout
manager.

For this example we create a photo frame application that uses the BorderLayout manager
for designing the interface. We create a frame and display a large size photograph at its center.

FIGURE 14-1. Component placements in BorderLayout

348 Java Programming

We provide four scroll buttons along the frame edges so that we can pan the displayed photo in
four directions.

For our photo frame application, we either create a new project based on the Java Application
template or add a JFrame form to an existing project. The menu for adding a new form is shown
in Figure 14-2.

NetBeans displays the created form in design view. Right-click the form and select the Set
Layout menu option. You will see the list of various layout managers. We will be covering the
remaining layout managers from this list in this chapter. Select BorderLayout for the current
application.

FIGURE 14-2. Adding a JFrame form to the project

Chapter 14: Creating Layouts 349

NOTE
The default layout manager for a frame is BorderLayout. Therefore, the
preceding step is not necessary. It is included here to show you the
procedure for setting a layout manager for any container.

To set the caption for the application frame, select the Properties menu option. You will see
the list of properties in the properties window. Set the title property to Photo Frame.

Now, drag a Button control from the palette of Swing controls onto the form, as shown in
Figure 14-3.

As you move the dragged control onto the form, a dotted guideline will show you five different
positions on the form where the button can be placed. Place the current button on the left edge. To
change the default name, in the Inspector window click the button and edit its name (leftButton in
this case). To set the button’s properties, right-click it. A menu will pop up, as shown in Figure 14-4.

Select Properties. A properties dialog box will open. Set the text property to a less-than
symbol (<). Next, select the Events tab. Click the down arrow in the actionPerformed method
cell. Accept the suggested name for the method. An event handler with this name will now be
added to your code.

Likewise, add three more buttons alongside the remaining three borders. Name them
appropriately, set their captions, and create event handlers for them. Next, add a JPanel control to
the center of the form. Add a JLabel control on top of it and set its icon property to lake.jpg or any
other image file you wish to display (the lake.jpg file is available as a part of the download). Use
a large size image so that you can pan it with the four button controls you have placed on the
form. Set the text property of the label to a blank string. Your screen should look like the one
shown in Figure 14-5 at this stage.

FIGURE 14-3. Placing a Swing control from the palette

350 Java Programming

FIGURE 14-4. Setting the properties of a component

FIGURE 14-5. Photo frame application in designer view

Chapter 14: Creating Layouts 351

Now it is time to add the code to your form. Select the Source tab and add the four event
handlers and two static variables shown in bold in the full program given in Listing 14-1.

Listing 14-1 Source Code for Photo Frame Application

public class PhotoFrame extends javax.swing.JFrame {

 static int xOffset = 0;
 static int yOffset = 0;

 /** Creates new form PhotoFrame */
 public PhotoFrame() {
 initComponents();
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 @SuppressWarnings("unchecked")
 // <editor-fold defaultstate="collapsed" desc="Generated Code">
 private void initComponents() {
 // Netbeans generated code not shown here
 }// </editor-fold>

 private void buttonRightActionPerformed(
 java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 xOffset -= 10;
 jLabel1.setLocation(xOffset, yOffset);
 }

 private void buttonLeftActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 xOffset += 10;
 jLabel1.setLocation(xOffset, yOffset);
 }

 private void buttonTopActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 yOffset += 10;
 jLabel1.setLocation(xOffset, yOffset);
 }

 private void buttonBottomActionPerformed(
 java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 yOffset -= 10;
 jLabel1.setLocation(xOffset, yOffset);
 }

352 Java Programming

 private void formComponentResized(java.awt.event.ComponentEvent evt) {
 // TODO add your handling code here:
 jLabel1.setLocation(xOffset, yOffset);
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {
 new PhotoFrame().setVisible(true);
 }
 });
 }
 // Variables declaration - do not modify
 private javax.swing.JButton buttonBottom;
 private javax.swing.JButton buttonLeft;
 private javax.swing.JButton buttonRight;
 private javax.swing.JButton buttonTop;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JPanel jPanel1;
 // End of variables declaration
}

To pan the image, we use two static variables: xOffset and yOffset. The event handlers
increment/decrement values of these variables. Calling the setLocation method on the label
control moves the image on the screen appropriately to the new location.

To run this photo frame, right-click its source file name in the Projects window and select the
Run File option. You will see the output shown in Figure 14-6. Click each of the four buttons to
see how the image is panned.

Let’s now examine the generated code that creates the application GUI. The initComponents
method builds the GUI. In the beginning, it creates the instances of all the components we have
placed on the form:

buttonTop = new javax.swing.JButton();
buttonRight = new javax.swing.JButton();
buttonBottom = new javax.swing.JButton();
buttonLeft = new javax.swing.JButton();
jPanel1 = new javax.swing.JPanel();
jLabel1 = new javax.swing.JLabel();

Next, it sets the action for closing the window:

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

Note that you will not need to implement the WindowListener interface as you did in Chapter 13
for closing the window.

Chapter 14: Creating Layouts 353

The code builder then adds the code for setting the caption and event handler for a button:

buttonTop.setText("v");
buttonTop.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {
 buttonTopActionPerformed(evt);
 }
});

The button is then added to the requested location by first obtaining the container pane by
calling the getContentPane method on the current object (which is a JFrame instance) and then
calling its add method:

getContentPane().add(buttonTop, java.awt.BorderLayout.PAGE_START);

Likewise, the code generator sets up the three remaining buttons and adds them to the
container. Next, the program sets the icon and the text for the label control:

jLabel1.setIcon
 (new javax.swing.ImageIcon(getClass().getResource("/lake.jpg")));
jLabel1.setText("jLabel1");

Finally, it adds the label to the panel and the panel itself to the center of the frame.

FIGURE 14-6. Screen shot of the photo frame application

354 Java Programming

From this example, you can appreciate the ease with which the GUI can be constructed using
tools such as NetBeans. However, developers always like to have control over what they do or at
least prefer to have a thorough understanding of what’s going on behind the scenes. Therefore,
we discuss the rest of the layout managers by hand-coding them. Once you understand how they
work, in practice, you can use the tools to build the GUI using any of these layout managers.

TIP
In the BorderLayout manager, you can also control the gap between
the components by calling its setHgap and setVgap methods.

FlowLayout
This is a very simple layout manager and is the default for JPanel objects. The FlowLayout manager
lays out the components in a directional flow, much like the lines of text in a paragraph. When
one row is filled, the next component is placed on the next row. Although the default placement is
left to right, you can change the orientation easily by setting the componentOrientation property
of the container. Each component’s preferred size is honored.

This layout is typically used to arrange buttons in a panel; for example, you would use this
layout manager for creating a toolbar. The toolbar buttons are placed horizontally until no more
buttons fit on the given line. A new row is automatically added for placing the remaining buttons.
To control the alignment, the layout manger provides the align property. The five different permitted
values for this property are LEFT, RIGHT, CENTER, LEADING, and TRAILING. The LEFT alignment
left-justifies each row. The RIGHT alignment right-justifies each row. The CENTER alignment centers
each line, as shown in Figure 14-7.

The LEADING alignment indicates that each row should be justified to the leading edge. For
example, if the ComponentOrientation is set right-to-left, each row will be justified to the right.
Similarly, the TRAILING alignment justifies to the trailing edge.

We will now look at how the FlowLayout manager places the components on its container
and realigns them when the container size changes. To keep things simple, we will use only
button controls as components. We place five buttons on a JFrame object and study their
alignment upon window resizing. The code is given in Listing 14-2.

Listing 14-2 Demonstration Program for FlowLayout

import javax.swing.*;
import java.awt.*;

public class FlowLayoutDemoApp {

 public static void main(String[] args) {
 MyFrame frame = new MyFrame("FlowLayout Demo");
 frame.setSize(500, 300);
 frame.setVisible(true);
 }
}

class MyFrame extends JFrame {

Chapter 14: Creating Layouts 355

 public MyFrame(String title) {
 super(title);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container pane = getContentPane();
 pane.setLayout(new FlowLayout());
 pane.setComponentOrientation(ComponentOrientation.LEFT_TO_RIGHT);
 JButton button = new JButton("ONE");
 pane.add(button);
 button = new JButton("TWO");
 pane.add(button);
 button = new JButton("THREE");
 pane.add(button);
 button = new JButton("FOUR");
 pane.add(button);
 button = new JButton("FIVE");
 pane.add(button);
 }
}

As in the earlier example, we create a MyFrame class that inherits JFrame to demonstrate
component placement. Calling the setLayout method on the container object sets the layout
manager. The method receives an instance of FlowLayout as its argument:

Container pane = getContentPane();
pane.setLayout(new FlowLayout());

We create a few Button instances and add them to the container. The placement orientation
is set to left-to-right using the following statement:

pane.setComponentOrientation(ComponentOrientation.LEFT_TO_RIGHT);

Because the default orientation is left-to-right, this statement is not necessary. However, you
can experiment with a different orientation by changing the constant to RIGHT_TO_LEFT. When
you run the application, you will see the output shown in Figure 14-8.

FIGURE 14-7. FlowLayout with center alignment

FIGURE 14-8. Left-to-right component placement in FlowLayout

356 Java Programming

Now, if you change the orientation to RIGHT_TO_LEFT and run the program again, you will
see the output shown in Figure 14-9.

The FlowLayout exhibits an interesting property. As mentioned earlier, it honors the
component’s preferred size. You must have noticed that the buttons displayed in our example
have different widths—these are set by the size of the caption text. In other words, each button
has a preferred size based on the size of its caption. Now, what happens if the container width
is less than the total width of all the components placed on it? You can try this by resizing the
window. A typical resized window is shown in Figure 14-10.

Note that after the first two components are placed, the layout manager is not able to fit button
THREE on the same row; thus, it places it on the next row. Similarly, while placing FOUR, it has to
use a new row due to lack of space on the second row.

Like the border layout discussed earlier, this layout manager also allows you to set the horizontal
and vertical spacing between the components.

CardLayout
In this layout, the added components are stacked on top of each other just like a stack of playing
cards. The layout manager provides methods to bring the next or the previous card to the top.
You can also directly jump to the first, last, or any specified card in the stack. While adding a
card to the stack, you can associate a string identifier with it so that it can be randomly accessed.
One application of this is to create wizards that provide several tabs. Each tab has its own user
interface, and the user can bring any desired card to the top by clicking the corresponding tab.
You will learn how to create a wizard using the card layout manager with the help of the ready-
to-use JTabbedPane class.

To explore how this layout manager functions, we construct a simple color panel application.
The application contains several color panels stacked on top of each other. We provide two
buttons to browse through this stack of “cards”: The Next button brings the next card in the stack
to the top, and the Previous button brings the bottom card on the top. Besides this, we also
display a list of cards so that the user can jump directly to any one and bring it to the top.

The application user interface is shown in Figure 14-11.

FIGURE 14-9. Right-to-left component placement in FlowLayout

FIGURE 14-10. Component placements in FlowLayout after window resizing

Chapter 14: Creating Layouts 357

The full program is given in Listing 14-3.

Listing 14-3 Demonstration Program for CardLayout

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.event.*;

public class CardLayoutDemoApp {

 public static void main(String[] args) {
 ColorFrame frame = new ColorFrame("CardLayout Demo");
 frame.setSize(500, 300);
 frame.setVisible(true);
 }
}

class ColorFrame extends JFrame
 implements ActionListener, ListSelectionListener {

 private JButton cmdNext = new JButton("Next");
 private JButton cmdPrevious = new JButton("Previous");
 private JPanel displayPanel = new JPanel();
 private CardLayout cards = new CardLayout();
 private String[] colors = {"Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet"};
 private JList colorList = new JList(colors);
 private static int selectedColorIndex = 0;

FIGURE 14-11. Color panel application for demonstrating the CardLayout manager

358 Java Programming

 public ColorFrame(String title) {
 super(title);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 cmdNext.addActionListener(this);
 cmdPrevious.addActionListener(this);
 colorList.addListSelectionListener(this);
 displayPanel.setLayout(cards);
 displayPanel.add(colors[0], new ColorPanel(Color.RED));
 displayPanel.add(colors[1], new ColorPanel(Color.ORANGE));
 displayPanel.add(colors[2], new ColorPanel(Color.YELLOW));
 displayPanel.add(colors[3], new ColorPanel(Color.GREEN));
 displayPanel.add(colors[4], new ColorPanel(Color.BLUE));
 displayPanel.add(colors[5], new ColorPanel(new Color(0x6600FF)));
 displayPanel.add(colors[6], new ColorPanel(new Color(0x8B00FF)));
 JPanel cmdPanel = new JPanel();
 cmdPanel.add(cmdPrevious);
 cmdPanel.add(cmdNext);
 Container pane = getContentPane();
 pane.add(colorList, BorderLayout.LINE_START);
 pane.add(displayPanel, BorderLayout.CENTER);
 pane.add(cmdPanel, BorderLayout.PAGE_END);
 colorList.setSelectedIndex(selectedColorIndex);
 }

 public void actionPerformed(ActionEvent evt) {
 cards.show(displayPanel, colors[selectedColorIndex]);
 if (evt.getSource() == cmdNext) {
 cards.next(displayPanel);
 selectedColorIndex++;
 if (selectedColorIndex > colors.length - 1) {
 selectedColorIndex = 0;
 }
 colorList.setSelectedIndex(selectedColorIndex);
 } else if (evt.getSource() == cmdPrevious) {
 cards.previous(displayPanel);
 selectedColorIndex--;
 if (selectedColorIndex < 0) {
 selectedColorIndex = colors.length - 1;
 }
 colorList.setSelectedIndex(selectedColorIndex);
 }
 }

 public void valueChanged(ListSelectionEvent lse) {
 selectedColorIndex = colorList.getSelectedIndex();
 cards.show(displayPanel, colors[selectedColorIndex]);
 }
}

class ColorPanel extends Panel {

Chapter 14: Creating Layouts 359

 public ColorPanel(Color color) {
 setBackground(color);
 this.setLayout(new BorderLayout());
 add(new JLabel(
 "Value: " + String.format("%X", color.getRGB()),
 SwingConstants.CENTER),
 BorderLayout.CENTER);
 }
}

In this example, we construct a stack of color panels, with each panel having one of the colors
of the rainbow. The ColorPanel class represents this panel. The class constructor accepts a color
argument and sets the panel background to the specified color. It also displays the RGB value
(along with its alpha value in the first two digits) on the panel.

The ColorFrame class constructs the user interface. As before, this is based on JFrame. The
container creates a displayPanel that is displayed at its center using the default BorderLayout. On
the left side, we add a JList control displaying the names of cards. At the bottom, we add a panel
on which the Next and Previous buttons are placed using the default layout manager, which is
a FlowLayout.

On the displayPanel, we set the layout manager to CardLayout and add a few color panels to
it using the following statements:

displayPanel.setLayout(cards);
displayPanel.add(colors[0], new ColorPanel(Color.RED));
displayPanel.add(colors[1], new ColorPanel(Color.ORANGE));
...

The first parameter to the add method specifies the card name. We use this name to bring a
desired card to the top. In the button actions, we simply call the next and previous methods of
the CardLayout manager to bring to the top the next or previous card. The current card index is
maintained in the class variable selectedColorIndex.

To process the selection in the JList control, we need to provide a listener to the list box
events. This is done by implementing the ListSelectionListener interface. This requires the
implementation of a sole valueChanged method of the interface:

public void valueChanged(ListSelectionEvent lse) {

In the method implementation, we first obtain the index of the user-selected item:

selectedColorIndex = colorList.getSelectedIndex();

We then bring the selected card to the top by using its name taken from the list model:

cards.show(displayPanel, colors[selectedColorIndex]);

Run the program. At the start, you will see a red panel. Select some other color from the list
displayed on the left side. The panel color immediately shows the result of your selection. What
actually happens is that the card at the selected color value is brought to the top. Now, try the
Next and Previous buttons. The panel color changes and the corresponding color value is shown
as a selected item in the list on the left. The RGB value of the current color is also displayed at the
center of the panel.

360 Java Programming

TIP
The CardLayout manager is very useful in creating a tabbed dialog
box interface. However, Java provides a specially designed built-in
class called JTabbedPane for creating a tabbed dialog box. You learn
the use of this class toward the end of this chapter.

GridLayout
If you wish to place the components in a table, you use the GridLayout manager. For example,
suppose you want to create a mobile phone emulator in your application. You will need to create
a keypad similar to the one on your mobile phone. The desired layout of this keypad is shown in
Figure 14-12.

Before we look at how to construct this layout, let’s quickly discuss this layout manager. In the
GridLayout manager, you set the number of rows and columns for the table in the class constructor:

GridLayout(int rows, int cols)
GridLayout(int rows, int cols, int hgap, int vgap)

The second constructor specifies the horizontal and vertical gap between the cells. The layout
manager adds the components row-wise. When one row is filled completely, the next component
is added to the new row. The last row may contain empty cells if the number of components does
not equal the total number of available cells. Each component always fills up the entire available
cell area. Both the preferred and minimum sizes of a component are not honored. The horizontal
and vertical gaps control the spacing between the cells and have no effect on the spacing between
the cell and the container boundary. If you want zero spacing between the cells, use a constructor
that takes only two arguments (that is, the number of rows and columns). Listing 14-4 shows how
to construct a mobile phone keypad.

FIGURE 14-12. A mobile phone keypad using GridLayout

Chapter 14: Creating Layouts 361

Listing 14-4 Constructing a Mobile Phone Keypad Interface

import java.awt.GridLayout;
import javax.swing.*;

public class MobileKeypad extends JFrame {

 public MobileKeypad() {
 setTitle("Mobile Keypad");
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 initGUI();
 }

 public static void main(String[] args) {
 MobileKeypad app = new MobileKeypad();
 app.setSize(220, 240);
 app.setVisible(true);
 }

 private void initGUI() {
 setLayout(new GridLayout(4, 3));
 add(new JButton("1"));
 add(new JButton("2"));
 add(new JButton("3"));
 add(new JButton("4"));
 add(new JButton("5"));
 add(new JButton("6"));
 add(new JButton("7"));
 add(new JButton("8"));
 add(new JButton("9"));
 add(new JButton("+"));
 add(new JButton("0"));
 add(new JButton("#"));
 }
}

As in the earlier cases, the user interface is created in the initGUI method. We simply set the
layout manager to an instance of GridLayout with a size of four rows and three columns. After
setting the manager, we add buttons to the container in the desired order to create the keypad.

GridBagLayout
This layout manager is very powerful, but at the same time it is also complex to use. Like the
GridLayout manager, this layout manager places the components in grid cells. Unlike the GridLayout
manager, the row heights and the column widths may not remain equal when the components are
placed using this layout manager. The GridBagLayout manager honors the components’ preferred
sizes while determining the row heights and column widths. Also, a component may span multiple

362 Java Programming

rows and columns. While adding a component, you set the constraints on its placement, as is done
with the following code snippet:

JPanel pane = new JPanel(new GridBagLayout());
GridBagConstraints gridBagConstraints = new GridBagConstraints();
// set fields on gridBagConstraints
pane.add(theComponent, gridBagConstraints);

You create an instance of the GridBagConstraints class, set its desired fields, and pass it as a
parameter to the add method.

To understand how this layout manager works, we will construct the calculator interface
shown in Figure 14-13.

The GUI we are going to build contains several buttons and a label control that displays the
output shown at the top of the window. Each button is placed in a certain grid cell. The grid itself
consists of seven rows and four columns. The equalto button occupies the space of two rows and
one column. The number 0 button occupies the space of one row and two columns. The top
label for calculator output occupies the space of four columns and a row. Like in the case of
GridLayout, you do not set the grid size while using this layout manager. Rather, the number of
rows and columns is automatically computed when you add the components to the container
with the specified constraints.

The full program for constructing the calculator GUI is given in Listing 14-5.

Listing 14-5 Creating a Calculator Interface Using GridBagLayout

import javax.swing.*;
import javax.swing.plaf.metal.MetalBorders;
import java.awt.*;

public class CalcInterface extends javax.swing.JFrame {

FIGURE 14-13. Creating a calculator interface using GridBagLayout

Chapter 14: Creating Layouts 363

 private JLabel jLabelOutput = new javax.swing.JLabel(
 "123456789", SwingConstants.RIGHT);
 private JButton jButtonMC = new javax.swing.JButton("MC");
 private JButton jButtonMPlus = new javax.swing.JButton("M+");
 private JButton jButtonMMinus = new javax.swing.JButton("M-");
 private JButton jButtonMR = new javax.swing.JButton("MR");
 private JButton jButtonC = new javax.swing.JButton("C");
 private JButton jButtonAddSub = new javax.swing.JButton("+/-");
 private JButton jButtondiv = new javax.swing.JButton("/");
 private JButton jButtonMul = new javax.swing.JButton("*");
 private JButton jButtonSeven = new javax.swing.JButton("7");
 private JButton jButtonEight = new javax.swing.JButton("8");
 private JButton jButtonNine = new javax.swing.JButton("9");
 private JButton jButtonSub = new javax.swing.JButton("-");
 private JButton jButtonFour = new javax.swing.JButton("4");
 private JButton jButtonFive = new javax.swing.JButton("5");
 private JButton jButtonSix = new javax.swing.JButton("6");
 private JButton jButtonAdd = new javax.swing.JButton("+");
 private JButton jButtonOne = new javax.swing.JButton("1");
 private JButton jButtonTwo = new javax.swing.JButton("2");
 private JButton jButtonThree = new javax.swing.JButton("3");
 private JButton jButtonZero = new javax.swing.JButton("0");
 private JButton jButtonDot = new javax.swing.JButton(".");
 private JButton jButtonEqual = new javax.swing.JButton("=");

 public CalcInterface() {
 super.setTitle("Calc");
 initGUI();
 }

 private void initGUI() {
 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.ipady = 15;
 constraints.ipadx = 10;
 constraints.fill = java.awt.GridBagConstraints.BOTH;

 getContentPane().setLayout(new GridBagLayout());
 jLabelOutput.setFont(new Font("Monospaced", 1, 24));
 jLabelOutput.setBorder(new MetalBorders.TextFieldBorder());
 constraints.insets = new Insets(10, 10, 10, 10);

 constraints.gridwidth = GridBagConstraints.REMAINDER;
 getContentPane().add(jLabelOutput, constraints);
 constraints.insets = new Insets(0, 0, 0, 0);
 constraints.gridwidth = 1;
 constraints.gridx = 0;
 constraints.gridy = 1;
 getContentPane().add(jButtonMC, constraints);
 constraints.gridx = 1;
 constraints.gridy = 1;

364 Java Programming

 getContentPane().add(jButtonMPlus, constraints);
 constraints.gridx = 2;
 constraints.gridy = 1;
 getContentPane().add(jButtonMMinus, constraints);
 constraints.gridx = 3;
 constraints.gridy = 1;
 getContentPane().add(jButtonMR, constraints);
 constraints.gridx = 0;
 constraints.gridy = 2;
 getContentPane().add(jButtonC, constraints);
 constraints.gridx = 1;
 constraints.gridy = 2;
 getContentPane().add(jButtonAddSub, constraints);
 constraints.gridx = 2;
 constraints.gridy = 2;
 getContentPane().add(jButtondiv, constraints);
 constraints.gridx = 3;
 constraints.gridy = 2;
 getContentPane().add(jButtonMul, constraints);
 constraints.gridx = 0;
 constraints.gridy = 3;
 getContentPane().add(jButtonSeven, constraints);
 constraints.gridx = 1;
 constraints.gridy = 3;
 getContentPane().add(jButtonEight, constraints);
 constraints.gridx = 2;
 constraints.gridy = 3;
 getContentPane().add(jButtonNine, constraints);
 constraints.gridx = 3;
 constraints.gridy = 3;
 getContentPane().add(jButtonSub, constraints);
 constraints.gridx = 0;
 constraints.gridy = 4;
 getContentPane().add(jButtonFour, constraints);
 constraints.gridx = 1;
 constraints.gridy = 4;
 getContentPane().add(jButtonFive, constraints);
 constraints.gridx = 2;
 constraints.gridy = 4;
 getContentPane().add(jButtonSix, constraints);
 constraints.gridx = 3;
 constraints.gridy = 4;
 getContentPane().add(jButtonAdd, constraints);
 constraints.gridx = 0;
 constraints.gridy = 5;
 getContentPane().add(jButtonOne, constraints);
 constraints.gridx = 1;
 constraints.gridy = 5;
 getContentPane().add(jButtonTwo, constraints);
 constraints.gridx = 2;

Chapter 14: Creating Layouts 365

 constraints.gridy = 5;
 getContentPane().add(jButtonThree, constraints);
 constraints.gridx = 0;
 constraints.gridy = 6;
 constraints.gridwidth = 2;
 getContentPane().add(jButtonZero, constraints);
 constraints.gridwidth = 1;
 constraints.gridx = 2;
 constraints.gridy = 6;
 getContentPane().add(jButtonDot, constraints);
 constraints.gridx = 3;
 constraints.gridy = 5;
 constraints.gridheight = 2;
 getContentPane().add(jButtonEqual, constraints);
 pack();
 }

 public static void main(String args[]) {
 new CalcInterface().setVisible(true);
 }
}

In the initGUI method, we first create a constraints object:

GridBagConstraints constraints = new GridBagConstraints();

We then set a few properties for this constraints object. These properties are common to all
the components we are going to place on the container:

constraints.ipady = 15;
constraints.ipadx = 10;
constraints.fill = GridBagConstraints.BOTH;

The ipady and ipadx properties define the internal padding of the component, which is how
much space to add to the minimum height or width of the component. Setting the fill property to
the predefined BOTH constant indicates that the component should occupy all the available
space in the given grid cell. The other possible values are NONE, HORIZONTAL, and VERTICAL.
As the names suggest, the HORIZONTAL value makes the component stretch horizontally to fill
the available width, the VERTICAL value makes the component stretch vertically, and NONE
(the default) does not stretch the component at all.

NOTE
Once any property on the constraints object is set, it is applicable to
all the components that are placed thereafter using this constraints
object. To avoid errors due to this, it is sometimes recommended that
you create a new constraints object for every component you want to
place. This would also mean additional coding on developer’s part.
The NetBeans GUI designer sets up an independent constraints object
for each added object. This is probably because the code is generated
automatically, so one need not worry about the effort in writing the
additional code.

366 Java Programming

Next, we set the layout manager for our container window:

getContentPane().setLayout(new GridBagLayout());

Now, we start adding the components to the container. The first component we are going to
add is the label control. We set a few properties of the label:

jLabelOutput.setFont(new Font("Monospaced", 1, 24));
jLabelOutput.setBorder(new MetalBorders.TextFieldBorder());

These two statements set the font for the text in the label and set a border around the label
boundary. We will now set a few additional constraints specific to this label:

constraints.insets = new Insets(10, 10, 10, 10);

Here, insets defines the external padding of the component, which is the minimum amount of
space between the component and the edges of its display area. We set this for the label control
so as to create big-sized output for the calculator. The next property we set is the gridWidth:

constraints.gridwidth = GridBagConstraints.REMAINDER;

The gridWidth property specifies the number of cells in a row for the component’s display
area. Because this is the first component being added and we want it to occupy the entire width
of our grid, we set this property to REMAINDER, which specifies that this is the last component
in the current row. Because we have already set the fill property to BOTH, this component will
occupy the entire row. The other possible value that can be assigned to the gridWidth property
is RELATIVE, which adds the next component to the same row immediately following the
previously added component.

We now add the label to the container by calling the add method of the container:

getContentPane().add(jLabelOutput, gridBagConstraints);

Note that the second parameter specifies the constraints object we have set up so far. The
layout manager applies the constraints specified in this constraints object while placing and
aligning the label component. We will now start placing the various button controls. Because none
of the buttons require additional whitespace in their display, we reset the insets to their default:

gridBagConstraints.insets = new Insets(0, 0, 0, 0);

We set gridWidth to 1 so that each component will occupy one column width. Note that, so
far, the layout manager does not know the number of columns, which is decided only when we
add all the remaining components. To add the first button, we first set its grid location by setting
the gridx and gridy properties:

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 1;

This indicates that the component to be added should be placed in Column 0, Row 1. Why
does the row equal 1? Because our label occupies the first row. Note that the gridx property
specifies the position along the x-axis, which is the column number. Likewise, the gridy property
specifies the vertical positioning, which is the row number.

We now add the first button with the newly set constraints object:

getContentPane().add(jButtonMC, gridBagConstraints);

Chapter 14: Creating Layouts 367

To add the remaining components, we simply need to specify the desired cell location for
each component by changing the gridx and gridy properties; all other properties remain
unchanged. Look at the code to see how a value for gridx and gridy is set before a new
component is added. The maximum value for gridx is 3, indicating that we are not going to have
more than four columns.

The trick comes in placing button 0, which occupies two columns’ worth of space. We do
this by using the following code fragment:

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 6;
gridBagConstraints.gridwidth = 2;
getContentPane().add(jButtonZero, gridBagConstraints);

The button is placed in Column 0, Row 6 of the grid. We set its width to two columns by
changing the gridWidth property.

Likewise, to place the equalto button, which is two rows high, we set the gridHeight property
of the constraints object:

gridBagConstraints.gridheight = 2;

 This completes our GUI. From this simple example, you can appreciate the flexibility available
to you in this layout manager for building complex GUIs.

So far we have discussed the layout managers available in Java since its beginning. The next
layout manager we discuss is BoxLayout, which was introduced in JDK 1.4.

BoxLayout
The BoxLayout manager is similar to the FlowLayout manager and provides additional
functionality. This layout manager either stacks the components on top of each other or places
them in a row, just like the flow layout. BoxLayout is good for creating forms-based applications.
To illustrate this, we develop a forms-based application for creating a contacts database.
The application focuses on creating the GUI and ignores the data storage functionality. The
ContactsDatabase application has two panels—the one on the left captures the user name and
contact number, and the one on the right displays all the contacts entered so far in the system as
well as provides a facility to clear the entire database. The user interface of the application is
shown in Figure 14-14.

FIGURE 14-14. Creating a form-based user interface with BoxLayout

368 Java Programming

Let’s now study how the GUI is constructed. The entire source code for the ContactsDatabase
application is given in Listing 14-6.

Listing 14-6 Demonstration Program for BoxLayout

import java.awt.*;
import java.awt.event.*;
import java.util.logging.*;
import javax.swing.*;

public class ContactsDatabase extends JFrame implements ActionListener {

 private JPanel informationPanel;
 private JPanel listPanel;
 private JList contactList;
 private final JTextField jTextFieldName = new JTextField(20);
 private final JTextField jTextFieldMobile = new JTextField(20);
 private JButton jButtonAdd = new JButton("Add");
 private JButton jButtonClear = new JButton("Clear");

 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(
 "javax.swing.plaf.nimbus.NimbusLookAndFeel");
 } catch (ClassNotFoundException ex) {
 Logger.getLogger(
 ContactsDatabase.class.getName()).log(Level.SEVERE,
 null, ex);
 } catch (InstantiationException ex) {
 Logger.getLogger(
 ContactsDatabase.class.getName()).log(Level.SEVERE,
 null, ex);
 } catch (IllegalAccessException ex) {
 Logger.getLogger(
 ContactsDatabase.class.getName()).log(Level.SEVERE,
 null, ex);
 } catch (UnsupportedLookAndFeelException ex) {
 Logger.getLogger(
 ContactsDatabase.class.getName()).log(Level.SEVERE,
 null, ex);
 }
 ContactsDatabase mDIFrame = new ContactsDatabase();
 }

 public ContactsDatabase() {
 initGUI();
 }

 private void initGUI() {

Chapter 14: Creating Layouts 369

 Box verticalBoxRight, verticalBoxLeft;

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = getContentPane();
 contentPane.setLayout(new GridLayout(1, 2));
 verticalBoxLeft = Box.createVerticalBox();
 verticalBoxLeft.add(Box.createRigidArea(new Dimension(70, 20)));
 verticalBoxLeft.add(new JLabel("Name"));
 verticalBoxLeft.add(jTextFieldName);
 verticalBoxLeft.add(Box.createVerticalStrut(10));
 verticalBoxLeft.add(new JLabel("Mobile #"));
 verticalBoxLeft.add(jTextFieldMobile);
 verticalBoxLeft.add(Box.createVerticalStrut(25));
 verticalBoxLeft.add(jButtonAdd);
 jButtonAdd.addActionListener(this);
 informationPanel = new JPanel();
 informationPanel.add(verticalBoxLeft);
 informationPanel.setBorder(
 BorderFactory.createTitledBorder("Information"));
 contactList = new JList();
 contactList.setModel(new DefaultListModel());
 verticalBoxRight = Box.createVerticalBox();
 verticalBoxRight.add(new JScrollPane(contactList));
 verticalBoxRight.add(Box.createRigidArea(new Dimension(80, 10)));
 verticalBoxRight.add(jButtonClear);
 jButtonClear.addActionListener(this);
 listPanel = new JPanel();
 listPanel.setBorder(BorderFactory.createTitledBorder("Contacts"));
 listPanel.add(verticalBoxRight);
 contentPane.add(informationPanel);
 contentPane.add(listPanel);
 setSize(600, 250);
 setResizable(false);
 setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == jButtonAdd) {
 DefaultListModel contactsModel =
 (DefaultListModel) contactList.getModel();
 contactsModel.addElement(jTextFieldName.getText()
 + " " + jTextFieldMobile.getText());
 jTextFieldName.setText("");
 jTextFieldMobile.setText("");
 } else {
 contactList.setModel(new DefaultListModel());
 }
 }
}

370 Java Programming

We’ll first look at how the GUI is constructed. Then we’ll discuss how to set the application’s
look and feel and use the logger for logging error messages, which is something that hasn’t been
covered so far in the book.

The initGUI method declares two variables of the Box type. A Box is a lightweight container
that has its layout manager set to BoxLayout. By using this container, we won’t need to create a
separate container and its layout manager. Besides this, Box provides several class methods that
are useful for containers that use BoxLayout. It also provides methods for creating several kinds
of invisible components that affect layout. For fixed-size components, we use a glue component
to control the components’ positions. For a fixed amount of space between two components, we
use a strut component, and for an invisible component that always takes up the same amount of
space, you use a rigid area.

The program first sets the default action for the close icon so that the application window will
close when the user clicks it:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Next, the program sets the GridLayout manager for the parent container:

Container contentPane = getContentPane();
contentPane.setLayout(new GridLayout(1, 2));

We set the grid of one row by two columns so that we can place the two panels horizontally,
as shown in the figure. We then create a vertical box container by calling the createVerticalBox
class method of the Box class:

verticalBoxLeft = Box.createVerticalBox();

This will be the left-side panel on which we place controls for capturing the user name and
contact number. To set an equal amount of space in the layout of these components, we add a
rigid area to the box:

verticalBoxLeft.add(Box.createRigidArea(new Dimension(70, 10)));

An x-dimension of 70 indicates that each component is placed 70 pixels from the left margin,
and a y-dimension of 10 sets the vertical spacing from the top margin. We now add a label and a
TextField control by calling the add method on the Box instance:

verticalBoxLeft.add(new JLabel("Name"));
verticalBoxLeft.add(jTextFieldName);

Now, we want to add some vertical space before the next component. We do this by creating
a strut component:

verticalBoxLeft.add(Box.createVerticalStrut(10));

The vertical space equals 10 pixels in this example. Next, we add the label and a TextField
for accepting the mobile number:

verticalBoxLeft.add(new JLabel("Mobile #"));
verticalBoxLeft.add(jTextFieldMobile);

Chapter 14: Creating Layouts 371

Finally, we add a vertical space and a button to the container:

verticalBoxLeft.add(Box.createVerticalStrut(25));
verticalBoxLeft.add(jButtonAdd);

We now create a panel for the left side and add the previously created box container to it:

informationPanel = new JPanel();
informationPanel.add(verticalBoxLeft);

Note that we could add the box container directly to the parent container rather than creating
another panel called informationPanel. The reason behind this is to set a titled border on this panel,
which is done using the following statement:

informationPanel.setBorder(BorderFactory.createTitledBorder("Information"));

Likewise, we construct the right panel containing a list box and a Clear button. Both panels
are then added to the parent container using its previously set grid layout:

contentPane.add(informationPanel);
contentPane.add(listPanel);

We create a fixed-size window for the application and do not allow the user to change its style
with the following statements:

setSize(600, 250);
setResizable(false);

Now, let’s discuss how to set the application’s look and feel and how to use the logger for
logging messages. The look and feel is set by calling the class method setLookAndFeel of the
UIManager class:

UIManager.setLookAndFeel("javax.swing.plaf.nimbus.NimbusLookAndFeel");

The Nimbus look and feel was introduced in the Java SE 6 Update 10 release; it provides a
cross-platform look and feel for your application. This is drawn with 2D vector graphics and can
be rendered at any resolution, thus giving device independence to your application GUI. Calling
this method requires you to capture several different kinds of exceptions, as seen in the code. The
generated exceptions are stored in a log file using the logger provided in the java.util.logging package:

Logger.getLogger(
 ContactsDatabase.class.getName()).log(Level.SEVERE, null, ex);

The log method has several overloads. The one used here takes three parameters. The first
parameter specifies the severity of the exception, the second parameter specifies a custom error
string, which is set to null in this case, and the third parameter prints the string representation of
the error that has occurred.

Finally, to complete the explanation of the entire application code, consider the event
handler for the Add button. In this event handler, we obtain the model used by the list control
and add the name and contact number to it:

DefaultListModel contactsModel = DefaultListModel) contactList.getModel();
contactsModel.addElement(jTextFieldName.getText()
 + " " + jTextFieldMobile.getText());

372 Java Programming

As stated earlier, we could have used the instance of the BoxLayout manager to set the layout
for our container. However, using a Box container is the preferred way of doing this for many
users because it eases component placement and alignment via numerous built-in methods.

Here’s something worth noting: In BoxLayout, the component’s preferred height and width
are ignored. So what happens when the application window is resized? If you reduce the width of
the window beyond a certain level, the last added components do not show up on the window.
This is because each component has a minimum size. The layout manager honors this size.
Therefore, a component cannot be reduced to a size less than its minimum size. When the total
container width is less than the sum of minimum widths of all the added components, the last
added components disappear from the view.

Tabbed Dialog Box
Tabbed dialog boxes are widely used in many applications. You can use the CardLayout discussed
earlier to create this kind of interface. However, Java provides a class called JTabbedPane to ease
the construction of tabbed dialog boxes. The application we are going to create in this section
contains two tabs. Each tab displays an independent form. The program in Listing 14-7 illustrates
the use of this class.

Listing 14-7 Demonstration Program for a Tabbed Dialog Box

import javax.swing.*;
import java.awt.*;

public class TabDemoApp {

 public static void main(String[] args) {
 TabFrame frame = new TabFrame("Tab Demo");
 frame.setSize(500, 200);
 frame.setVisible(true);
 }
}

class TabFrame extends JFrame {

 public TabFrame(String title) {
 super(title);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 initGUI();
 }

 public void initGUI() {
 JTabbedPane tabbedPane = new JTabbedPane();
 //Create the "cards".
 tabbedPane.addTab("Address", new AddressPanel());
 tabbedPane.addTab("Memo", new MemoPanel());
 getContentPane().add(tabbedPane, BorderLayout.CENTER);
 }
}

Chapter 14: Creating Layouts 373

class MemoPanel extends JPanel {

 public MemoPanel() {
 setLayout(new BoxLayout(this, BoxLayout.PAGE_AXIS));
 add(new JLabel("Enter Memo"));
 add(new JTextField());
 add(new JButton("OK"));
 }
}

class AddressPanel extends JPanel {

 public AddressPanel() {
 setLayout(new BorderLayout(10, 0));
 JPanel leftPanel = new JPanel() {

 @Override
 public Dimension getPreferredSize() {
 Dimension size = super.getPreferredSize();
 size.width += 20;
 return size;
 }
 };
 leftPanel.setLayout(new GridLayout(4, 1, 10, 10));
 leftPanel.add(new JLabel("Name", JLabel.RIGHT));
 leftPanel.add(new JLabel("Address 1", JLabel.RIGHT));
 leftPanel.add(new JLabel("Address 2", JLabel.RIGHT));
 leftPanel.add(new JLabel("City", JLabel.RIGHT));
 add(leftPanel, BorderLayout.LINE_START);
 JPanel rightPanel = new JPanel();
 rightPanel.setLayout(new GridLayout(4, 1, 10, 10));
 rightPanel.add(new JTextField(20));
 rightPanel.add(new JTextField(10));
 rightPanel.add(new JTextField(15));
 rightPanel.add(new JTextField(5));
 add(rightPanel, BorderLayout.CENTER);
 }
}

As in the earlier cases, the GUI is built in the initGUI method. First, we create an instance of
the JTabbedPane class:

JTabbedPane tabbedPane = new JTabbedPane();

Next, we add a card to this pane:

tabbedPane.addTab("Address", new AddressPanel());

Each tab in the dialog box has a card associated with it. This card is nothing but a panel object
on which we will place a few components. The addTab method adds this panel to the tab panel. It
also sets the name associated with the tab in its first parameter. The AddressPanel class extends
JPanel and creates the GUI shown in Figure 14-15.

374 Java Programming

We set the BorderLayout manager on this panel with a horizontal gap set to 10 pixels. We
also set the preferred size by making its width 20 units more than the default preferred size. This
creates some whitespace before the labels:

@Override
public Dimension getPreferredSize() {
 Dimension size = super.getPreferredSize();
 size.width += 20;
 return size;
}

Note the use of the @Override annotation, which was discussed in Chapter 11. To achieve
the desired placement of components, we create two panels: leftPanel and rightPanel. We set the
independent layout managers on these two panels and then add the components on them.

TIP
To create complicated layouts, you usually split the container into
smaller regions and place an independent container (a panel object)
in each region. Each container uses its own layout manager for getting
the desired placement of components.

Next, we add one more tab called “Memo”:

tabbedPane.addTab("Memo", new MemoPanel());

The MemoPanel class provides the GUI shown in Figure 14-16.
We use the BoxLayout manager here to construct the GUI. Instead of using the provided Box

container, as in the earlier example, we’ll now instantiate the BoxLayout class to demonstrate this
second approach of using a box layout:

setLayout(new BoxLayout(this, BoxLayout.PAGE_AXIS));

The first parameter specifies the target container, and the second parameter specifies the axis
along which to lay out components. The axis can be an x-axis or y-axis. It can also be a LINE or
PAGE axis, where the direction is determined by the target container’s ComponentOrientation
property. Once the layout manager is created and attached to the container, we use the usual add
method to add the components to the container.

FIGURE 14-15. Screen layout of Address panel

Chapter 14: Creating Layouts 375

Finally, we add the tab panel itself to the container:

getContentPane().add(tabbedPane, BorderLayout.CENTER);

Run the application and try clicking the two tabs to bring up the desired card. You may add any
number of tabs to this tab panel. Each tab will have an associated card and an independent GUI.

Advanced Layout Managers
Besides the simple-to-use layout managers discussed so far, Java provides much more advanced
and flexible layout managers—namely, the GroupLayout and SpringLayout. These layout managers
are very complex to use and are mainly intended for builders of GUI tools. For example, NetBeans
uses the GroupLayout manager to construct the user-painted GUI. It is recommended that you
avoid using these layout managers if you are hand-coding a GUI. If you are curious to look at the
code, simply create your GUI in NetBeans and examine the generated source code.

Besides these advanced layout managers, many third-party layout managers are available that
you can use in your applications. If none of the provided layout managers meet your needs, you
can create your own layout manager. For this, Java provides the LayoutManager interface. You
need to create a class that implements this interface. This gives you total freedom and flexibility
in designing your own layout manager.

In very rare situations, you may want to avoid using a layout manager and instead use
absolute positioning to place the components. Note that, by default, some layout manager
(FlowLayout or BorderLayout) is always in effect on a Java container. To turn off this layout
manager, call the setLayout method with a null parameter. After this call, you need to specify
the component’s absolute location by calling its setBounds method.

Summary
This chapter discussed the many layout managers provided in Java. The layout managers place
components on a container using some predefined rules. A layout manager makes it easier to
adjust the GUI to different font sizes, to a container’s changing size, and to different locales.
Java provides several layout managers, each providing a certain kind of component placement.
A FlowLayout lays the components row-wise. A BorderLayout places the components along the
four borders of the container and its center. A GridLayout places the components in the cells of

FIGURE 14-16. Screen layout of the Memo panel

376 Java Programming

a grid with predefined dimensions. A CardLayout stacks the components on top of each other.
A BoxLayout places the components along either the horizontal or vertical axis and is quite
useful in creating form-based applications. The GridBagLayout allows for flexible placement of
components, but at the same time is complex to use. Java also provides more advanced layout
managers such as GroupLayout and SpringLayout, which are mainly intended for the use of GUI
tool builders. Java also allows you to create your own layout manager classes. In addition, it
allows you to turn off the default layout manager to facilitate placement at absolute coordinates.

Now that you have learned to build a GUI in a stand-alone application, in the next chapter
you will learn a new kind of application—an applet. The applet life cycle is somewhat different
from that of a stand-alone application, as detailed in the next chapter. You will learn to place
the various GUI components on the applet and define their event handlers. More importantly,
you will learn how to process user gestures such as mouse clicks, mouse motion, and keyboard
input. So keep reading!

Chapter
15

Graphics and User
Gestures Processing

377

378 Java Programming

n Chapter 13, you learned about GUI building and event processing. In Chapter 14,
you learned about creating sophisticated GUIs using layout managers. In those two
chapters, the JFrame container was used to create a stand-alone Java application.
In this chapter, you learn about another class of applications called applets. Applets
have a somewhat different life cycle and runtime requirements than a stand-alone

application. Applets require a web browser to run. Java does supply a command-line utility for
testing applets; however, for an end user, using a browser is the preferred way of running an applet.

Along with applet programming, you learn lots of other techniques for detecting and
processing user gestures in this chapter. You learn how to process mouse events and draw
graphics on the screen. You create a popup menu for an application and learn to intercept
keystrokes in a GUI application. Like in the earlier chapters, we use the Swing framework for
developing applications in this chapter. Swing is a newer framework that supersedes the earlier
AWT and offers many more advantages, although there is a lot of similarity in the use of Swing
and AWT. Swing provides an equivalent for most of the components available in AWT. The
names of these components are also identical, except for an uppercase J added in front of the
name. All these new components have the same interface as their older counterparts, with a good
number of additions to the interface in several cases. Sometimes, you may be able to convert your
old AWT-based applications to newer Swing-based ones just by merely adding J in front of the
component class names used in older applications.

Many developers these days use only Swing. Therefore, we will continue using it in this chapter,
leaving AWT for those who have some special reason to stay with the older AWT APIs.

Here is what you will be learning in this chapter:

Understanding the difference between an applet and a stand-alone application■■

Creating applets ■

Running applets ■

Understanding the life-cycle methods of an applet ■

Processing mouse click and motion events ■

Creating popup menus ■

Learning additional Swing and a few AWT components for which there are no Swing ■■
equivalents

What Is an Applet?
An applet is a Java program that can be embedded in a HTML page and opened in a browser. The
HTML pages are located on a remote web server. When the client opens a HTML page in his
browser, the HTML code gets downloaded to the client machine. Along with the HTML code, any
Java applets embedded in the page also get downloaded to the client machine. The applet code
then runs under the JVM installed on the client machine. Chapter 1 mentioned the misconception
in the early days that the browser runs an applet. Although it is true that a browser is required to
run an applet, the browser must be enabled with a JVM. If you turn off the JVM in a browser, it will
not display an applet in its HTML page. An applet can be run without a browser, as you will see
later in this chapter, by using the AppletViewer utility provided in JDK.

I

Chapter 15: Graphics and User Gestures Processing 379

Also discussed in Chapter 1, if applet code is downloaded from a remote machine, it runs
under several security restrictions, unless explicitly allowed greater freedom by the user. Contrary
to this, a stand-alone application is available locally and is therefore not subjected to the same
security restrictions. With the introduction of J2SE 1.2, applications are also subjected to security
policies set by the user.

You will create applets whenever you want to make your applications available to your users
from a remote machine. This means that the applications need not be preinstalled on the client
machines. This is one of the greatest benefits in creating applets. The programs can now be deployed
on remote servers, and the client can download and use the application on his machine whenever
required. Because the client downloads the program every time he needs it, the client is assured to
have the latest updates to it. This saves a lot of effort in distributing updates to your applications.

Creating applets is trivial. You simply declare a class that inherits from the Applet (AWT) or
JApplet (Swing) class. It is said that developers like to get their hands dirty by quickly jumping in
and coding. Therefore, we’ll now get our hands dirty by creating an applet before discussing its
life cycle.

Creating Your First Applet
As stated earlier, to create an applet you extend your class from Applet (of AWT package) or JApplet
(of Swing package) and override its methods to provide the desired functionality. That’s all that’s
required to create an applet. Once you create an applet class, you compile and embed it into an
HTML page, which is opened in your browser for running the applet. You may embed multiple
applets in an HTML page, which are positioned at the locations specified in the HTML code.

To add functionality to the applet, you override the appropriate methods of the applet class. One
such method you will be overriding is the paint method. Whenever the applet needs repainting, the
runtime calls its paint method. In your overridden paint method, you provide whatever drawing you
wish to create on the applet’s surface. The paint method for this purpose receives a device context
(Graphics) object as its parameter. You use the various methods of the Graphics object to create
some useful graphics. The code in Listing 15-1 shows how to create an applet and override its paint
method to print a message on the applet’s surface.

Listing 15-1 First Java Applet

import java.awt.*;
import javax.swing.JApplet;

public class FirstApplet extends JApplet {

 @Override
 public void paint(Graphics g) {
 g.drawString("Java programming is easy", 30, 30);
 }
}

The JApplet class is defined in the javax.swing package, so we need to import this in our
source program. The FirstApplet class inherits JApplet, and we override the paint method.
Whenever the applet needs repainting, the runtime calls this paint method. The paint method
receives a Graphics object that allows the user to draw graphics on the applet’s surface. In our
case, the overridden paint method calls the drawString method of the Graphics object to display

380 Java Programming

a string on the applet’s surface. The string to be displayed is passed as the first parameter to the
drawString method. The second and third parameters specify the x and y coordinates of a point
where the string is to be displayed.

NOTe
The Graphics class provides a lot more functionality than just drawing
a string message. It provides the framework for all graphics operations
within AWT and Swing. It plays two different but related roles. First, it
is a graphics context that sets the background and foreground colors,
the font, the drawing region, and the eventual destination (screen or
image) of the graphics operations themselves. Second, the Graphics
class provides methods for drawing simple geometric shapes, text, and
images to the destination.

Running the Applet
Place the code in Listing 15-1 in your favorite editor and store it under the filename FirstApplet.java.
Compile the file to create a corresponding .class file. Next, you will need to write some HTML code
to run this .class file in a browser window. The HTML code (FirstApplet.html) that does this is given
in Listing 15-2.

Listing 15-2 HTML Code for Running the Applet

<HTML>
 <HEAD>
 <TITLE>First Applet</TITLE>
 </HEAD>
 <BODY>
 <H3><HR WIDTH="100%">First Applet<HR WIDTH="100%"></H3>
 <object type="application/x-java-applet"
 height="200" width="300">
 <param name="code" value="FirstApplet"/>
 <param name="codebase" value="classes/"/>
 </object>
 <HR WIDTH="100%">
 </BODY>
</HTML>

In the HTML code, you set up the page title within the TITLe tag and set the page contents in
the BODY tag. In the page body, we first print the heading “First Applet.” To include the applet in
the HTML body, we use the object tag:

<object type="application/x-java-applet"
 height="200" width="300">
 <param name="code" value="FirstApplet"/>
 <param name="codebase" value="classes/"/>
</object>

The type parameter in the object tag specifies the type of application to run. The width and
height parameters specify the size that the applet should occupy within the HTML page. The code

Chapter 15: Graphics and User Gestures Processing 381

parameter specifies the name of the .class file to run, and the codebase parameter specifies the
path where the mentioned .class file can be found. This path is relative to the current folder from
where the HTML code is opened.

NOTe
HTML tags are not case sensitive. To prove this point, we use a mix
of upper- and lowercase tags in the preceding HTML code.

Once you have set up the HTML page and the .class file in the classes folder, simply open the
page in your favorite browser. You will see the output shown in Figure 15-1.

Using AppletViewer
If you do not wish to use the browser every time you develop and test a new applet, you can use
the AppletViewer utility provided as a part of the JDK. On the command prompt, type the following:

C:\360\ch15>appletviewer FirstApplet.html

The applet will now open and run within the AppletViewer application. The output is shown
in Figure 15-2.

TIp
If you use NetBeans for developing your applets, right-click your
applet source and click the Run File option. NetBeans will start the
AppletViewer and run your source applet within it.

FIGURe 15-1. Running the applet in a browser

382 Java Programming

Understanding Applet Life-cycle Methods
When the applet runs, it provides several callback methods during its life cycle. You can override
these methods to provide whatever functionality you want. The life-cycle methods are init, start,
paint, stop, and destroy. You have already used the paint method in your first applet to draw
some graphics on the applet.

The init method is typically used for creating resources required during the life of the applet.
Usually, you build the GUI in the init method. The start method is called just before the applet
starts executing. This happens when the applet is loaded the first time and whenever the user
revisits the page that contains the applet.

NOTe
The init method is called only once when the applet is loaded the first
time, whereas the start method may be called several times during the
applet’s life cycle.

The stop method is called just before the applet stops its execution. This happens whenever
the user leaves the applet’s page or quits the browser. Typically, the resources that are not
required for the entire life cycle are allocated and deallocated in the start and stop methods,
respectively. An example would be making a socket connection to the server.

CAUTION
Under the default security policy, an applet is not allowed to make
a socket connection to any server other than the one from where it
originated.

Because this socket connection is not required whenever the applet loses focus, you may
make the connection in the start method and release it in the stop method. Another example

FIGURe 15-2. Running an applet in the AppletViewer application

Chapter 15: Graphics and User Gestures Processing 383

would be playing an audio file; you can play the music while the applet is in focus and stop it
whenever it goes in the background.

The destroy method is called before the applet is finally unloaded. You use this method to
clean up the resources you may have allocated in the init method. Finally, the paint method is
called several times during the applet’s life cycle. It is first called by the runtime whenever it
determines that the displayed contents must be refreshed onscreen. The paint method is then
called whenever the programmer explicitly calls repaint or update.

To appreciate the practical applications of these methods, consider a video viewer applet. In
developing such an applet, in the init method you might draw the viewer controls and start
loading the video file. The start method would wait for the file to be fully loaded before playing
it. The stop method would pause the video and not rewind it. Thus, the next invocation of the
start method would continue the video from the last stopping point. The destroy method may
remove the video from memory, implying that a call to init is required to start the video all over
from the beginning.

Now that you have learned how to create an applet and understand its life-cycle methods,
we will now create a very simple drawing tool (compared to the popular Paintbrush program)
based on an applet. During the creation of this application, you will learn how to detect and
process mouse clicks, mouse motion, and keyboard input. You will also create popup menus
and use a few more Swing controls. Note that all the user-gesture-detection and -processing
techniques described in this section can be applied to stand-alone Swing applications and are
not restricted to use with applets.

processing Mouse events
A drawing tool typically uses a mouse as a pointing device for creating graphics. For drawing
graphics on the application screen, your application must respond to user gestures such as mouse
moves and mouse clicks. Whenever a user clicks a mouse button or moves the mouse, the mouse
events occur. Java provides three listener classes for processing these mouse events. It differentiates
between the mouse click and mouse motion events. The user moves the mouse around most of the
time while using the computer. Thus, several mouse motion events are continuously generated as
the mouse is moved. However, the user less frequently clicks the buttons on the mouse; thus, only
a few mouse click events are generated during the program’s use. Therefore, it makes sense to
separate the mouse click and mouse motion event listener interfaces. Additionally, a listener
interface is provided for receiving mouse wheel events. Let’s first look at how to process mouse
click events.

Mouse Clicks
To process mouse click events, Java provides the MouseListener interface. This interface provides
five different methods corresponding to certain actions. When a mouse enters a component, a
mouseentered event is generated, and when it leaves the component, a mouseexited event is
generated. Similarly, when a user presses the mouse button, a mousepressed event is generated, and
when the button is released, a mouseReleased event is generated. Additionally, there is one more
callback method, called mouseClicked. This is called whenever the user clicks (presses and releases)
the mouse button.

To start building our drawing tool, we begin with processing mouse click events. Our application
will simply print the coordinates where the mouse is clicked. The coordinates are printed at the click
location. The full program is given in Listing 15-3.

384 Java Programming

Listing 15-3 Processing Mouse Click Events

import java.awt.*;
import java.awt.event.*;
import javax.swing.JApplet;

public class GraphicsEditor extends JApplet {

 private Point pt = new Point(0, 0);

 @Override
 public void init() {
 addMouseListener(new MouseAdapter() {

 @Override
 public void mouseClicked(MouseEvent e) {
 pt = new Point(e.getX(), e.getY());
 repaint();
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 if (pt.x > 0 && pt.x > 0) {
 String printString = String.format("(%d, %d)", pt.x, pt.y);
 g.drawString(printString, pt.x, pt.y);
 }
 }
}

In the init method, we set up the listener for the mouse events:

addMouseListener(new MouseAdapter() {

Note that we use an anonymous class here to process mouse events. The other option would
have been to implement the mouseListener interface. However, this would require providing
the implementation for all five methods defined in the interface. Because we are interested in
processing only a single mouse click event, the use of an adapter class is recommended. The
adapter classes were discussed in Chapter 13. In the anonymous class, we override the
mouseClicked method:

public void mouseClicked(MouseEvent e) {

The method receives a parameter of type Mouseevent that contains the details of the mouse
click event. From this parameter, we retrieve the x and y coordinates of the click point and assign
those to the pt variable:

pt = new Point(e.getX(), e.getY());

The program then calls the repaint method to post a paint request to the applet. This results in
executing the applet’s paint method.

Chapter 15: Graphics and User Gestures Processing 385

CAUTION
The repaint method may not result in an immediate invocation of the
paint method. The applet screen is not refreshed on every click, and
you will see the overlapped coordinates printed on each mouse click.
When you resize the applet, the text will disappear from the screen.

The paint method receives a parameter of type Graphics. This is a device context for printing
graphics on the device:

public void paint(Graphics g) {

The paint method prepares a string containing the coordinates taken from the pt variable and
prints it at the same location as pt:

String printString = String.format("(%d, %d)", pt.x, pt.y);
g.drawString(printString, pt.x, pt.y);

The drawString method of the Graphics class takes the string to be printed as the first parameter.
The second and third parameters to the method specify the x and y coordinates, respectively, of the
point where the string is to be displayed.

Now, when you run the applet and click the mouse anywhere on the applet surface, the
program will read the coordinates where the mouse is clicked and print the same on the applet.
Some typical output is shown in Figure 15-3.

Mouse Motion events
Java provides an interface called MouseMotionListener to process mouse motion events.
There are two types of motion events—one when the mouse is moved with the button pressed
and the other without the button being pressed. Accordingly, the interface provides two
methods: mouseDragged and mouseMoved. The mouseDragged method is called whenever
the mouse button is pressed on a component and then dragged. The drag event is delivered to
the component continuously until the time the mouse button is released. This may not happen
within the component boundaries; however, the event continues to be delivered as long as the

FIGURe 15-3. Applet displays the coordinates of the clicked point

386 Java Programming

button is not released. Because the drag-and-drop operation is platform dependent, this event
may not be delivered during a native drag-and-drop operation. The mouseMoved method is
invoked when the mouse cursor is moved over a component but no button has been pressed.
We use this event in our application to draw lines.

Whenever the user clicks on the applet, the line drawing begins. To indicate this, we change
the cursor from its default arrow shape to a crosshair. As the user moves the cursor, a line will be
drawn from the starting point to the current cursor position, thus producing a rubber band effect.
When the user clicks the mouse one more time, the drawing stops and a line is permanently
drawn from the start position to the last position where the mouse was clicked. The user can
continue drawing more lines by clicking the mouse one more time and dragging it to a new
position. Some sample program output is shown in Figure 15-4.

The start and end coordinates of all the lines are stored in an ArrayList, which is a type of
Collection. Collections are covered in Chapter 16. The applet displays all drawn line segments
whenever it is repainted.

Listing 15-4 presents the code for our line-drawing applet.

Listing 15-4 Line-Drawing Applet That Consumes Mouse Motion Events

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.JApplet;

public class GraphicsEditor2 extends JApplet {

 private Point ptFirst = new Point(0, 0);
 private Point ptSecond = new Point(0, 0);
 private Point ptOld = new Point(0, 0);
 private boolean isDrawing = false;
 private ArrayList<Line> lines = new ArrayList<>();

FIGURe 15-4. Line-drawing applet

Chapter 15: Graphics and User Gestures Processing 387

 @Override
 public void init() {
 addMouseListener(new MouseAdapter() {

 @Override
 public void mouseClicked(MouseEvent e) {
 if (!isDrawing) {
 ptFirst = new Point(e.getX(), e.getY());
 ptSecond = new Point(e.getX(), e.getY());
 isDrawing = true;
 setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));
 } else {
 isDrawing = false;
 setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
 lines.add(new Line(ptFirst, ptSecond));
 }
 }
 });

 addMouseMotionListener(new MouseMotionAdapter() {

 @Override
 public void mouseMoved(MouseEvent e) {
 if (isDrawing) {
 ptOld = ptSecond;
 ptSecond = new Point(e.getX(), e.getY());
 repaint();
 }
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 // erase earlier line
 g.setColor(Color.white);
 g.drawLine(ptFirst.x, ptFirst.y, ptOld.x, ptOld.y);

 // draw new line
 g.setColor(Color.red);
 g.drawLine(ptFirst.x, ptFirst.y, ptSecond.x, ptSecond.y);

 // draw all previous lines
 Iterator<Line> it = lines.iterator();
 while (it.hasNext()) {
 Line line = it.next();

 g.drawLine(line.getStartPoint().x, line.getStartPoint().y,
 line.getEndPoint().x, line.getEndPoint().y);
 }
 }
}

388 Java Programming

class Line {

 private Point ptStart;
 private Point ptEnd;

 public Line(Point ptStart, Point ptEnd) {
 this.ptStart = ptStart;
 this.ptEnd = ptEnd;
 }

 public Point getEndPoint() {
 return ptEnd;
 }

 public Point getStartPoint() {
 return ptStart;
 }
}

The Graphicseditor2 class that inherits JApplet declares three point-type variables:

private Point ptFirst = new Point(0, 0);
private Point ptSecond = new Point(0, 0);
private Point ptOld = new Point(0, 0);

The ptFirst variable stores the start point of a line segment, and the ptSecond variable stores its
end point. The ptOld variable is used for storing the previous value of the end point. It also declares
two more variables: isDrawing and lines. The isDrawing variable is of type boolean and is set to
true whenever the user begins the line drawing by clicking the mouse button. This flag is reset
when the user clicks the mouse button while in the drawing mode. The lines variable is of type
ArrayList. You have already used this class in Chapter 12. You will learn more about this class in
the next chapter. At this stage, just know that ArrayList is used for holding a list of objects. In our
current case, the objects are of type Line. Each Line object stores the start and end points of each
line segment. The definition of the Line class is very simple; it contains two point variables, respective
getter methods, and a class constructor.

In the init method, we set up the two listeners for processing both mouse click and motion
events. We use the adapter classes for both the listeners to avoid some extra typing of methods
we do not need. We use anonymous classes for both types of events. First, the mouse listener is
implemented by instantiating the MouseAdapter class:

addMouseListener(new MouseAdapter() {

We override a single method of this class—mouseClicked:

public void mouseClicked(MouseEvent e) {

Within the method body, we check the drawing mode. If we’re not currently drawing, we
record the current mouse click position in both ptFirst and ptSecond:

if (!bDrawing) {
 ptFirst = new Point(e.getX(), e.getY());
 ptSecond = new Point(e.getX(), e.getY());

Chapter 15: Graphics and User Gestures Processing 389

We then set the drawing mode to true and change the cursor to a crosshair:

isDrawing = true;
setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

To change the cursor shape, we call the setCursor method of the Component class. The
constructor takes a parameter that specifies the cursor shape. JDK provides several constants for
predefined cursor shapes.

In the mouse click event, if the drawing mode is not active, we reset the isDrawing flag to false.
We then change the cursor back to its original default shape:

setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

Finally, we record the start and end point coordinates of the line segment in the lines collection:

lines.add(new Line(ptFirst, ptSecond));

TIp
To store the two points, we could use a built-in Rectangle class
rather than creating a Line class. The purpose behind creating a
Line class is to add more properties, such as color, width, and so
on, in later exercises.

Next, we set up the listener for mouse motion events. Once again, we create an anonymous
class by instantiating the required adapter class:

addMouseMotionListener(new MouseMotionAdapter() {

We then override the mouseMoved method:

public void mouseMoved(MouseEvent e) {

In the method body, we check whether the drawing mode is currently active; if it is, we
record the coordinates of the current mouse position in the ptSecond variable and repaint the
applet to show the line segment:

if (isDrawing) {
 ptOld = ptSecond;
 ptSecond = new Point(e.getX(), e.getY());
 repaint();
}

The last thing we need to do is override the applet’s paint method for the actual drawing of
the lines. In the paint method, we first set the drawing color to white by calling the setColor method
of the Graphics object:

public void paint(Graphics g) {
 g.setColor(Color.white);

390 Java Programming

We draw the line by calling the drawLine method. The drawLine method receives four
parameters. The first two parameters specify the x, y coordinates of the start point, and the last
two parameters specify those of the end point:

g.drawLine(ptFirst.x, ptFirst.y, ptOld.x, ptOld.y);

This draws the line segment in white, which is the current background color. This will erase
the earlier drawn line, if there is one, from the screen. We now draw another line segment in red:

// draw new line
g.setColor(Color.red);
g.drawLine(ptFirst.x, ptFirst.y, ptSecond.x, ptSecond.y);

Note that as we move the mouse on the screen, the value of ptSecond will keep changing.
Drawing the line segment from the first point to the old second point in the background color
effectively removes the earlier line from the screen. A new line segment is then drawn in red,
producing a rubber-band effect as the cursor is moved around.

Additionally, in the paint method, we draw all the previously created line segments by iterating
through the lines collection (this Iterator class is covered in more detail in the next chapter):

// draw all previous lines
Iterator<Line> it = lines.iterator();
while (it.hasNext()) {
 Line line = it.next();

 g.drawLine(line.getStartPoint().x, line.getStartPoint().y,
 line.getEndPoint().x, line.getEndPoint().y);
}

This completes our code discussion. Now, compile and run the program. Click the mouse
anywhere on the applet. Release the mouse button and then move the mouse within the applet.
As you move the mouse, you will see a line drawn in red from the first clicked point to the new
mouse position. Click the mouse button one more time. A line is now drawn permanently, and
the rubber-band effect is stopped. Click the mouse at another position on the applet to draw
another line segment.

Creating popup Menus
So far, you have learned just a few techniques of GUI programming. One of the important
needs of a graphics application is a menu system. Menus are useful in general because they
allow the user to navigate to different parts of the application easily, to make selections, to
apply actions, and so on. Because an applet cannot have a conventional menu system, shown
in the top bar of an application, it has to use popup menus. You learn how to create popup
menus in this section. Although the technique discussed here is for an applet, it may very well
be adapted to a stand-alone GUI application with a few minor changes. A popup menu appears
on the screen whenever the user clicks the right mouse button. Therefore, you will also learn to
process right-button clicks as the mouse event.

We will extend our graphics-drawing program of the previous section to allow the user to select
the drawing color of the line segment. By right-clicking the applet, the user can select a color from
a menu that pops up onscreen. This popup menu displays a few color choices to the user. The user

Chapter 15: Graphics and User Gestures Processing 391

selects a desired color by clicking the menu item. When he makes the selection, the popup menu
disappears from the screen and the next line segment that’s drawn will use the selected color.

The program output with the popup menu is shown in Figure 15-5.
The program that does all this is given in Listing 15-5.

Listing 15-5 Selecting a Drawing Color Through a Popup Menu

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class GraphicsEditor3 extends JApplet
 implements ActionListener {

 private Point ptFirst = new Point(0, 0);
 private Point ptSecond = new Point(0, 0);
 private Point ptOld = new Point(0, 0);
 private boolean isDrawing = false;
 private ArrayList<Line> lines = new ArrayList<Line>();
 private JPopupMenu popMenu;
 private JMenuItem menuRed, menuGreen, menuBlue;
 private Color drawingColor = Color.red;
 private JApplet app;

 @Override
 public void init() {
 popMenu = new JPopupMenu("Colors");
 menuRed = new JMenuItem("Red");
 menuRed.addActionListener(this);
 menuGreen = new JMenuItem("Green");

FIGURe 15-5. Popup menu on an applet

392 Java Programming

 menuGreen.addActionListener(this);
 menuBlue = new JMenuItem("Blue");
 menuBlue.addActionListener(this);
 popMenu.add(menuRed);
 popMenu.add(menuGreen);
 popMenu.add(menuBlue);
 addMouseListener(new MouseAdapter() {

 @Override
 public void mouseClicked(MouseEvent e) {
 if (e.getModifiers() == InputEvent.BUTTON3_MASK) {
 popMenu.show(e.getComponent(), e.getX(), e.getY());
 } else if (e.getModifiers()
 == InputEvent.BUTTON1_MASK) {

 if (!isDrawing) {
 ptFirst = new Point(e.getX(), e.getY());
 ptSecond = new Point(e.getX(), e.getY());
 isDrawing = true;
 setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));
 } else {
 isDrawing = false;
 setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
 lines.add(new Line(ptFirst, ptSecond, drawingColor));
 }
 }
 }
 });

 addMouseMotionListener(new MouseMotionAdapter() {

 @Override
 public void mouseMoved(MouseEvent e) {
 if (isDrawing) {
 ptOld = ptSecond;
 ptSecond = new Point(e.getX(), e.getY());
 repaint();
 }
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 // erase old line
 g.setColor(Color.white);
 g.drawLine(ptFirst.x, ptFirst.y, ptOld.x, ptOld.y);
 // draw new line
 g.setColor(drawingColor);
 g.drawLine(ptFirst.x, ptFirst.y, ptSecond.x, ptSecond.y);

Chapter 15: Graphics and User Gestures Processing 393

 Iterator<Line> it = lines.iterator();
 while (it.hasNext()) {
 Line line = it.next();
 g.setColor(line.getLineColor());
 g.drawLine(line.getStartPoint().x, line.getStartPoint().y,
 line.getEndPoint().x, line.getEndPoint().y);
 }
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == menuRed) {
 drawingColor = Color.red;
 } else if (e.getSource() == menuGreen) {
 drawingColor = Color.green;
 } else if (e.getSource() == menuBlue) {
 drawingColor = Color.blue;
 }
 }
}

class Line {

 private Point ptStart;
 private Point ptEnd;
 private Color lineColor;

 public Line(Point ptStart, Point ptEnd) {
 this.ptStart = ptStart;
 this.ptEnd = ptEnd;
 }

 public Line(Point ptStart, Point ptEnd, Color lineColor) {
 this.ptStart = ptStart;
 this.ptEnd = ptEnd;
 this.lineColor = lineColor;
 }

 public Point getEndPoint() {
 return ptEnd;
 }

 public Point getStartPoint() {
 return ptStart;
 }

 public Color getLineColor() {
 return lineColor;
 }
}

394 Java Programming

As in earlier cases, the Graphicseditor3 class inherits JApplet and implements an action listener:

public class GraphicsEditor3 extends JApplet
 implements ActionListener {

An action listener is required for processing the menu-selection events. Whenever a user
selects a menu item, an Actionevent is generated.

NOTe
There is no adapter class for the ActionListener interface because it
has only a single method to implement.

As before, we now declare a few class variables to store our point objects, drawing mode,
and line segments. To store the reference to the popup menu, we create a variable of type
JpopupMenu, which is a built-in class in Swing:

private JPopupMenu popMenu;

Next, we declare three variables of type JMenuItem:

private JMenuItem menuRed, menuGreen, menuBlue;

We will be creating three menu items pertaining to three color choices for the line segment.
We declare a Color variable and assign an initial value to it:

private Color drawingColor = Color.red;

In the init method, we instantiate the JpopupMenu class:

public void init() {
 popMenu = new JPopupMenu("Colors");

The class constructor receives a string argument, which is the name given to this menu. Note
that you can create multiple menus in your application and select a different menu each time,
depending on the application context. We use this name while referring to the desired menu. Next,
we create a few menu items:

menuRed = new JMenuItem("Red");
menuRed.addActionListener(this);
menuGreen = new JMenuItem("Green");
menuGreen.addActionListener(this);
menuBlue = new JMenuItem("Blue");
menuBlue.addActionListener(this);

Each menu item has a string associated with it, which is displayed to the user. We also need
to add an action listener to each menu item to process its action event whenever the user clicks
the item. The action listener for all three menu items is set to the current applet instance, which

Chapter 15: Graphics and User Gestures Processing 395

provides the actionperformed method. We add the three menu items to the popup menu by
calling its add method:

popMenu.add(menuRed);
popMenu.add(menuGreen);
popMenu.add(menuBlue);

After creating the menu system, we set up the listener for processing the right mouse click
events. Like in earlier examples, we use the anonymous adapter class:

addMouseListener(new MouseAdapter() {

In the mouseClicked event handler, we now check whether the user has clicked the right
mouse button:

public void mouseClicked(MouseEvent e) {
 if (e.getModifiers() == InputEvent.BUTTON3_MASK) {

The getModifiers method helps us in determining which button is clicked. BUTTON3_MASK
refers to the right button. If the right button is clicked, we display the popup menu to the user by
calling its show method:

popMenu.show(e.getComponent(), e.getX(), e.getY());

The menu is displayed at the clicked location. When the user selects a certain menu item, an
action event is generated. This results in calling the actionperformed event handler:

public void actionPerformed(ActionEvent e) {
 if (e.getSource() == menuRed) {
 drawingColor = Color.red;
 }

In the event handler, we check the event source. Depending on the source, we set the
drawingColor variable to an appropriate color.

The implementation of the paint method is the same as the earlier example, except that we
set the drawing color to the user-selected value rather than a hard-coded color (red).

Customizing the Drawing Color
So far we have created a drawing tool that allows the user to draw lines on the screen and select
the drawing color from one of three predefined options. Now, we will enhance our tool so that the
user can set the drawing color to any color of his choice. Rather than providing a fixed set of color
values, we allow the user to select RGB component values to set an arbitrary color. In the process,
you will learn to use a few more Swing components. We use a scroll bar control to set the
component color value in the range of 0 to 255. We also use a custom canvas on which the effect
of the color selection will be displayed immediately. The java.awt package defines the Canvas
class. Like a traditional canvas on which you paint, the instance of Canvas in Java is used for
creating drawings. You typically draw primitives such as lines and circles on it to create a drawing.
In this example, we use the canvas to display the user-selected color. We paint the entire canvas
using this color. The user interface for the color selection dialog frame is shown in Figure 15-6.

396 Java Programming

The dialog frame displays three scroll bar controls to the user. The range of each scroll bar is 0
to 255. Each scroll bar corresponds to one of the three colors: red, green, or blue. When the user
changes the scroll positions, the effective color is displayed on a custom canvas at the bottom of the
screen. We also create another custom canvas that displays the currently set RGB values, which are
shown just above the color custom canvas.

The complete code for the modified drawing editor is given in Listing 15-6.

Listing 15-6 Scroll Bar and Canvas Demonstration

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class GraphicsEditor4 extends JApplet
 implements ActionListener {

 private Point ptFirst = new Point(0, 0);
 private Point ptSecond = new Point(0, 0);
 private Point ptOld = new Point(0, 0);
 private boolean isDrawing = false;
 private ArrayList<Line> lines = new ArrayList<Line>();
 private JPopupMenu popMenu;
 private JMenuItem menuRed, menuGreen, menuBlue, menuCustom;
 private Color drawingColor = Color.red;

 @Override
 public void init() {
 popMenu = new JPopupMenu("Colors");
 menuRed = new JMenuItem("Red");
 menuRed.addActionListener(this);
 menuGreen = new JMenuItem("Green");
 menuGreen.addActionListener(this);
 menuBlue = new JMenuItem("Blue");
 menuBlue.addActionListener(this);

FIGURe 15-6. User interface for customizing the drawing color

Chapter 15: Graphics and User Gestures Processing 397

 menuCustom = new JMenuItem("Custom");
 menuCustom.addActionListener(this);
 popMenu.add(menuRed);
 popMenu.add(menuGreen);
 popMenu.add(menuBlue);
 popMenu.addSeparator();
 popMenu.add(menuCustom);

 addMouseListener(new MouseAdapter() {

 @Override
 public void mouseClicked(MouseEvent e) {
 if (e.getModifiers() == InputEvent.BUTTON3_MASK) {
 popMenu.show(e.getComponent(), e.getX(), e.getY());
 } else if (e.getModifiers()
 == InputEvent.BUTTON1_MASK) {
 if (!isDrawing) {
 ptFirst = new Point(e.getX(), e.getY());
 ptSecond = new Point(e.getX(), e.getY());
 isDrawing = true;
 setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));
 } else {
 isDrawing = false;
 setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
 lines.add(new Line(ptFirst, ptSecond, drawingColor));
 }
 }
 }
 });

 addMouseMotionListener(new MouseMotionAdapter() {

 @Override
 public void mouseMoved(MouseEvent e) {
 if (isDrawing) {
 ptOld = ptSecond;
 ptSecond = new Point(e.getX(), e.getY());
 repaint();
 }
 }
 });
 }

 public void setClr(Color clr) {
 this.drawingColor = clr;
 }

 @Override
 public void paint(Graphics g) {
 // erase old line
 g.setColor(Color.white);

398 Java Programming

 g.drawLine(ptFirst.x, ptFirst.y, ptOld.x, ptOld.y);
 // draw new line
 g.setColor(drawingColor);
 g.drawLine(ptFirst.x, ptFirst.y, ptSecond.x, ptSecond.y);

 Iterator<Line> it = lines.iterator();
 while (it.hasNext()) {
 Line line = it.next();
 g.setColor(line.getLineColor());
 g.drawLine(line.getStartPoint().x, line.getStartPoint().y,
 line.getEndPoint().x, line.getEndPoint().y);
 }
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == menuRed) {
 drawingColor = Color.red;
 } else if (e.getSource() == menuGreen) {
 drawingColor = Color.green;
 } else if (e.getSource() == menuBlue) {
 drawingColor = Color.blue;
 } else if (e.getSource() == menuCustom) {
 (new ColorPalette("Color Palette",
 this)).setVisible(true);
 }
 }
}

class Line {

 private Point ptStart;
 private Point ptEnd;
 private Color lineColor;

 public Line(Point ptStart, Point ptEnd) {
 this.ptStart = ptStart;
 this.ptEnd = ptEnd;
 }

 public Line(Point ptStart, Point ptEnd, Color clr) {
 this.ptStart = ptStart;
 this.ptEnd = ptEnd;
 this.lineColor = clr;
 }

 public Point getEndPoint() {
 return ptEnd;
 }

Chapter 15: Graphics and User Gestures Processing 399

 public Point getStartPoint() {
 return ptStart;
 }

 public Color getLineColor() {
 return lineColor;
 }
}

class ColorPalette extends JFrame implements AdjustmentListener {

 private GraphicsEditor4 applet;
 private JScrollBar redScroll =
 new JScrollBar(Scrollbar.HORIZONTAL, 0, 1, 0, 256);
 private JScrollBar greenScroll =
 new JScrollBar(Scrollbar.HORIZONTAL, 0, 1, 0, 256);
 private JScrollBar blueScroll =
 new JScrollBar(Scrollbar.HORIZONTAL, 0, 1, 0, 256);
 private ColorCanvas colorCanvas;
 private MessageCanvas messageCanvas;
 private int redValue, greenValue, blueValue;

 public int getBlueValue() {
 return blueValue;
 }

 public int getGreenValue() {
 return greenValue;
 }

 public int getRedValue() {
 return redValue;
 }

 public ColorPalette(String string, GraphicsEditor4 applet)
 throws HeadlessException {
 setTitle(string);
 this.applet = applet;
 initGUI();
 }

 private void initGUI() {
 setLayout(new GridLayout(8, 1, 5, 5));
 add(new JLabel("Red"));
 add(redScroll);
 add(new JLabel("Green"));
 add(greenScroll);
 add(new JLabel("Blue"));
 add(blueScroll);
 messageCanvas = new MessageCanvas(this);
 add(messageCanvas);

400 Java Programming

 colorCanvas = new ColorCanvas(this);
 add(colorCanvas);
 redScroll.addAdjustmentListener(this);
 blueScroll.addAdjustmentListener(this);
 greenScroll.addAdjustmentListener(this);
 setBounds(200, 200, 200, 200);
 }

 @Override
 public void adjustmentValueChanged(AdjustmentEvent e) {
 if (e.getAdjustable() == redScroll) {
 redValue = redScroll.getValue();
 }
 if (e.getAdjustable() == greenScroll) {
 greenValue = greenScroll.getValue();
 }
 if (e.getAdjustable() == blueScroll) {
 blueValue = blueScroll.getValue();
 }

 messageCanvas.repaint();
 colorCanvas.repaint();
 applet.setClr(new Color(redValue, greenValue, blueValue));
 }
}

class MessageCanvas extends Canvas {

 private ColorPalette frame;
 private String strDisplay = "";

 MessageCanvas(ColorPalette frame) {
 this.frame = frame;
 }

 @Override
 public void paint(Graphics g) {
 strDisplay = "Red:" + String.valueOf(frame.getRedValue());
 strDisplay += " Green:" + String.valueOf(frame.getGreenValue());
 strDisplay += " Blue:" + String.valueOf(frame.getBlueValue());
 g.drawString(strDisplay, 10, 10);
 }
}

class ColorCanvas extends Canvas {

 private ColorPalette frame;

 ColorCanvas(ColorPalette applet) {
 this.frame = applet;
 }

Chapter 15: Graphics and User Gestures Processing 401

 @Override
 public void paint(Graphics g) {
 Rectangle rect = getBounds();
 g.setColor(new Color(frame.getRedValue(),
 frame.getGreenValue(),
 frame.getBlueValue()));
 g.fillRect(0, 0, rect.width, rect.height);
 }
}

We add a new menu item to the existing popup menu by creating one more instance of
JMenuItem, as shown here:

menuCustom = new JMenuItem("Custom");
menuCustom.addActionListener(this);
...
popMenu.addSeparator();
popMenu.add(menuCustom);

We process the click event on this custom menu with the following code:

} else if (e.getSource() == menuCustom) {
 (new ColorPalette("Color Palette", this)).setVisible(true);
}

Now let’s look at the Colorpalette class that creates the dialog frame shown in Figure 15-6:

class ColorPalette extends JFrame implements AdjustmentListener {

The Colorpalette class implements the AdjustmentListener interface. This interface is required
for processing the scroll bar events. Like the ActionListener, the AdjustmentListener interface has
only one method to implement, so no adapter class is available for this interface.

Next, we declare a few class variables. First, we create a variable called redScroll of the
JScrollbar type:

private JScrollBar redScroll =
 new JScrollBar(Scrollbar.HORIZONTAL, 0, 1, 0, 256);

The redScroll variable is initialized with an instance of JScrollbar. The class constructor takes
five parameters. The first parameter indicates the scroll bar orientation, which is set to horizontal in
this case. The other possible orientation is vertical. The second parameter indicates the initial value
of the scroll bar. The value 0 here indicates that the scroll bubble will be at the leftmost position
in the beginning. The third parameter indicates the visible amount of the scroll bar. Typically
this represents the size of the bubble. The fourth and fifth parameters indicate the minimum and
maximum values, respectively, of the scroll.

We create two more variables of the JScrollbar type, similar to redScroll, to represent the green
and blue colors. After this, we declare two variables of custom class types:

private ColorCanvas colorCanvas;
private MessageCanvas messageCanvas;

402 Java Programming

ColorCanvas and MessageCanvas are custom classes used to display the selected color and
the RGB values, respectively. Both these classes derive from a Canvas class and are discussed
later. Finally, we declare three integer-type variables to store RGB values:

private int redValue, greenValue, blueValue;

In the initGUI method, we build the GUI. First, we set the layout manager, which is a grid
layout having eight rows and one column:

setLayout(new GridLayout(8, 1, 5, 5));

We now add the appropriate labels and the previously created scroll bar controls in the first
six rows of the grid:

add(new JLabel("Red"));
add(redScroll);
...

In the seventh row, we add an instance of MessageCanvas:

messageCanvas = new MessageCanvas(this);
add(messageCanvas);

In the eighth row, we add an instance of ColorCanvas:

colorCanvas = new ColorCanvas(this);
add(colorCanvas);

Finally, we set the event listener for each scroll bar control:

redScroll.addAdjustmentListener(this);
blueScroll.addAdjustmentListener(this);
greenScroll.addAdjustmentListener(this);

The applet class acts as an event listener for the scroll bar event. The event handler method
receives a parameter of type Adjustmentevent:

public void adjustmentValueChanged(AdjustmentEvent e) {

The getAdjustable method of the event object returns the control that generated this event.
We first check this for the redScroll control. If this returns true, we read the current value of the
control in the nRed variable:

if (e.getAdjustable() == redScroll) {
 redValue = redScroll.getValue();
}

Likewise, the program reads the current values of the remaining two scroll bar controls.
Finally, the program repaints both canvases to reflect the current RGB values:

messageCanvas.repaint();
colorCanvas.repaint();

We will now discuss the custom canvas classes. Java provides a panel class for placing
components. Similarly, for drawing graphics, it provides a Canvas class. We create a custom

Chapter 15: Graphics and User Gestures Processing 403

class based on this Canvas class and provide the drawing functionality in its overridden paint
method. Thus, our MessageCanvas class extends Canvas:

class MessageCanvas extends Canvas {

The class declares a variable of type Colorpalette that is our dialog frame class:

private ColorPalette frame;

When the frame instantiates the MessageCanvas, it passes its own reference (this) to the class
constructor. The MessageCanvas class stores this in a local variable and then uses it later to access
the members of the Colorpalette class:

MessageCanvas(ColorPalette frame) {
 this.frame = frame;
}

In the overridden paint method, we build the string by reading the current RGB values from
the frame and then call the drawString method of the Graphics object to display it to the user:

public void paint(Graphics g) {
 strDisplay = "Red:" + String.valueOf(frame.getRedValue());
 strDisplay += "Green:" + String.valueOf(frame.getGreenValue());
 strDisplay += "Blue:" + String.valueOf(frame.getBlueValue());
 g.drawString(strDisplay, 10, 10);
}

The ColorCanvas class definition is similar to MessageCanvas, except for the implementation of
its paint method. In the paint method, we fill the entire canvas area by obtaining its bounds, setting
the fill color to the current RGB values taken from the frame, and calling the fillRect method of the
Graphics object:

public void paint(Graphics g) {
 Rectangle rect = getBounds();
 g.setColor(new Color(frame.getRedValue(),
 frame.getGreenValue(),
 frame.getBlueValue()));
 g.fillRect(0, 0, rect.width, rect.height);
}

Now, compile and run the program. Click the right mouse button to view the popup menu.
Select the Custom menu option. A dialog frame with three scroll bars appears. Change the scroll
positions and observe the color change at the bottom of the frame. Now, click the applet and
draw a line segment. The segment is drawn in the selected color. Try changing the color and
draw more segments. Note that each line segment is drawn in the currently selected color.

processing Keyboard events
Finally, in this section, we discuss how to process keyboard events. For inputting text into your
program, you will obviously prefer to use a JTextField control. However, if you want to type text
directly on a drawing created in your application, you will need to process the keyboard events.
To process the keyboard events, you need to implement the KeyListener interface. The KeyListener

404 Java Programming

interface provides three callback methods. The Keypressed method is invoked when the user
presses a key. When the user releases a key, the KeyReleased method is called. When the user
“types” a key (meaning presses and releases the key), the KeyTyped method is called.

In this section, you learn how to add a text caption at any desired point in your drawing.
Rather than extending the code from Listing 15-6, which has already become quite bulky, I will
demonstrate the technique by creating an independent application and leave the integration to
you as an exercise. In our application, we will be able to input text at any location on the screen
by clicking the mouse at that location. When the mouse is clicked, the cursor changes to text
mode. As you type on the keyboard, the characters are displayed starting at the current location.
To terminate the text entry, simply click the left button one more time. To input text at another
location, follow the same procedure. The application remembers all previous text entries and
displays them at their set locations.

Listing 15-7 shows the complete code for this application.

Listing 15-7 Demonstrating Keyboard Processing

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.JApplet;

public class KeyboardDemoApp extends JApplet {

 private Point pt = new Point(0, 0);
 private String strInput = "";
 private Boolean textMode = false;
 private ArrayList<Caption> captionList = new ArrayList<>();

 @Override
 public void init() {
 addMouseListener(new MouseAdapter() {

 @Override
 public void mouseClicked(MouseEvent e) {
 textMode = !textMode;
 if (textMode) {
 requestFocus();
 pt = new Point(e.getX(), e.getY());
 setCursor(new Cursor(Cursor.TEXT_CURSOR));
 } else {
 captionList.add(new Caption(pt, strInput));
 setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
 strInput = "";
 }
 }
 });

Chapter 15: Graphics and User Gestures Processing 405

 addKeyListener(new KeyAdapter() {

 @Override
 public void keyTyped(KeyEvent e) {
 strInput += e.getKeyChar();
 repaint();
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 g.drawString(strInput, pt.x, pt.y);
 Iterator<Caption> it = captionList.iterator();
 while (it.hasNext()) {
 Caption caption = it.next();
 g.drawString(caption.getStrDisplay(),
 caption.getPt().x,
 caption.getPt().y);
 }
 }
}

class Caption {

 private Point pt;
 private String strDisplay = "";

 public Caption(Point pt, String strDisplay) {
 this.pt = pt;
 this.strDisplay = strDisplay;
 }

 public Point getPt() {
 return pt;
 }

 public String getStrDisplay() {
 return strDisplay;
 }
}

In the applet’s init method, first we add a mouse listener by creating an instance of an
anonymous class based on MouseAdapter:

addMouseListener(new MouseAdapter() {

In the overridden mouseClicked method, we toggle the state of the textMode variable:

textMode = !textMode;

406 Java Programming

When this variable is set to true, we are in the text input mode. In this mode, we record the
coordinates of the clicked point and set the cursor to text mode:

if (textMode) {
 requestFocus();
 pt = new Point(e.getX(), e.getY());
 setCursor(new Cursor(Cursor.TEXT_CURSOR));

On the second click, the textMode is set to false. This time, we record the input text and the
point of display in the Caption object that is added to the captionList array:

captionList.add(new Caption(pt, strInput));

The Caption class stores the caption text and the point at which this text is to be displayed.
Next, we reset the cursor and nullify the string variable used for storing the input text:

setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
strInput = "";

Now comes the important point of this program—how to process keyboard input. Like in
earlier programs, we use the adapter class to process keyboard events. In the init method, we
add an instance of an anonymous KeyAdapter to the applet:

addKeyListener(new KeyAdapter() {

The KeyTyped callback method receives the Keyevent as its parameter:

public void keyTyped(KeyEvent e) {

The getKeyChar method of the event object returns the Unicode corresponding to the key
pressed by the user. We add this to the string variable and repaint the applet to display the string
to the user:

strInput += e.getKeyChar();
repaint();

In the applet initialization, we also call the requestFocus method to ensure that all keyboard
inputs are sent to the applet when the applet is initially displayed to the user. Once an applet is
running, the user may change the focus to some other application. When he returns to the applet,
he will have to click the mouse on the applet surface to get the focus back on the applet. The
keyboard input will then be sent to the applet.

The overridden paint method simply shows the constructed string at a specified fixed location by
calling the drawString method of the Graphics class. It also iterates through the list of all previously
entered captions and prints them on the screen:

Iterator<Caption> it = captionList.iterator();
 while (it.hasNext()) {
 Caption caption = it.next();
 g.drawString(caption.getStrDisplay(),
 caption.getPt().x,
 caption.getPt().y);
 }
}

Chapter 15: Graphics and User Gestures Processing 407

Some typical screen output is shown in Figure 15-7.

TIp
So far, you used an applet to draw some graphics on its surface.
However, an applet is a container and can therefore hold components
such as labels, text fields, list boxes, and so on. In other words, you
can build a complex GUI on the applet’s surface. For building a GUI,
use the layout managers discussed in Chapter 14, create instances of
any desired components, and add them to the applet container.

Summary
In Java, you can create two types of client applications: stand-alone applications and applets. An
applet is deployed on a remote server. A client downloads the applet code and runs it locally.
Because applet code is always download from the server, applets have the latest updates, which
eases maintenance tremendously. You create an applet by subclassing an Applet or JApplet class
and overriding a few methods in it. During the life cycle of an applet, the init, start, paint, stop,
and destroy methods are called. You override these methods to provide the desired application
functionality in an applet. A GUI application may respond to mouse gestures. To process mouse
clicks, Java provides the MouseListener interface, and to process mouse motion events, it provides
the MouseMotionListener interface. An applet may require menus. You provide them via popup
menus. Java provides a Canvas class that provides you with the surface for creating drawings. To
process keyboard events, the KeyListener interface is provided.

In the next chapter, you will be learning one of the frequently used Java APIs—the Collections
framework.

FIGURe 15-7. Demonstrating keyboard input

Chapter
16

Collections

409

410 Java Programming

f you have taken a course on data structures in your computer science curriculum,
you have used collections. In our earlier chapters, we used the Vector class and
ArrayList. These classes are nothing but a part of the Collections framework.
A collection is simply an object that groups multiple objects into a single unit,
making it easier to perform group operations on them, to search quickly through

thousands of sorted items, to insert and remove elements in the middle of an ordered sequence,
and so on. Collections store and aggregate multiple data items so that they can be retrieved and
manipulated with ease. In the earlier versions of Java (pre–J2SE 1.2) only the Vector and Hashtable
classes were provided as part of Collections. The built-in Array class was used for creating arrays.
Now, the Java platform provides a full-fledged Collections framework, which is a unified
architecture for representing and manipulating various collections. You will learn to use the
Collections framework in this chapter. In particular, you will learn the following:

What the Collections framework is■■

Interfaces defined in the Collections framework ■

Various implementation classes of the framework ■

Lists ■

Sets ■

Queues ■

Maps ■

Polymorphic algorithms■■

What Is the Java Collections Framework?
Many languages provide a collections framework, so it is very likely you have already used
collections in other languages. For example, the Standard Template Library (STL) in C++ is a
collections framework. Java introduced the Collections framework beginning in J2SE 1.2.
Earlier to that it only had Vector, Hashtable, and built-in arrays. Each of these had different
syntax and methods for accessing its members. Arrays use square brackets, Vector uses the
elementAt method, and Hashtable uses get and put methods to access the members. Besides
this, some of the methods in Vector are marked final and therefore cannot be inherited. Arrays
have a fixed size, making it tricky to deal with those situations where the number of elements
can dynamically vary at runtime.

What is desired is a standard interface for member access, a more powerful set of classes,
and some built-in algorithms for sorting, searching, and so on. This is now achieved through the
Collections framework. The Java Collections framework is not restricted to the aforementioned
preexisting classes but rather contains much more—namely, interfaces, implementations, and
algorithms.

The Hashtable and Vector classes have now been updated to implement the Collection
interfaces. Many new collection implementations have been added, including HashSet and
TreeSet, ArrayList and LinkedList, and HashMap and TreeMap. Each of these provides a unique
advantage over the others. For example, TreeSet and TreeMap implicitly support ordering, making
it lot easier to maintain a sorted list with no effort. Finding the smallest and largest element in

I

Chapter 16: Collections 411

a sorted list is very easy. You may sort the elements based on their natural sort order or provide
your own comparator for sorting. Also, searching is made easier with the implementation of a
binary search algorithm. The ordered insertion in collections usually results in a performance
penalty, and in certain situations you may not need to order the collection elements. For example,
in the previous chapter, we used ArrayList to maintain a list of graphics objects, where the ordering
was not at all important. In some situations, you may want to maintain a key/value pair like the one
in a word dictionary. For this, you would use HashMap. Thus, the Collections framework provides
you with several types of collections to meet your current needs. Each type has a unique purpose,
as you will learn as you read on.

Benefits of the Collections Framework
One of the biggest benefits that comes out of using the Collections framework is the set of standard
interfaces it provides. Whether you are working on a Set, List, or Map, the interface remains the
same. All the classes in the framework conform to a common API and thus become more regular
and easily understood. The application type does not matter, and the user sees the same interface,
whether he is developing a chat application, working on a SQL database, or creating a graphics
editor like the one in Chapter 15. The standard interfaces make it easier to pass collection objects
between methods as parameters or return values. Thus, a method can work on a wider variety of
collections. All the collection classes have a common implementation that makes your code shorter
and quicker to download. Also, any changes to this core implementation to enhance performance
or add features are immediately available to your program code.

Earlier collections classes used Enumeration to traverse their elements. The Collections
framework, on the other hand, introduced Iterator, which allows for element operations such as
insertion and deletion. The Iterator is fail-fast, ensuring that you get an exception if the list you are
iterating is modified by another user. Also, iterators such as ListIterator that operate on a list-based
collection such as Vector allow bidirectional iteration and updating. As mentioned earlier, some of
the collections allow you to maintain a sorted collection of objects, making it easy to find the first
and the last based on a certain sort order and to perform quick searches.

The Collections framework also provides a static class called Collections that provides
read-only and synchronized versions of existing collections. The read-only collections protect
you from accidental changes to collection items, and synchronized versions are useful in
developing multithreaded applications. You create a read-only set by calling the unmodifiableSet
static method of the Collections class. You learn about the use of synchronized collection classes
in thread programming later in the chapter.

What the Collections Framework Offers
The Java Collections framework consists of interfaces, implementations, and algorithms:

Interfaces■■ Just like the Java interfaces you studied in the earlier chapters, these interfaces
provide a uniform interface to the collections independent of the objects they represent.
The various collection classes implement a common interface. The interface hierarchy is
designed to account for the different types of data structures, such as lists, sets, queues,
and maps.

Implementations ■ These are concrete implementations for the various types of data
structures, such as lists, sets, queues, and maps.

412 Java Programming

Algorithms■■ These provide useful methods for performing common operations such as
sorting and searching that are applied polymorphically to collections regardless of the
object types they store.

In this chapter, you learn about all three of these aspects of the Collections framework.

The Collections Framework Interfaces
The interface hierarchy consists of two distinct trees. List, Set, and Queue fall under the Iterable
tree. Map is somewhat different from these collections and therefore falls under a different tree all its
own. Besides these, you have the Iterator interface that allows you to iterate through the elements
of a collection. Finally, the RandomAccess interface is a marker to indicate that the implementing
data structure class provides fast random access to its data. The interface hierarchy defined in the
Collections framework is depicted in Figure 16-1.

List is an ordered collection that can contain duplicates. In a list, when you insert an element,
you have control over where the element is inserted; therefore, you are able to retrieve an element
by knowing its index. A Vector (which we used in previous chapters) falls under this category.

FIGuRE 16-1. Interface hierarchy in the Collections framework

<<interface>>
Iterable

<<interface>>
Collection

<<interface>>
List

<<interface>>
Set

<<interface>>
Queue

<<interface>>
SortedMap

<<interface>>
SortedSet

<<interface>>
Deque

<<interface>>
NavigableMap

<<interface>>
Map

<<interface>>
Iterator

<<interface>>
RandomAccess

<<interface>>
NavigableSet

<<interface>>
ListIterator

Chapter 16: Collections 413

Set is a collection that cannot contain duplicate elements. More precisely, a set cannot contain
a pair of elements, e1 and e2, such that e1.equals(e2) is true. Also, it can contain at most one null
element. This models the mathematical set abstraction. As an example, you could use a set to
create a timetable of departing trains from a particular train station or to create a schedule of
courses offered at the sophomore level. The SortedSet and NavigableSet interfaces extend the
functionality defined by Set.

SortedSet is a set that provides a total ordering of its elements. It is used for naturally ordered
sets and exposes the comparator object used for sorting. This interface provides methods to obtain
subset views of the collection and the iterator that traverses the set in ascending element order.
For ease of searching and traversal in such sorted sets, the NavigableSet interface was introduced
in Java SE 6. Given a set of ordered numbers such as [..., 10, 15, 20, 35, 50, ...] you can easily
determine the element greater than or less than 20 in a single method call of this interface.
Methods such as lower, higher, floor, and ceiling are provided for this purpose. You can also use
the headSet and tailSet methods to get a head or tail subset with respect to any element in the
sorted set. ConcurrentSkipListSet and TreeSet are the two implementing classes for this interface.

Queue is a collection of multiple objects that you would like to insert into a collection before
processing them. Just like in real life, we first form a queue of objects and then process them,
maybe on a FIFO (first in, first out) basis. The interface provides methods for inserting, extracting,
and inspecting elements; it is not necessary to extract elements in FIFO order. The interface
provides a means of ordering elements as per their natural ordering or a supplied comparator.

Deque represents a double-ended queue, meaning that you are allowed to add and remove
elements at both ends. The implementation can be used for LIFO (last in, first out) order, as in
the case of a Stack, or FIFO order, as in the case of a Queue. The Deque provides methods to
insert, remove, and examine the element. Each of these methods exists in two forms—one that
throws an exception and the other that returns a null or false value, depending on the operation.
For Deque implementations having capacity restrictions, the latter form is used. For example,
the offerFirst method inserts the element specified in the method parameter at the front of the
deque. If the insertion fails due to capacity restriction, a false value is returned. This is probably
better than having an exception generated when you use the corresponding addFirst method.

BlockingDeque is a sub-interface of Deque that supports blocking operations during an insert
or retrieval. Removing an element operation would block for the deque to become non-empty
(if the deque is empty, the remove operation blocks until somebody inserts an element in it), and
similarly inserting an element operation waits (blocks) for the space to become available in the
deque. It supports four forms of methods:

Methods that throw exceptions■■

Methods that time out ■

Methods that block (wait indefinitely) ■

Methods that return a special value■■

Map provides a collection of key/value pairs. This is useful in creating dictionaries and such,
where the objects are accessed using their keys. For example, a database of employee objects
may be accessed using the employee IDs. Therefore, the ID in this case becomes the key, and the
employee record becomes the value associated with the key. Just the way you have sorted and
navigable sets, you have interfaces for creating sorted maps and navigating them using a tree-like
structure. SortedMap provides a total ordering on its keys. The ordering is based on either the
natural ordering of its keys or on a provided comparator. Along with the NavigableSet you saw
earlier, Java SE 6 introduced the NavigableMap interface to provide similar navigational methods

414 Java Programming

on a map that return the closest matches for given search targets. Methods such as headMap
and tailMap are similar to headSet and tailSet, which you saw earlier for sets. In the case of
NavigableSet, the methods typically returned a single value; in the case of NavigableMap, they
return the key/value pair.

The Iterator interface provides methods for iterating through the elements of a collection.
Finally, as mentioned earlier, RandomAccess is a marker interface that indicates that the
implementing List class supports fast random access.

In summary, we say that the Collection interface is a group of objects. Set extends Collection
but forbids duplicates. List extends Collection and also allows duplicates and introduces positional
indexing. Map extends neither Set nor Collection. You can easily see from this discussion the
amount of variety you have in creating different collections of objects, depending on your needs.

The Collections Framework Classes
The class diagram in Figure 16-2 shows the various classes you have for working with different
kinds of collections. We will now discuss the four types of data structures individually—list, set,
queue, and map—illustrated in this figure, along with code examples.

List
As stated earlier, the List data structure defines an ordered collection of elements. The user can
precisely control the position where a new element is inserted in the list. To retrieve elements from
the list, the user can use the index, which is the position in the list. Lists allow duplicates, meaning

FIGuRE 16-2. Implementation classes in the Collections framework

Abstract
Collection

AbstractSet AbstractQueue AbstractMap

HashMap TreeMap

AbstractList

Abstract
SequentialList

PriorityQueueTreeSetHashSet ArrayDeque

LinkedList ArrayList

Chapter 16: Collections 415

that a pair of elements, e1 and e2, such that e1.equals(e2), is allowed. Also, you can have multiple
null elements, provided a null element is permitted in the first place (some implementations prohibit
them). Note that sets do not allow such duplicates. A special iterator, called ListIterator, defined in
this interface, besides its typical operations, allows element insertion and replacement as well as
bidirectional access. The interface defines an indexOf method that takes an Object argument and,
after searching the list, returns the index of the object, if found. The get method accepts an index as
its argument and returns the element at the specified position. Such searches should be used with
caution because many implementations perform costly linear searches. The interface also provides
methods to efficiently insert and remove multiple elements at an arbitrary point in the list.

Java libraries define several implementations of this interface—a few examples are ArrayList,
LinkedList, Stack, and Vector. We will now consider the use of the List interface through a code
example based on the LinkedList implementation. The LinkedList class allows duplicate elements.
A simple example of a list might be maintaining the names of players on a soccer team. The team
can have two players with the same name (in some cases you might use a prefix such as Jr. to
distinguish between the two). We will now write a program to create and manipulate a list of
players. We will create two teams—one for men and the other for women. After adding five
members to each team, we will print out the teams. We will then merge the two teams to create
a mixed team. Later on, we will disqualify a few members and remove them from the mixed
team. All this will certainly expose you to the various methods of the List interface. The program
is given in Listing 16-1.

Listing 16-1 Soccer Team Builder Based on the LinkedList Data Structure

import java.util.*;

public class SoccerTeam {

 public static void main(String[] args) {
 List<String> maleTeam = new LinkedList<>();
 maleTeam.add("John");
 maleTeam.add("Tom");
 maleTeam.add("Sam");
 maleTeam.add("Vijay");
 maleTeam.add("Anthony");
 System.out.println("Male Team: " + maleTeam);
 List<String> femaleTeam = new LinkedList<>();
 femaleTeam.add("Catherine");
 femaleTeam.add("Mary");
 femaleTeam.add("Shilpa");
 femaleTeam.add("Jane");
 femaleTeam.add("Anita");
 System.out.println("Female Team: " + femaleTeam);
 ListIterator<String> maleListIterator =
 maleTeam.listIterator();
 Iterator<String> femaleListIterator = femaleTeam.iterator();

 while (femaleListIterator.hasNext()) {
 if (maleListIterator.hasNext()) {
 maleListIterator.next();

416 Java Programming

 }
 maleListIterator.add(femaleListIterator.next());
 }
 System.out.println("Mixed Team: " + maleTeam);
 List<String> disqualify = new LinkedList<>();
 disqualify.add("Sam");
 disqualify.add("Tom");
 disqualify.add("Shilpa");
 maleTeam.removeAll(disqualify);
 System.out.println("Qualified Team: " + maleTeam);
 }
}

In the main method, we first create the list with the following declaration:

List<String> maleTeam = new LinkedList<>();

Note that the collection classes now use generics. Therefore, we specify the type of object our
list is going to hold in angular brackets. The maleTeam is the list that holds String-type elements.
The instance of the LinkedList class is assigned to a List-type variable, which is a super-interface of
the LinkedList class. After creating a list, we add a few items to it by calling the List’s add method:

maleTeam.add("John");
maleTeam.add("Tom");
...

To print the list of created members, we use our regular SOP (System.out.println) method:

System.out.println("Male Team: " + maleTeam);

Likewise, we create a list of female team members called femaleTeam and add a few members
of the String type to it. We’ll now merge the two teams. While merging the teams, we will mix the
members of the two teams in an alternating fashion, adding the female players to the team of
male players. Therefore, the mixed team will be stored in the maleTeam list. For this, we create
two iterators:

ListIterator<String> maleListIterator = maleTeam.listIterator();
Iterator<String> femaleListIterator = femaleTeam.iterator();

Both iterator classes use generics; therefore, we need to provide the appropriate data type
while creating them. The ListIterator class provides an add method that allows for the insertion
of an object in the list. The Iterator class does not allow the insertion; it allows only the removal
of an element. Thus, the maleListIterator is of type ListIterator, and the femaleListIterator is of
type Iterator. After creating iterators, we define the following loop to copy the elements of the
female team into the male team in alternating positions:

while (femaleListIterator.hasNext()) {
 if (maleListIterator.hasNext()) {
 maleListIterator.next();
 }
 maleListIterator.add(femaleListIterator.next());
}

Chapter 16: Collections 417

The hasNext method returns null on encountering the end-of-list, and the next method returns
the object from the list and advances the pointer in the list. After the while loop completes its
execution, the mixed team is available in the maleTeam list, which we print to the terminal:

System.out.println("Mixed Team: " + maleTeam);

Now, to define a list of disqualified members, we create another list called disqualify and add
the desired members to it:

List<String> disqualify = new LinkedList<>();
disqualify.add("Sam");
disqualify.add("Tom");
disqualify.add("Shilpa");

To remove the disqualified members from the mixed team, we use the removeAll method and
pass the list of disqualified members to it as a parameter:

MaleTeam.removeAll(disqualify);

We then print the modified team for verification:

System.out.println("Qualified Team: " + maleTeam);

When you run the program, you will see the following output:

Male Team: [John, Tom, Sam, Vijay, Anthony]

Female Team: [Catherine, Mary, Shilpa, Jane, Anita]

Mixed Team: [John, Catherine, Tom, Mary, Sam, Shilpa, Vijay, Jane, Anthony, Anita]

Qualified Team: [John, Catherine, Mary, Vijay, Jane, Anthony, Anita]

From this simple example, you can see how easy it is to create and manipulate a list of
objects using the List interface.

Optional Operations of the List Interface
The methods we used in Listing 16-1 were the mandatory implementations for an implementing
class. The List interface also defines several methods that are optional in the sense that implementing
classes need not use them, but must throw a runtime exception if they are not supported.

The interface defines four overloaded add methods and three overloaded remove methods
that obviously take different sets of parameters. The clear method removes all the elements from
the list. The set method takes two arguments—the index and the element—and replaces the
element at the specified position in the list with the specified element. The retainAll method takes
a Collection as an argument and retains only the elements in the list that are contained in the
specified collection. We will now discuss a few implementations using some or all of these
optional methods so that you get a feel for the various implementing classes of the List interface.

The ArrayList class used in the previous chapter is a resizable-array implementation of the List
interface that implements all the aforementioned optional operations. One of the benefits of using
this class is that the size, isEmpty, get, set, iterator, and listIterator operations run in constant time.
The add operation runs in amortized constant time; adding n elements requires O(n) time. The
constant factor here is low compared to the corresponding LinkedList implementation. All other
operations roughly run in linear time. Each instance of ArrayList has a capacity, which defines the
size of the array used to store the elements in the list. This capacity grows dynamically as you add

418 Java Programming

more elements to the list. Before adding a large number of elements, use the ensureCapacity
operation to possibly reduce the amount of incremental allocation. This class is somewhat
equivalent to the java.util.Vector class we used earlier, except that it is unsynchronized.

The CopyOnWriteArrayList defined in the java.util.concurrent package provides a thread-
safe variant of ArrayList. In this class, all mutative operations, such as add, set, and so on, are
implemented by creating a fresh copy of the underlying array, making it generally costly to use.
Ordinarily, when you have more traversal operations than mutations, this implementation is
preferred over synchronizing traversals yourself. This class permits null.

The Vector is another implementation of the List interface. It implements a “growable” array
of objects. The size grows or shrinks as needed. Storage management can be optimized by using
the capacity and ensureCapacity operations and the capacityIncrement field. The major benefit
of using this class lies in the fact that the iterators returned by the iterator and listIterator methods
are fail-fast. Concurrent external modifications to Vector’s structure result in the iterator throwing
a ConcurrentModificationException. The iterator fails quickly and cleanly, saving you from
encountering nondeterministic behavior in the future. Unlike the LinkedList and ArrayList from
earlier, the Vector is synchronized.

The Stack is yet another implementation of the List interface. The Stack extends the Vector.
Conventionally, it represents a LIFO stack of objects. When you create a Stack object, it contains
no elements. The Stack class has existed since JDK 1.0. For a more complete and consistent set of
LIFO operations, you should use the implementations of the Deque interface, discussed later in
this chapter.

Having studied the various implementations of the List interface, we will now move ahead to
study the Set data structure.

Set
The Set interface represents a collection that does not permit duplicate elements. The definition of
duplicates in terms of the object identity remains the same as described previously. Due to this
restriction, the interface places additional stipulations on its constructors and the add, equals, and
hashCode methods. This interface models the mathematical set abstraction. HashSet, LinkedHashSet,
TreeSet, EnumSet, and CopyOnWriteArraySet are some of the concrete implementations of this
interface. We will discuss just two implementations: HashSet and TreeSet. Refer to javadocs for
details about the other implementations.

HashSet
The HashSet implementation is backed by a hash table (a HashMap instance) and does not
permit null. This class offers constant-time performance for basic operations such as add, remove,
contains, and size, assuming the hash function disperses the elements properly among the buckets.
The iteration time depends largely on the number of elements and the number of buckets in the
backing HashMap instance; do not set the initial capacity too high and the load factor too low if
iteration performance is important.

The implementation does not guarantee the iteration order. As a matter of fact, it does not
even guarantee that the iteration order will remain constant over time.

This class is not synchronized. You can provide an external synchronization by wrapping the
set as illustrated here:

Set s = Collections.synchronizedSet(new HashSet(5000, 0.75f));

The iterators are fail-fast, as described earlier for the Vector.

Chapter 16: Collections 419

To illustrate the use of this class, let’s look at a concrete example. Suppose we have been
asked to write a program that accepts election voter names from the user. We will store these
names in a set, with no duplicates allowed. In the case of a long list of names, the user might
unknowingly enter the same name twice. This program should therefore ensure that the resultant
set contains only distinct names and all duplicates are rejected without warning to the user. The
program that does all this is given in Listing 16-2.

Listing 16-2 Building a Set of Distinct Words Using the HashSet Class

import java.util.*;

public class DistinctWordSet {

 public static void main(String[] args) {
 int count = 0;
 Set<String> words = new HashSet<>();
 Scanner in = new Scanner(System.in);
 String str;
 while (!(str = in.nextLine()).equals("")) {
 count++;
 words.add(str);
 }
 System.out.println(". . .");
 System.out.println("Total number of words entered: " + count);
 System.out.println("Distinct words: " + words.size());
 System.out.println(". . .");
 Iterator<String> iterator = words.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

In the main method, we create an instance of HashSet that stores String-type objects:

Set<String> words = new HashSet<>();

Next, we read the names from the user. We use the Scanner class (introduced in J2SE 5.0) to
read input from the keyboard. The parameter to the class constructor is System.in, which is the
default keyboard input:

Scanner in = new Scanner(System.in);

We read multiple names from the user until he inputs a “blank” name:

while (!(str = in.nextLine()).equals("")) {

The nextLine method of the Scanner class returns a String. As long as this string does not equal
a blank string, we keep on asking for a new name from the user. We add the input string to the Set
we created earlier:

words.add(str);

420 Java Programming

In case of a duplicate entry, the add method simply refuses to add it to the set. After the while
loop terminates, the set contains only the distinct words. We print both the total number of input
words and the number of distinct words to the terminal:

System.out.println("Total number of words entered: " + count);
System.out.println("Distinct words: " + words.size());

We also print the contents of the created set to the terminal for verification by creating and
using an iterator:

Iterator<String> iterator = words.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}

Sample output from the program is shown here:

John
Jack
Sam
Anthony
Jack
Bill

. . .
Total words: 6
Distinct words: 5
. . .
Bill
Jack
Anthony
Sam
John

Note that the user has entered a total of six names, out of which five are unique. The name
Jack has been entered twice. The final list contains only one occurrence of Jack.

TreeSet
TreeSet uses a tree for storage. Objects are stored in sorted, ascending order. The elements are
ordered using their natural ordering or by a comparator provided at the set creation time. Therefore,
when you iterate over the set elements, the order of elements is constant. By passing the comparator
object to the constructor, you can set a different ordering than the natural ordering of the elements.
You create a comparator object by instantiating a built-in Comparator class. You will need to define
your own comparison in its compare method. The operations, such as add, remove, and contains,
are guaranteed to perform in log(n) time, making this a better choice over ArrayList for fast retrievals
from large amounts of sorted information. Like HashSet, this class, too, is not synchronized.

To illustrate this class, let’s look at a concrete example. Suppose we have to create a team of
players. We will store this list of players in a TreeSet. For each player, we store his name and age.

Chapter 16: Collections 421

We will create a Player class for storing this information. We will define the default ordering based
on the players’ age. Later on, we will create another sorted list based on the existing list that sorts
the elements of the list by player name. You will understand how easy it is to sort the team on
different fields when you use this class. The program is given in Listing 16-3.

Listing 16-3 Building a Sortable Team Based on TreeSet

import java.util.*;

public class SortableTeam {

 public static void main(String[] args) {
 SortedSet<Player> ageSortedTeam = new TreeSet<>();
 ageSortedTeam.add(new Player("John", 21));
 ageSortedTeam.add(new Player("Sam", 20));
 ageSortedTeam.add(new Player("Anthony", 18));
 ageSortedTeam.add(new Player("Bill", 19));
 ageSortedTeam.add(new Player("Jack", 22));
 System.out.println("Team - by age");
 printSet(ageSortedTeam);
 System.out.println("-------------------");
 SortedSet<Player> nameSortedTeam =
 new TreeSet<>(new Comparator<Player>() {

 public int compare(Player a, Player b) {
 return a.getName().compareTo(b.getName());
 }
 });
 nameSortedTeam.addAll(ageSortedTeam);
 System.out.println("Team - alphabetical");
 printSet(nameSortedTeam);
 System.out.println("-------------------");
 }

 static void printSet(Set set) {
 Iterator iterator = set.iterator();
 while (iterator.hasNext()) {
 Player player = (Player) iterator.next();
 System.out.println(player.getName() + " - Age:"
 + player.getAge());
 }
 }

 private static class Player implements Comparable<Player> {

 private String name;
 private int age;

422 Java Programming

 public Player(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public int getAge() {
 return age;
 }

 public String getName() {
 return this.name;
 }

 public int compareTo(Player other) {
 return age - other.age;
 }
 }
}

Let’s first look at the Player class. We will store the instances of this class in the team we create
in the main application:

private static class Player implements Comparable<Player> {

The class is declared private and defined as an inner class to the SortableTeam class. Because
we will not use the Player class outside this sample application, we declare it private so as to shield
its definition from other classes in the application.

The Player class implements the Comparable interface that operates on the Player data
type. As part of the Comparable interface implementation, we need to implement the
compareTo method:

public int compareTo(Player other) {
 return age - other.age;
}

The compareTo method returns the difference between the age of the current object and the
age of the received object. This defines the default ordering while inserting the objects of the Player
type in the tree. Besides this compareTo method, the class defines the conventional constructor that
takes two parameters and initializes the object’s state. We also create two getter methods to retrieve
the age and name fields. Now, let’s look at the main application.

In the main method, we create an instance of TreeSet that operates on a Player data type:

SortedSet<Player> ageSortedTeam = new TreeSet<>();

We add a few elements to the ageSortedTeam:

ageSortedTeam.add(new Player("John", 21));
ageSortedTeam.add(new Player("Sam", 20));
 ...

Chapter 16: Collections 423

Note that when the elements are inserted, they will be ordered based on the comparator
provided in the class definition; they will be arranged in the ascending order of each player’s
age. To verify this, we print the set by calling the printSet method, which is discussed later:

printSet(ageSortedTeam);

Now, we create another list that is sorted alphabetically by player name. To do this, we
create another instance of the TreeSet class:

SortedSet<Player> nameSortedTeam =
 new TreeSet<Player>(new Comparator<Player>() {

To the constructor, we pass an instance of Comparator (remember the use of anonymous
classes from previous chapters). The compare method receives two parameters of the Player type:

public int compare(Player a, Player b) {

We obtain the players’ names from the two received objects by calling the getter method. The
compareTo method compares two strings and returns their alphabetical ordering:

return a.getName().compareTo(b.getName());

After we have constructed the ordered set with a new ordering method defined, we need to add
elements to it. We do this by calling the addAll method:

nameSortedTeam.addAll(ageSortedTeam);

The addAll method takes a parameter, which is an existing set of players. All the elements of
the ageSortedTeam will now be added to the new set; however, during insertion, the new ordering
mechanism is used. We verify this ordering by printing the list to the terminal:

System.out.println("Team - alphabetical");
printSet(nameSortedTeam);

Finally, we discuss the implementation of the printSet method. This is a static method of the
class that accepts a Set-type parameter:

static void printSet(Set set) {

In the method body, we first create an iterator:

Iterator iterator = set.iterator();

We iterate through all the elements of the set by calling the hasNext method:

while (iterator.hasNext()) {

The next method retrieves the object from the set. We typecast this to the Player type:

Player player = (Player) iterator.next();

We get the name and the age attributes of the Player object and print them to the terminal:

System.out.println(player.getName() + " - Age:" + player.getAge());

424 Java Programming

When we run the program, we see the following output:

Team - by age
Anthony - Age:18
Bill - Age:19
Sam - Age:20
John - Age:21
Jack - Age:22

Team - alphabetical
Anthony - Age:18
Bill - Age:19
Jack - Age:22
John - Age:21
Sam - Age:20

Note that the first list is arranged by the players’ age, whereas the second one is arranged
alphabetically by the players’ name.

TIP
Here are some pointers for deciding between using Set and List.
A TreeSet consumes a little bit more memory than an ArrayList. This
is because a TreeSet uses a tree data structure to store its information,
where each node in the tree is an object that keeps pointers to its
parent, the left branch, the right branch, the element, and more.
In comparison, an ArrayList is a simple array with the elements.
Also, inserting an element in a TreeSet is faster than the insertion in
ArrayList. This is because when you insert an element in an arbitrary
position in an ArrayList, on average half the list will have to be shifted
by one position. This takes O(n) time, which means inserting into a list
containing 1,000,000 elements will take 1,000 times as long as the
time taken to insert into a list of 1,000 elements. On the other hand,
a TreeSet needs to traverse the depth of the tree, which takes O(log(n))
time. Therefore, if the set contains 1,000,000 elements, it takes only
twice as long as when the set contains 1,000 elements.

We’ll now move on to the next type of data structure—a queue.

Queue
A queue is a collection that is designed for holding elements prior to processing. Queues typically
order elements in FIFO order, although this is not always true. The PriorityQueue implementation,
described next, orders elements based on their natural ordering or according to the supplied
comparator. Besides basic operations, Queue provides additional methods for insertion, extraction,
and inspection. To insert an element, you use the offer method instead of the typical add method.

Chapter 16: Collections 425

To remove an element, you use poll instead of the typical remove, and to inspect you use peek
instead of the regular element method. The offer, poll, and peek methods return a special value
instead of throwing an exception in case of failure. The Queue interface does not define blocking
methods; however, the BlockingQueue interface that extends the Queue interface blocks on an
element to appear or for the space to become available. The Queue implementation generally
does not allow null insertion; the exception is the LinkedList implementation. You should generally
avoid the insertion of null because it is also used as a special return value by the poll method.

Java libraries provide several implementations of the Queue interface—a few examples are
PriorityQueue, PriorityBlockingQueue, LinkedList, and ArrayDeque. Refer to the javadocs for a
detailed study of the different implementations. In this section, we discuss just one
implementation: PriorityQueue.

The PriorityQueue class represents an unbounded priority queue based on a priority heap.
The elements are ordered according to their natural ordering or by a comparator provided at the
queue construction time. A sorted order is always permanently imposed on the elements it
contains. The highest-priority element is at the head of the queue, and the lowest is at its tail.
Removing the highest-priority element and adding a new element operation are both efficient.
Searching for an element that is not at the head of the queue is usually inefficient.

You would typically use priority queues in situations where you want to add elements in any
order but retrieve them in sorted order, and where you do not necessarily retrieve the elements
all at once. A typical application of this is building a Huffman compression tree, where you need
to sort something gradually, occasionally peeking at the topmost element, altering it, and
placing it back into the tree. Other typical applications might be performing a heapsort and
creating a job scheduler.

An example where a priority queue might be useful is in the allocation of the CPU to waiting
threads. Generally, several processes running on the system create threads that are posted in a
queue for execution. The threads have different priorities. The operating system executes all
threads with the highest priority first, followed by the threads at the next priority level, and so on.
We will now write a program that does this allocation of CPU time. In this example, the thread
priorities range from 0 to 9, with 0 being the highest priority and 9 being the lowest.

CAuTION
Generally, for thread priorities, 0 is the lowest priority and 9
(or whatever is the highest level) is considered the highest priority.
We use the reverse order in this example because this is the natural
ordering for integers. To change to descending ordering, you need
to provide your comparator, which is discussed in later examples in
this chapter.

We assume that the processes will create threads and put them in a queue for execution. The
size of this queue is 100. Therefore, at any moment, we may have up to 100 threads for allocation.
We will rearrange all these threads based on their priorities in a priority queue. We will then simply
allocate the CPU cycles by picking the element at the top of the queue, one after another. For all
threads having the same priority level, we do not further distinguish between them on the basis of
their time of creation. Therefore, it’s possible for a thread created later than another thread (both
with the same priority) to get the CPU earlier than the other one.

426 Java Programming

The program that does this allocation is given in Listing 16-4.

Listing 16-4 Building a Thread Scheduler Using the PriorityQueue Class

import java.util.*;

public class ThreadScheduler {

 public static void main(String[] args) {
 List<Integer> list = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 list.add((int) (Math.random() * 10));
 }
 PriorityQueue<Integer> threadQueue = new PriorityQueue<>();
 threadQueue.addAll(list);
 System.out.println("Waiting threads...");
 for (Integer thread : threadQueue) {
 System.out.print(thread + ",");
 }
 System.out.println("\nDeploying threads...");
 while (!threadQueue.isEmpty()) {
 System.out.print(threadQueue.remove() + ",");
 }
 }
}

In the main function, we first declare an array to store the waiting threads:

List<Integer> list = new ArrayList<>();

We create 100 threads with a random priority in the range of 0 to 9 assigned to each one:

for (int i = 0; i < 100; i++) {
 list.add((int) (Math.random() * 10));
}

Next, we create a PriorityQueue class instance that operates on the Integer data type:

PriorityQueue<Integer> threadQueue = new PriorityQueue<>();

We fill this queue with the elements of our thread list by calling the addAll method:

threadQueue.addAll(arrayList);

We now print the list of all waiting threads:

System.out.println("Waiting threads...");
for (Integer thread : threadQueue) {
 System.out.print(thread + ",");
}

Chapter 16: Collections 427

To allocate the CPU, we remove the thread from the top of the queue and print its priority
level to the user terminal:

System.out.println("\nDeploying threads...");
while (!threadQueue.isEmpty()) {
 System.out.print(threadQueue.remove() + ",");
}

When we run the program, we see output similar to the following:

Waiting threads...

0,0,0,0,0,1,3,2,1,0,0,1,4,3,4,2,2,1,2,1,2,1,0,2,3,6,6,5,7,7,6,6,3,4,4,2,4,2,
2,4,2,3,3,2,5,4,3,6,3,5,6,7,7,7,8,9,8,9,9,9,8,9,8,9,8,6,3,8,6,5,7,7,4,8,7,5,
3,3,7,9,8,5,3,7,4,7,8,9,2,8,7,9,8,9,7,9,7,6,3,6,

Deploying threads...

0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,
3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,

Note that the threads are deployed strictly according to their priorities, and until the threads
with higher priorities finish, threads at lower priorities starve.

Map
A Map represents an object that maps keys to values. It cannot contain duplicate keys; each key
can map to at most one value. This is typically used in building word dictionary applications. Java
libraries define several implementations of the Map interface. We just discuss one implementation
in this section: HashMap. As usual, refer to javadocs for information on the other implementations.
The HashMap permits the use of null values and keys. The HashMap does not make any guarantee
that the retrieval order will remain constant over time. It provides constant-time performance for
basic operations such as get and put, assuming that the hash function disperses the elements
properly among the buckets. To have the HashMap work efficiently, we use its two parameters—
initial capacity and load factor. The load factor controls when the capacity should be increased.
Note that HashMap stores only object references; if you want to store primitive data types, use
wrapper classes. This class is not synchronized. For synchronized access, use java.util.Hashtable
instead. You will learn the pros and cons of using synchronized access in Chapter 17.

We will now discuss the use of the HashMap class through a concrete example. Suppose we
are building a word list typically used by students taking the Graduate Record Examination (GRE),
where for each word we want to store its type, synonym, and antonym. The list should be
searchable by a keyword. After the search, the aforementioned three attributes of the word should
be displayed. This user of the program should be able to modify any of the entries as well as print
the entire word list on demand. The program in Listing 16-5 does all this.

428 Java Programming

Listing 16-5 Building a GRE Word List Using HashMap

import java.util.*;

public class GREWordList {

 static Map<String, Word> wordList = new HashMap<>();

 public static void main(String[] args) {
 wordList.put("Abate", new Word("verb", "subside",
 "alienate,increase,extend,amplify,continue,enlarge"));
 wordList.put("Abeyance", new Word("noun",
 "suspended action", "continuance"));
 wordList.put("Abscond", new Word("verb",
 "depart secretly and hide",
 "appear,emerge, show,stay,remain"));
 wordList.put("Abstemious", new Word("adj",
 "sparing in eating and drinking",
 "intemperate,glutonous"));
 wordList.put("Admonish", new Word("verb", "warn, reprove",
 "acclaim,commend,praise,compliment,countenance"));
 printList();
 // Look up a value
 System.out.println("\nValue for abscond " + wordList.get("Abscond"));
 // Modify an entry
 wordList.put("Abate", new Word("verb", "subside,moderate",
 "alienate,increase,extend,amplify,continue,enlarge"));
 // Remove entry
 wordList.remove("Abstemious");
 System.out.print("\nAfter modifications:");
 printList();
 }

 static private void printList() {
 System.out.println("\nAll Entries:");
 for (Map.Entry<String, Word> entry : wordList.entrySet()) {
 String key = entry.getKey();
 Word value = entry.getValue();
 System.out.println("key=" + key + ", value=" + value);
 }
 }

 private static class Word {

 private String type;
 private String synonym;
 private String antonym;

 public String getAntonym() {
 return antonym;
 }

Chapter 16: Collections 429

 public String getSynonym() {
 return synonym;
 }

 public String getType() {
 return type;
 }

 public Word(String type, String synonym, String antonym) {
 this.type = type;
 this.synonym = synonym;
 this.antonym = antonym;
 }

 @Override
 public String toString() {
 return "[" + type + "; " + synonym + "; " + antonym + "]";
 }
 }
}

In the declaration, we first create an instance of the HashMap class:

static Map<String, Word> wordList = new HashMap<>();

The HashMap class uses two generic parameters. We set the first parameter to the type String
and the second parameter to the type Word, which is a user-defined class (discussed later). In the
main method, we add a few entries to the map, as follows:

wordList.put("Abate", new Word("verb", "subside",
 "alienate,increase,extend,amplify,continue,enlarge"));
...

The first parameter to the put method is the key, and the second parameter is its value,
which in this case is an instance of the Word class. Note that the Word constructor requires
three parameters—the first parameter specifies the type of word, the second parameter specifies
synonyms, and the third parameter specifies antonyms. After building the list, we print the entire
list by calling the printList method (discussed later). To look up an entry in the list, we call the
get method:

// Look up a value
System.out.println("\nValue for abscond " + wordList.get("Abscond"));

The key to search for becomes the parameter to the get method. On return, it gives the value
stored in the map. This value is printed by using the overridden toString method of the Word class.

To modify an entry, we simply call the put method with the desired key and the new value.
This will replace the value for the existing key:

// Modify an entry
wordList.put("Abate", new Word("verb", "subside,moderate",
 "alienate,increase,extend,amplify,continue,enlarge"));

430 Java Programming

To remove an entry from the list, we call the remove method with the desired key as its
parameter:

// Remove entry
wordList.remove("Abstemious");

The implementation of the printList method is very straightforward. We use the for-each loop
to iterate the list. For each entry, we use the getter methods to retrieve the key and its value and
then print them to the terminal using SOP:

for (Map.Entry<String, Word> entry : wordList.entrySet()) {
 String key = entry.getKey();
 Word value = entry.getValue();
 System.out.println("key=" + key + ", value=" + value);
}

The Word class declaration is very straightforward. It contains three class variables, with the
corresponding getter methods and a constructor to initialize these variables at the time of
construction. The overridden toString method provides the formatted output of the three fields.

Algorithms
The Collections class in the framework provides implementations of several useful algorithms.
These are polymorphic and therefore can be applied to any type of collection. This class provides
many popular algorithms, such as binary search, sort, shuffle, max, min, frequency, and so on.
These algorithms are defined as static methods of the Collections class.

We’ll cover the use of some of these algorithms with the help of a program. We will first
create a set of 100 random numbers as sample data for our program. We will sort these numbers
based on their natural ordering by calling the built-in sort algorithm. We will then apply a binary
search algorithm to locate a particular test number. We will also find the largest and the smallest
number in the set. Then, we will determine the frequency of occurrence of a certain test number
by using the provided frequency algorithm. We will then proceed to find the number of distinct
elements by creating a sorted HashSet. We shuffle this newly created set and sort it in ascending
order to determine top 10 picks. Isn’t this exciting? The program given in Listing 16-6 teaches you
all these techniques.

Listing 16-6 Demonstrating the Power of Built-in Collection Algorithms

import java.util.*;

public class CollectionAlgorithms {

 public static void main(String[] args) {
 List<Integer> list = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 list.add((int) (Math.random() * 100));
 }
 Collections.sort(list);
 System.out.println("Sorted Array: " + list);

Chapter 16: Collections 431

 int testNumber = 10;
 int index = Collections.binarySearch(list, testNumber);
 if (index >= 0) {
 System.out.println("Number " + testNumber
 + " found at index: " + index);
 } else {
 System.out.println("Number " + testNumber + " not found");
 }
 System.out.println("Max number: " + Collections.max(list));
 System.out.println("Min number: " + Collections.min(list));
 System.out.println("Frequency of " + testNumber + ": "
 + Collections.frequency(list, testNumber));
 Set<Integer> sortedList = new HashSet<>();
 sortedList.addAll(list);
 System.out.println("Number of distinct elements: " + sortedList.size());
 list.clear();
 list.addAll(sortedList);
 Collections.shuffle(list);
 List<Integer> topTenList = list.subList(0, 10);
 Collections.sort(topTenList);
 System.out.println("Top 10: " + topTenList);
 }
}

To demonstrate the use of algorithms, we first create an array of integers:

List<Integer> list = new ArrayList<>();

We fill this array with 100 random numbers in the range 0 to 99:

for (int i = 0; i < 100; i++) {
 list.add((int) (Math.random() * 100));
}

We then sort the contents of this array by calling the sort method of the Collections class:

Collections.sort(list);

The sort method stores back the result in the same array. We print this array to verify the sorting:

System.out.println("Sorted Array: " + list);

Next, we perform a binary search on this sorted array to locate a desired number:

int index = Collections.binarySearch(list, testNumber);

The binarySearch method takes two arguments: The first argument specifies the list on which a
search is to be performed, and the second argument specifies the search element. On completion,
it returns the index at which the specified number is found. If the search element is not found, it
returns a negative number.

432 Java Programming

To determine the largest number in the array, we use the max method:

System.out.println("Max number: " + Collections.max(list));

Likewise, to determine the smallest number, we use the min method. Both methods take the
list to be searched as the argument.

To determine the frequency of occurrence of a certain number in the list, we use the frequency
method:

Collections.frequency(list, testNumber));

The first parameter to the frequency method is the list to be searched, and the second argument
is the search element.

Next, we create a set of distinct elements from our set. For this, we use the HashSet class:

Set<Integer> sortedList = new HashSet<>();

We add all the elements of our list into this new set by calling the addAll method:

sortedList.addAll(list);

The addAll method adds only the distinct elements to the set. We determine and print the size
of this set by calling its size method:

sortedList.size());

Next, we shuffle the elements of this set and list the top 10 numbers from the shuffled set as the
winners. For this, we use the shuffle method. Because the shuffle works only on the List interface,
we need to copy the elements of our set into a list. We first clear the existing contents of the list by
calling its clear method and then add all the elements of the set into it:

list.clear();
list.addAll(sortedList);

The shuffle method now shuffles the contents of the modified list:

Collections.shuffle(list);

To pick the top 10 numbers from this new list, we call the subList method. The first parameter
specifies the start index and the second parameter specifies the end index for the sublist:

List<Integer> topTenList = list.subList(0, 10);

We now sort this new set and print it to the user console as a set of top 10:

Collections.sort(topTenList);
System.out.println("Top 10: " + topTenList);

Chapter 16: Collections 433

When we run the program, typical output would be as follows:

Sorted Array: [0, 1, 2, 2, 3, 4, 5, 5, 6, 9, 11, 11, 12, 12, 13, 14, 14, 16,
16, 17, 17, 17, 18, 19, 19, 22, 24, 25, 25, 27, 29, 29, 30, 30, 31, 33, 36,
40, 40, 41, 41, 42, 43, 44, 45, 48, 48, 50, 50, 51, 52, 52, 53, 55, 55, 55,
56, 57, 57, 58, 58, 59, 60, 62, 63, 64, 65, 65, 66, 66, 67, 67, 68, 68, 68,
68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 80, 82, 84, 85, 87, 88, 89, 90, 91,
93, 94, 94, 97, 98, 99]
Number 10 not found
Max number: 99
Min number: 0
Frequency of 10: 0
Number of distinct elements: 71
Top 10: [1, 4, 17, 41, 52, 62, 64, 72, 75, 84]

This simple example demonstrates the power of just a few algorithms. The Collections class
provides several more of them. You are encouraged to go through the documentation to learn
more about these algorithms.

TIP
The Collections framework also makes it easy to write your own
custom algorithms that can operate on a generic collection.

Summary
In this chapter, you studied Java’s Collections framework. The framework defines interfaces,
implementation classes, and algorithms that operate polymorphically on various collection classes.
The interfaces provide a unified look to the various collection implementations. The classes
provide the implementations of several popular data structures. You studied the use of lists, sets,
queues, and maps. The Collections class in the framework provides implementations of several
useful algorithms as the static methods of the class. These algorithms work polymorphically on
the collection classes and therefore can be applied to them easily without considering the data
type they operate upon. The Collections framework also makes it viable for you to develop custom
algorithms that operate polymorphically on various collection classes.

The next three chapters cover another very important feature of Java language programming—
threads. As you might have guessed, thread programming is a vast subject.

Chapter
17

Threads

435

436 Java Programming

or many of you, the concept of threads might not be a new one. Many popular
languages support threading, either inherently or through the use of external
libraries. In spite of this, it is possible that you might not have used threads at all—
most of the time, when you write a program, creating threads is not a general
requirement. What’s more, writing multithreaded code is hard and debugging such

code makes it worse. So do we really need to care about learning threads? Yes, we do. The
programs you studied so far in the book have been trivial, focusing on a certain Java language
feature. In real-life applications, it is hard to find a Java program that does not use threading. In
fact, Java developers considered threading to be so important that the threading libraries were
introduced from the beginning in JDK 1.0.

Let’s discuss why we should use threading. Multithreaded code can provide a huge speed
boost, especially when it runs on modern computers containing multiple CPUs and cores.
Consider a simple application that sums up an enormous list of numbers. Splitting the summing
process in two halves (or, even better, multiple parts) and assigning each half to an independent
person would obviously speed up the entire computation. When each person finishes his totaling,
the ultimate sum may be computed by adding the partial results. And that is what we do in a
parallel program. A task that can be split into parts is divided and executed on multiple CPUs, and
those parts are run in parallel, thus increasing the program throughput substantially. Summing a
large set of numbers is just one example where the parallelism of an algorithm can be exploited;
in many other situations in real life such parallelism can be observed. Consider the case of a stock
exchange, where multiple trades occur simultaneously on the exchange in real time. All such
trades are executed using the same algorithm. Without threads, it would be impossible to meet the
demands traders place on these exchanges. We discuss many applications in the securities domain
(and other domains) in this and the next two chapters to demonstrate the power of threading.

NOTe
Not all applications benefit from multiple threads, and some cannot
be multithreaded.

Even if your machine does not contain a multiple-core CPU, there are reasons for using threads
in your applications. Consider a simple file-copy program. While copying a file, the user will want
the ability to cancel the copying process at any time. This can be implemented by creating a
separate thread that continually monitors user input sources, such as the keyboard and mouse, and
that can cause an interruption in the copy process whenever a user request to do so is detected.
These two threads may not truly run in parallel if only one core is available in the machine. In
such cases, the operating system pretends to run multiple threads at the same time by time-slicing
the CPU—that is, constantly switching between the two threads. This gives the illusion to the user
of doing two things at the same time.

These days, multicore machines have become so common that it is hard to find a single-core
machine in today’s market. Parallel programming has become important in exploiting the power of
these machines. Java SE 8 and 9 help you parallelize your program code with many new language/
API additions.

Thread programming is a complex topic. Fortunately, Java provides many simple constructs
to create and use threads. In fact, many features of the threading system are built into the core
language itself. As stated earlier, threading support has been available since JDK 1.0. The J2SE 5.0
introduced a concurrency framework that makes it easier to create concurrent programs that support

F

Chapter 17: Threads 437

parallelism and share data among multiple threads. Java SE 7 made further enhancements by
supporting fine-grained parallelism in algorithms. In this and the next two chapters, you learn
many techniques for creating threaded applications and exploiting the full potential of modern
multicore machines. So let’s begin by discussing what a thread is and then a few basics of thread
programming in this chapter.

In particular, you will learn the following in this chapter:

What a thread is■■

The types of threads ■

Thread priorities ■

Thread scheduling ■

Creating threads ■

The static methods of ■ Thread class

Essential operations on threads ■

Thread synchronizations ■

Object locks ■

The deadlocks■■

Processes and Threads
Before we delve into programming, let’s first go over what a thread is. You have heard about
processes in operating systems. So what is a process? When an application is loaded in memory
and made ready to run, we say that a process is created.

A multitasking operating system creates several processes and runs them on multiple CPUs or
the cores of a single CPU. In the rare situation that you have a single-core CPU in your box, the
OS will switch the CPU between these processes, giving you the illusion of concurrently running
processes. Processes are usually large and can be further split into smaller units of execution.
For example, a spreadsheet application may allow the user to interact with it while it performs
calculations in the background. A word processing application might perform a background spell
check while the user edits the document. To implement these kinds of features, the developer
splits the process into two units—one that is responsible for calculations and the other for handling
user interactions. Such units of execution are called threads. The application developer may
create multiple threads by partitioning the application into a number of logical units and creating
a thread for each. In some situations, this can dramatically improve application performance and
user responsiveness, thus providing a rich experience to its users.

The life cycle of all the threads created in your application is managed by the operating
system. The operating system periodically allocates the available cores to waiting threads so
that each one gets a chance to execute its code. Such allocation may be on a simple round-
robin basis or may use a more sophisticated algorithm. The same way the operating system
assigns the CPU to a thread, it also has the privilege of taking away the CPU from a running
thread. Scheduling threads while ensuring that no thread is starved for CPU time forever itself
becomes a highly complex algorithm to implement; fortunately, we do not have to bother with
this—the operating system developers have taken care of it for us.

A thread undergoes several stages during its entire life cycle, as detailed next.

438 Java Programming

Thread States
The operating system (OS) maintains a queue of “ready-to-run” threads. A newly created thread is
added at the bottom of this queue. The OS picks up a thread from the top of the queue and
allocates the CPU to it within a fixed slice of time. After this time slice is over, the thread is returned
to the bottom of the queue and the next waiting thread at the top of the queue is allocated to the
CPU. This process continues forever, and each thread gets its own turn periodically. The different
states of a thread are depicted in Figure 17-1.

Eventually, a thread may finish its job. Such a thread will be put into the dead state. A thread
that’s dead cannot be restarted and should be garbage-collected. What happens when you try to
restart a dead thread is explained later in this chapter.

A thread may voluntarily block itself. This happens when a thread is waiting for some I/O
operation to occur, or it could simply be generous enough to yield control to another waiting
thread. A thread may go to sleep for a specified amount of time and enter a Blocked state.
A blocked thread will wake up after a specified amount of time and/or when the external
operation on which it has been waiting is completed. The OS wakes up these sleeping threads.
A thread that is woken up will not be allocated the CPU immediately. Instead, it will be returned
to the bottom of the Ready to Run queue and will eventually be allocated to the CPU.

As stated previously, a thread might need to wait for some external event to occur. For example,
a thread might need to wait for some other thread to complete its job before proceeding with its
own program code. The OS maintains a queue of threads waiting on other objects. When the object
the thread is waiting on is ready, it signals the waiting thread. The waiting thread will then be
brought into the queue of ready-to-run threads, where eventually it will receive the CPU cycles.
Note that more than one thread could be waiting on the same object. In this case, a notification is
sent to all such waiting threads.

FIGure 17-1. Thread states

Wait

Dead

Ready to Run
Thread Queue

1

2

3

4

5

Running

Blocked

Chapter 17: Threads 439

Having seen how an OS implements threading, let’s look at how the JVM implements it.
To understand the different implementations of the JVM on different platforms, first you need
to know what a thread priority is and how threads are scheduled for execution.

Thread Priorities
With several threads running on a system, you may want to prioritize their execution. You do so
by assigning a priority level to each thread. In Java, the thread priority levels range from 1 to 10.
The priority 0 is reserved for the virtual machine. Java also provides a few predefined constants
for setting the thread priority. MAX_PrIOrITY designates the top priority of 10, MIN_PrIOrITY
designates the minimum priority of 1, and NOrM_PrIOrITY specifies the normal priority of 5.
A thread with a higher priority gets the CPU first. The OS maintains a separate queue for all
threads belonging to each priority level (refer to Figure 17-2).

Because threads with the higher priority level get the CPU first, this implies that a thread with a
lower priority will starve for CPU cycles forever if the higher-priority threads never finish. However,
this is not exactly true. The OS periodically raises the priority of these “starving” threads until they
reach the currently executing thread priority level. At this level, each thread will eventually get its
time slice. After the time slice is over, the thread will be returned to the queue of its original priority.

FIGure 17-2. Thread priority queues

0MAX_PRIORITY 0 0 0 0 0 0 0 0 0

0NORM_PRIORITY 0 0 0 0 0 0 0 X X

0 Gets CPU first0 0 0 0 0 X X X X

0

MIN_PRIORITY

Notation:
X – Waiting thread
0 – Empty slot

0 0 0 0 0 0 X X X

0

Gets CPU only when
threads do not exist
in upper queues

0 0 0 0 0 0 0 0 0

440 Java Programming

CAuTION
The thread scheduling described here is generic. A JVM vendor may
implement a different scheduling policy than the one described
here, most likely to take advantage of the underlying platform’s
implementation, as you will see in the section that follows.

Next, we briefly look at preemptive and nonpreemptive scheduling.

Thread Scheduling
The two strategies for scheduling threads on the CPU are preemptive and nonpreemptive scheduling.
In case of preemptive scheduling, a thread with a higher priority (the moment it is created or acquires
a higher priority) will preempt the running thread and acquire the CPU for execution. A preemptive
scheduling scheme may also use time slicing, whereby threads at the same priority level will be
allocated the CPU for a maximum of a certain fixed time interval. Windows NT is an example of
a preemptive OS.

In case of nonpreemptive scheduling, a running thread continues using CPU cycles even if a
thread with a higher priority exists. Thus, a running thread may be required to relinquish the CPU
voluntarily so that other threads get a chance to execute. In this scheme, a badly written program
can lock up your OS (a system hang-up). Nonpreemptive scheduling may also be time-sliced,
where the user may decide the amount of time for the slice. For example, Windows 3.1 is a
nonpreemptive OS, where the user can switch from one application to another by making the
desired application active. Thus, the user decides the length of time for which the CPU is allocated
to a running application. The active application continues using the CPU until the user makes it
inactive by switching to another application.

A JVM may derive its functionality of thread scheduling from the underlying OS. Therefore,
you should be careful when coding threads in Java because the application behavior may change
depending on the underlying platform.

JVM Threading Implementations
Each JVM has its own implementation of the threading model, depending on its vendor and the
platform for which it is written. While implementing a threading model, it may exploit the features
provided by the underlying platform or it may have its own model that is not based on the model
implemented by the underlying platform. We will now look at some of the JVM implementations
on several popular platforms. Java is a platform-independent language, so studying the different
implementations of JVMs is mainly unimportant to a developer. However, in a few cases,
understanding these variations in implementation details do matter, as you will see shortly.

Green Threads
The most common threading model is the simple green thread model. In this model, each thread is
an abstraction within the virtual machine; the OS does not know anything about the threads that
exist in the JVM. Thus, from the OS perspective, the JVM is a single process and a single thread.
It means that whenever a JVM creates a thread, it must hold all information related to the thread
within the thread object itself. Such information includes the thread’s stack, a program counter
to track the currently executing instruction, and other bookkeeping data. The VM also becomes
responsible for context switching and the entire life cycle (discussed previously). As far as the OS
is concerned, it is executing a single thread of execution of JVM code and whatever code switching
is happening inside the JVM is unknown to it. These types of threads are also called user-level threads

Chapter 17: Threads 441

because they exist only within the user level of the OS. In the early days of Java, this green thread
model was fairly common.

NOTe
Most operating systems are logically divided into two parts: user level
and system level. The OS kernel runs at the system level, and the user
applications run at the user level. To use the OS services, the program
transits from the user level to the system level. After the service is
provided, the OS switches from system to user level, restricting
privileges to a running program.

Windows Implementation
The native threading model in 32-bit Windows uses a one-to-one mapping between Java threads
and operating system threads. Because Windows provides only seven priority levels, there is some
overlap when Java’s 11 distinct priority levels are mapped to the Windows levels. These mappings
vary among the different implementations of the JVM on the same Windows platform. Therefore,
your program may exhibit slightly different behavior on JVMs provided by different vendors. The
scheduling of Java threads is now subject to the underlying scheduling of OS threads.

The actual Windows thread scheduler is more complex than the simple priority-based
scheduler described earlier. It uses a complex priority calculation, taking into consideration how
recently a thread has run. The actual priority is the difference between the assigned priority and a
value that indicates the elapsed time since the last run. This value is continually adjusted so that
the thread will acquire a CPU eventually at some point in time. A thread that has not run for a
very long time gets a temporary priority boost, thus preventing threads from absolute starvation
and at the same time giving preference to a higher-priority thread over a lower-priority one.
Likewise, threads that have a keyboard or mouse focus are given a priority boost. This complex
mechanism of actual priority computation results in an unpredictable order of thread execution,
but at the same time ensures that threads do not starve.

Solaris Implementation
The older Solaris 7 had system-level lightweight processes (known as LWPs) in addition to user-
level threads. Java threads were considered equivalent to user-level threads and there was an
M-to-N mapping between these user-level threads and LWPs. Developers were allowed to
influence the priorities of these user-level threads and not those of LWPs. In Solaris 9, there is a
one-to-one mapping quite similar to Windows; however, the implementation as compared to the
Windows implementation is quite different. Solaris 8 supported both models and allowed the user
to make a selection. The CPU-intensive Java programs perform better with the one-to-one
mapping model and therefore you may find that certain Java applications run faster on Solaris 9
than Solaris 7. Like Windows, Solaris uses a complex priority calculation, ensuring that all threads
get an adequate amount of CPU time without starving for a long period of time. In Solaris, there
are 60 different runnable priorities and 128 application-level priorities. In Java versions up to
J2SE 1.4 (inclusive), priorities were mapped to the full range of 0 to 127. The default priority was
therefore in the middle of this range, whereas the default priority for a C/C++ program was 127.
Therefore, when a CPU-intensive C program was run along with a CPU-intensive Java program, the
Java program was always at a disadvantage. In J2SE 5.0, this was taken care of and now all Java
threads with a priority of NOrM_PrIOrITY or higher are mapped to the 127 level.

442 Java Programming

Linux Implementation
Prior to J2SE 1.3, the virtual machines on the Linux platform mostly used the green thread model,
with only a few using the native threads. The Linux kernel back then did not support a large
number of concurrent threads. J2SE 1.3 added support for native threads; however, the kernel still
did not provide optimal support for threaded applications. The new kernels use the Native POSIX
Thread Library. This library provides a one-to-one mapping between Java and kernel threads as
well as complex priority calculations similar to other operating systems. J2SE 1.4.2 is the first
version to support this new kernel.

One last term we should discuss before digging into code is the daemon thread.

Daemon Versus Non-Daemon Threads
There are two types of threads in Java:

Daemon threads■■

Non-daemon (user) threads■■

A daemon thread terminates automatically as soon as the parent thread that created this thread
terminates. A non-daemon thread, however, continues to live even when the parent dies. As long
as there is at least one thread alive, we say that the process is alive. When all non-daemon threads
along with the remaining daemon threads of an application die, we say that the process is dead.
Every Java application has at least one non-daemon thread, which is the main thread. When the
program quits this thread or the user closes the application, the main thread dies. However, the
process can continue to live if it has already spawned other non-daemon threads. You will learn
how to create both types of threads in the sections that follow.

Creating Threads
Java implements thread functionality by using the following classes/interfaces:

The interface ■■ runnable

The class ■ Thread

The class ■■ ThreadGroup

To create threads in your Java program, you need to implement the runnable interface in your
Java class. As a part of the interface implementation, you provide the implementation of the run
method. In the run method, you program the desired functionality for your thread:

class WorkerThread implements Runnable {

 public void run() {
 ...
 }
}

After creating this thread class, you need to create its instance of the Thread class and pass an
object of the preceding class as a parameter to the Thread class constructor. This is done as follows:

Thread t = new Thread (new WorkerThread());

Chapter 17: Threads 443

The created thread executes the run method defined in the WorkerThread class. When the
run method completes its execution, the thread becomes dead and cannot be rescheduled for
another run.

Alternatively, you can create a thread by subclassing the Thread class:

class WorkerThread extends Thread {

 public void run() {
 ...
 }
}

In this case, you are overriding the run method to implement your own desired functionality.
Once your thread class is created, some other thread will need to instantiate it and invoke its
start method. The following code snippet illustrates how to achieve this:

Thread t = new WorkerThread();
t.start();

When you start the thread, this does not mean it gets the CPU immediately. Rather, it is put
in the Ready to Run queue, discussed earlier, where eventually it will receive a CPU time slice
for execution.

TIP
Implementing Runnable is considered an object-oriented approach
and is recommended over the technique of subclassing the Thread
class. Also, if your class is already extending some other class, you
will not be allowed to extend from Thread class simultaneously.

The ThreadGroup class allows you to group all logically related threads into a single group,
whereby you will be able to apply simultaneous changes to all such threads belonging to a single
group. For example, you can raise the priorities of all threads belonging to a certain group to the
maximum priority by calling the setMaxPriority method on the group object. You can mark all
threads within a group as “daemon” or “non-daemon” by calling its setDaemon method. A group
of threads responsible for printing documents can be sent a simultaneous notification for aborting
printing. By default, all threads you create belong to the same group. However, it is possible to
create additional groups of your own and add newly created threads to them. A thread group may
contain other thread groups. Thus, you can build a tree hierarchy for your threads.

TIP
J2SE 5.0 introduced better features for operating on a collection of
threads, making the use of a thread group somewhat redundant.

Creating Your First Threaded Application
The application we develop in this section draws two superimposed sine waves on the
application screen. These waves are animated and keep moving to the right as the time
progresses. The application interface is shown in Figure 17-3.

444 Java Programming

To create the animation, we create two threads: One thread draws a vertical line whose end
coordinates are the points on a sine wave, and the other thread periodically calls the repaint
method on the first thread to redraw the line. Before redrawing the line, however, it makes sure
the line is shifted in the x-direction by a fixed amount. This gives the effect of a moving sine
wave from left to right. To make things more dramatic, the equations for computing the top and
bottom y-coordinates of the line are kept different by using different sine wave frequencies in the
two calculations. You may want to run the application first for a better understanding of how it
works. The entire program code is given in Listing 17-1, followed by its explanation.

Listing 17-1 A Threaded Sine Wave Animator

import java.awt.*;
import javax.swing.JFrame;

public class SineWaveAnimator extends JFrame implements Runnable {

 private int frame = 0;

 public SineWaveAnimator() {
 setTitle("Sine Wave Animator");
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500, 200);
 setVisible(true);
 }

 public static void main(String[] args) {
 SineWaveAnimator app = new SineWaveAnimator();
 Thread animator = new Thread(app);
 animator.setDaemon(true);
 animator.start();
 }

 public void run() {
 while (true) {
 repaint();

FIGure 17-3. Output of a threaded sine wave animator

Chapter 17: Threads 445

 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 frame++;
 }
 }

 @Override
 public void paint(Graphics g) {
 Rectangle d = getBounds();
 g.clearRect(0, 0, d.width, d.height);
 int h = d.height / 2;
 for (int x = 0; x < d.width; x++) {
 int y1 = (int) ((1.0 + Math.sin((x - frame) * 0.09)) * h);
 int y2 = (int) ((1.0 + Math.sin((x + frame) * 0.01)) * h);
 g.drawLine(x, y1, x, y2);
 }
 }
}

The SineWaveAnimator is our main class and extends its functionality from JFrame. It also
implements the runnable interface. Thus, it will need to implement the run method:

public class SineWaveAnimator extends JFrame implements Runnable {

The instance of this class will be submitted to the Thread class constructor; the object of
Thread class will execute the run method of this class. Before discussing the implementation of
the run method, let’s look at the code in the main method. In the main method, we create a new
thread by calling the Thread class constructor, as follows:

Thread animator = new Thread(app);

The constructor receives the instance of our main application class as a parameter. We mark
this thread as a daemon thread so that it gets cleaned up whenever its parent thread dies:

animator.setDaemon(true);

To start the thread, we call its start method:

animator.start();

The start method puts the created thread in the Ready to Run queue discussed earlier. Thus,
at this stage, we have two application threads—one is the main thread that was started as a part
of the application startup, and the second is the animator thread we created in the main method.
Now, let’s look at the implementation of the run method.

The run method simply keeps on calling the repaint method in an infinite loop:

while (true) {
 repaint();

446 Java Programming

So that the second thread has an opportunity to run, it puts itself to sleep for a specified amount
of time in the same while loop:

try {
 Thread.sleep(100);
} catch (InterruptedException e) {
}
frame++;

The sleep method takes a parameter that specifies the number of milliseconds for which the
thread should sleep. During this sleep time, the thread is put into the blocked state. After the sleep
time is over, the JVM will awaken the thread and put it in the Ready to Run queue. Thus, the
thread will not get the CPU for a guaranteed minimum period of 100 milliseconds in our case.
Note that usually it takes longer than 100 milliseconds to get the CPU due to other threads waiting
in the queue. Whenever it gets the CPU, the thread continues with its rest of the work (which is
incrementing the frame number) in our infinite for loop and again goes to sleep when it encounters
another call to the sleep method.

Note that the Thread.sleep method is enclosed in a try-catch block. This is a checked
exception that must be caught or re-thrown. A sleeping thread may be interrupted from its sleep
and awakened by another thread. Thus, a thread may receive a CPU time slice earlier than its
sleeping period of 10 milliseconds provided some other thread interrupts it. You learn about this
interrupt processing and exception handling during interruptions in the sections that follow.

In the exception handler, we do nothing and proceed with another iteration of the while loop.
Before starting another iteration, we increment the frame counter, which moves the x-position of
the sine wave during its painting.

Finally, in the paint method, which gets called whenever we call the frame’s repaint method,
we draw a vertical line. We first obtain the dimensions of the drawing area by calling the getBounds
method on the container:

Rectangle d = getBounds();

We clear this area on every repaint operation to erase the previously drawn line by calling
the clearrect method of the Graphics context:

g.clearRect(0, 0, d.width, d.height);

We now draw a series of vertical lines throughout the width of the container by using a for loop:

for (int x = 0; x < d.width; x++) {

The top coordinate of the desired line is computed using the following statement, which uses
the sine function:

int y1 = (int) ((1.0 + Math.sin((x - frame) * 0.09)) * h);

Likewise, the bottom coordinate is computed using the following statement:

int y2 = (int) ((1.0 + Math.sin((x + frame) * 0.01)) * h);

Chapter 17: Threads 447

The constants 0.09 and 0.01 in these equations decide the sine wave frequencies. Finally, the
vertical line is drawn between the two computed coordinates via a call to the drawLine method
of the Graphics class:

g.drawLine(x, y1, x, y2);

Note that we keep the same x-value for the two end coordinates so as to draw a vertical line.
When you run the program, two threads will be running. One thread draws the vertical lines

throughout the container width, and the second thread periodically keeps on shifting the position
of these lines to the right, thus giving an illusion of a moving sine wave.

Creating Non-Daemon Threads
The program we just discussed terminates properly, cleaning all the spawned threads. This is
because the animator thread we created in the program was a daemon thread and therefore
was terminated when the main thread died as a result of closing the application.

TIP
When code running in some thread creates a new Thread object,
the new thread becomes a daemon thread if and only if the creating
thread is a daemon. Also, the initial priority of the created thread
equals the priority of the creating thread.

To help you better understand the implications of creating non-daemon threads in your
programs, we will discuss another threaded application. We will write a thread class that
generates and displays a list of prime numbers to the user console. The application thread will
create an instance of this thread class and set it to run along with itself. We will study the two
cases of when this worker thread is marked “daemon” and “non-daemon,” respectively. Look at
the code in Listing 17-2.

Listing 17-2 Prime Number Generator in a Non-Daemon Thread

public class PrimeNumberGenerator {

 public static void main(String[] args) {
 Thread primeNumberGenerator = new Thread(new WorkerThread());
 primeNumberGenerator.setDaemon(true);
 primeNumberGenerator.start();
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 }
 }
}

class WorkerThread implements Runnable {

 public void run() {
 long i = 1;
 while (true) {

448 Java Programming

 long j;
 for (j = 2; j < i; j++) {
 long n = i % j;
 if (n == 0) {
 break;
 }
 }
 if (i == j) {
 System.out.print(" " + i);
 }
 i++;
 }
 }
}

We create a class called WorkerThread that implements runnable. In the run method, we
generate prime numbers and print each generated number to the user console. (Note that we won’t
go into the details of the algorithm for prime number generation here.) In the main method of the
application class, we create a Thread instance by passing the WorkerThread object in its constructor:

Thread primeNumberGenerator = new Thread(new WorkerThread());

We mark this instance as “daemon.”

CAuTION
The thread instance must be marked “daemon” or “non-daemon”
before it is started; otherwise, it acquires its default state depending
on the state of its creator. A thread created on a user thread becomes
non-daemon by default. Therefore, in the preceding code, we have
explicitly called setDaemon to mark the created thread as daemon.

Next, we schedule the created thread to run by calling its start method. We then put the
current thread to sleep for 10 milliseconds, giving the worker thread an opportunity to run.

Run the application and observe its output. You will see a list of prime numbers on the console.
Every time you run the application, the last generated number varies, indicating that the worker
thread is getting a different amount of CPU time on each run. Now modify the parameter to the
setDaemon method by setting it to false. Run the application and you will find that the random-
number-generation process never stops indicating that the worker thread continues to run even
though the main thread has died after a while. Thus, a non-daemon thread continues to run even
when its creator is dead. To terminate the application, you need to kill the process by pressing
ctrl-c (on Windows) or the appropriate key combination according to your operating system.

CAuTION
In a nonpreemptive OS (which is difficult to find these days because
most are now preemptive), there may be a difference in the execution
of the preceding code depending on how the native thread or threads
that make up the Java process are affected by the competing priorities
of other processes on the OS.

Chapter 17: Threads 449

Now that you understand how to create threaded programs, let’s look at a few details of Thread
class, such as its constructors and the various static methods it provides.

Thread Class Constructors
As mentioned earlier, there are two ways to create a thread in your application. One is to
implement the runnable interface, and the other is to extend your class from the Thread class.
This is possible because the Thread class itself implements the runnable interface, and that is
why you could create a class extending a Thread class to create threads. The Thread class is
defined as follows:

public class Thread extends Object implements Runnable

Thus, to create a thread, you would extend your class from a Thread class and override its
default run method implementation. Another way of creating threads, as you know, is to implement
a runnable interface in your class. You then pass an instance of this runnable object to the Thread
class constructor. You have already used this technique in the previous examples.

Besides the constructor that takes a runnable instance as a parameter, the Thread class defines
several more constructors that accept the two more types of parameters and their combinations.
The two other types of parameters are the String that specifies the name for the created thread
and the ThreadGroup that specifies the group to which the created thread will be added. A thread
may be referred to later in the code by its assigned name after it is created. As mentioned earlier,
you will use the ThreadGroup to group the threads for performing certain common operations on
them collectively.

Static Methods of Thread
The Thread class defines several static methods. As you are aware, the static methods can be
invoked without creating an instance of the class. We will discuss a few frequently used static
methods.

The activeCount method returns the number of active threads in the current thread’s thread group.
For example, if you add the following statement in the main method of your PrimeNumberGenerator
class, discussed earlier, you will get the number of active threads in the current thread group
along with its name printed to the console:

System.out.printf("Number of active threads in the %s group equals %d%n",
 primeNumberGenerator.getThreadGroup().getName(), Thread.activeCount());

The preceding statement generates the following output on the console:

Number of active threads in the main group equals 2

Note that the getThreadGroup method is not a class method and therefore requires an instance
to operate upon.

TIP
You can obtain a reference to the instance of the currently running
thread by calling the Thread.currentThread method.

The getName method returns the name of the ThreadGroup on which it is invoked.

450 Java Programming

The yield method yields the control of execution to another waiting thread at the same priority.
The sleep method voluntarily puts the current thread to sleep for the specified amount of time. The
time may be specified as a number of milliseconds or a number of milliseconds plus a number
of nanoseconds.

The enumerate method returns the details on each thread belonging to the current thread
group and its subgroups. Add the following code fragment to the main method of the
PrimeNumberGenerator class:

Thread[] threads = new Thread[Thread.activeCount()];
Thread.enumerate(threads);
for (Thread t : threads) {
 System.out.printf("%s\tpriority:%d%n", t.getName(), t.getPriority());
}

Run the program and you will get the following output:

main priority:5
Thread-1 priority:5

The two threads in the main thread group are named main and Thread-1; both have a priority
level of 5, which is the normal priority.

Finally, the currentThread static method returns a reference to the currently executing thread
object. Other static methods are defined in the Thread class, which you should look up in the
documentation. We discuss some of the remaining ones, when required, in the remainder of this
chapter. Next, we focus on some of the essential and common operations on a thread.

Some essential Operations on Thread
Once a thread object is created, you can carry out many different operations on it, as listed here:

Setting the Daemon/Non-daemon property■■

Starting/stopping a thread ■

Suspending/resuming a thread ■

Yielding to other threads ■

Changing priorities ■

Waiting on other objects ■

Interrupting threads ■

Joining to another thread■■

We will now discuss each of these operations in the following sections.

Setting the Daemon Property
A thread object may be marked as “daemon” or “non-daemon” by calling its setDaemon method.
We used this operation in some of our earlier code.

Starting the Thread
Calling its start method starts a thread object and schedules the thread for execution. The created
thread will execute the run method of the runnable object. It is illegal to call a start method more

Chapter 17: Threads 451

than once. If you do so on a thread that is still executing its code defined in the run method, the
JVM will throw an IllegalThreadStateexception. When the run method runs to completion, we say
that the thread is dead. You should not call the start method on a dead thread. If you do so, no
exception is thrown to you. The JVM detects that the thread is dead and does not call its run
method. Interestingly, calling the isAlive method after invoking the start method on a dead thread
returns true. However, be assured that the run method will never be executed again. If your
Thread class defines methods in addition to its mandatory run method, you will be able to invoke
these methods on a thread object that is dead. This means that the object of a dead thread is not
removed from the system and is available to you as any other object.

 Stop, Suspend, and resume Operations
The stop, suspend, and resume operations mentioned in the preceding task list have been deprecated
since J2SE 1.2. You should refrain from calling the stop, suspend, and resume methods because
they are prone to causing deadlocks (discussed later). Just so you know what these methods are,
a thread may be stopped by calling the stop method, a thread may be suspended by calling the
suspend method, and a suspended thread may be resumed by another running thread by calling
the resume method.

Yielding Control
A thread may voluntarily yield control to another waiting thread by calling the yield method.
Usually a thread awaiting a certain result created by another thread with the same priority will
yield its control. Let’s look at a situation of where you would use yield. The java. NIO2 allows
you to lock a file. Consider a case where multiple threads may be accessing a single file—some
readers and other writers. Both readers and writers will lock the file while accessing it to ensure
data integrity and consistency. Both readers and writers may be running at the same priority level.
Now, a reader who is holding the lock on the file may periodically yield its control to another
contending thread that is waiting to write some new content to the file. This way, the writer
threads are ensured to always get a better opportunity to write the latest news to the file.

TIP
The yield is a hint to the VM that a thread can take a break but is
not done. Unfortunately, Java cannot guarantee deterministically
the scheduling of its threads, so yield is a hint rather than a stronger
requirement. Moreover, the designers did not actually specify whether
this hint allows threads of a lower priority to gain some CPU time,
or just the ones at the same priority (although the latter is how most
implementations have interpreted it). In any event, this is a method
that is not frequently called; it can be used by more advanced
developers when “tuning” an application to see if they can squeeze
out better throughput.

When you call yield, another waiting thread with the same priority as the running thread gets
the CPU. If no waiting thread has the same priority, the control returns to the currently running
thread. Logically, what happens here is that the thread that executes yield remains in the runnable
state, except that it is moved to the bottom of its priority queue. The JVM may now pick up a new
thread for execution from this queue, assuming that no higher priority threads exist at this point
of time. There is no guarantee which thread will be selected for execution. The scheduler may pick
the thread that has yielded control, even though other threads are available at the same priority.

452 Java Programming

Yielding control is just being nice to other threads at the same priority level. It’s a thread’s way of
saying, “I’ve had enough CPU time and want to let others have an opportunity to run; I will run
the rest of my code at a later time. If no other threads can be run, give the CPU back to me and
I will continue with the rest of my code.” This is different from executing the sleep method, where
the thread says, “I do not want to run for n milliseconds. Even if no other thread wants to run,
don’t make me run.”

Setting the Priority
You may change the priority of a thread by calling its setPriority method. We discussed thread
priorities in depth earlier in this chapter.

Waiting on Other Objects
A thread may wait for some object to signal that the object on which it is waiting is now ready to
use by calling the obj.wait() method from the running thread, where obj refers to the object the
current thread wants to wait on. You will learn the use of this method later in this chapter when
we discuss thread synchronization.

Interrupting Threads
You need to learn three important methods to understand interrupts: interrupt, isInterrupted, and
interrupted. A running thread may be interrupted in its work by some other thread or itself. When a
thread is interrupted, it does not mean that the thread will stop whatever it is doing. It’s like patting
your friend on his shoulder—he might ignore your interruption and continue with whatever he was
doing. However, he will remember your patting and might listen to you at a later time. Something
similar happens in the case of threads. A thread has an internal flag that is set to true whenever it is
interrupted. The interrupted method returns the status of this flag. This is a static method and
therefore does not require an object reference. Also, a call to this method clears the flag. Therefore,
if you call this method twice, the second call will always return false, assuming that the thread has
not been interrupted one more time between your two calls to the interrupted method.

When a thread is first created, it has not been interrupted so far; therefore, calling the
interrupted method on it will return false. To interrupt the thread, you call the interrupt
method on it. Thus, if the reference to your thread is animator, you would use the syntax
animator.interrupt() to interrupt it. This sets the interrupt flag in the animator thread. The
thread would continue its work except in special cases when it is sleeping or waiting for an
object, which are explained further. A call to the interrupted method within the thread’s body
would now return true. What happens in those situations where the thread is in sleep mode
(that is, after the thread has executed the Thread.sleep() method) or is waiting on an object
(that is, when it has executed the wait method, which is discussed later in this chapter)? In
these situations, because the thread is in a blocked state, it cannot respond to an interrupt. To
overcome this situation, the designers of Java have made it mandatory to wrap the sleep and
wait commands in a try/catch block and you have to catch the Interruptedexception. That is
why most developers do not provide any code in the Interruptedexception block; in other
words, it is okay not to handle this exception in most of the situations (see the Tip at the very
end of this section for more information). You can just add a comment in this block to explain
to the reader what happens when this exception is raised. For a very detailed explanation on
dealing with Interruptedexception, refer to http://www.ibm.com/developerworks/java/
library/j-jtp05236/index.html.

http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html
http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html

Chapter 17: Threads 453

If the thread is not sleeping or waiting, you may use the interrupted method to check whether
it has been interrupted. The following code fragment shows how to do this:

public void run() {
 while (true) {
 // do your stuff here
 if (Thread.interrupted()) {
 // deal with the interrupt
 }
 // do more stuff
 }
}

Finally, we come to the remaining method, isInterrupted. This method is similar to the
interrupted method in the sense that it returns the status of the interrupt flag. However, this
method is nonstatic and therefore requires an object reference for invocation. Also, a call to
this method does not clear the flag.

We will now demonstrate the use of these methods through a program example. We will
modify our earlier prime number generation program for this purpose. The main thread after
starting the thread that continually generates the prime numbers will wait for keyboard input.
When the user hits the enter key, we interrupt the number generator thread, which on its own
will decide the logical point for stopping and will terminate itself at an appropriate time. We
also create another lazy worker thread in the same application that does not do any work other
than sleep. We will send an interrupt to this thread, which is sleeping, and observe how the
thread is awakened.

NOTe
Running this code from a command prompt will display the generated
prime numbers on the console as the generator thread waits to
be interrupted, which occurs when the user hits the enter key.
NetBeans unfortunately does not update its console until the thread
is interrupted, at which time it dumps all previously generated prime
numbers to the console.

Look at the program in Listing 17-3 for the implementation of these features.

Listing 17-3 Understanding Interrupt Processing in Threads

import java.io.*;

public class ControlledPrimeNumberGenerator {

 public static void main(String[] args) {
 Thread primeNumberGenerator = new Thread(new WorkerThread());
 primeNumberGenerator.start();
 InputStreamReader in = new InputStreamReader(System.in);
 try {
 while (in.read() != '\n') {
 }

454 Java Programming

 } catch (IOException ex) {
 ex.printStackTrace();
 }
 primeNumberGenerator.interrupt();

// uncomment the following lines to introduce a delay
// before checking the interrupt status
// try {
// Thread.sleep(100);
// } catch (InterruptedException ex) {
// }

 if (primeNumberGenerator.isInterrupted()) {
 System.out.println("\nNumber generation has "
 + "already been interrupted");
 } else {
 System.out.println("Number generator "
 + "is not currently running");
 }
 Thread lazyWorker = new Thread(new LazyWorker());
 lazyWorker.start();
 System.out.println("\nRunning lazy worker");
 try {
 Thread.sleep(100);
 } catch (InterruptedException ex) {
 }
 lazyWorker.interrupt();
 }
}

class WorkerThread implements Runnable {

 public void run() {
 long i = 1;
 while (true) {
 long j;
 for (j = 2; j < i; j++) {
 long n = i % j;
 if (n == 0) {
 break;
 }
 }
 if (i == j) {
 System.out.print(" " + i);
 }
 i++;

 if (Thread.interrupted()) {
 System.out.println("\nStopping prime "
 + "number generator");

Chapter 17: Threads 455

 return;
 }
 }
 }
}

class LazyWorker implements Runnable {

 public void run() {
 try {
 Thread.sleep(100000);
 } catch (InterruptedException ex) {
 System.out.println("Lazy worker: " + ex.toString());
 }
 }
}

In the main method, we create a thread that runs the WorkerThread for generating prime
numbers:

Thread primeNumberGenerator = new Thread(new WorkerThread());

We start this thread as usual by calling its start method:

primeNumberGenerator.start();

Next, we wait for the user to press the enter key on the keyboard:

while (in.read() != '\n') {
}

After the user input is received, we interrupt the number generator thread:

primeNumberGenerator.interrupt();

This sets the interrupt flag in the designated thread. Note that it will not stop the
primeNumberGenerator thread, which may choose to ignore this interruption completely.

Next, we check the status of the interrupt flag in the primeNumberGenerator thread, which
mostly remains true at this time, assuming that the primeNumberGenerator thread has not got a
chance to process the request and reset its interrupt flag so far:

if (primeNumberGenerator.isInterrupted()) {
 System.out.println("\nNumber generation has "
 + "already been interrupted");
} else {
 System.out.println("Number generator " + "is not currently running");
}

If you make the main thread sleep for a certain amount of time (uncomment the commented
lines in the program to do so) before calling the preceding code, the primeNumberGenerator
thread will have probably processed the request and reset its internal flag. In this situation, you

456 Java Programming

see the message printed in the preceding else clause. To honor and process the interrupt request,
the WorkerThread, in its infinite while loop, checks the status in each iteration by calling the
Thread.interrupted method:

if (Thread.interrupted()) {
 System.out.println("\nStopping prime " + "number generator");
 return;
}

If the thread has been interrupted, we print a message to the user and return to the caller,
effectively terminating the thread’s run method.

Finally, let’s look at the lazy worker thread. In the run method of LazyWorker, we simply cause
the thread to sleep for a very long time:

try {
 Thread.sleep(100000);
} catch (InterruptedException ex) {
 System.out.println("Lazy worker: " + ex.toString());
}

Whenever the thread is awakened from its sleep, we print the message to confirm the reason
for the interruption.

The main method simply creates an instance of LazyWorker and starts it. The main thread puts
itself to sleep for some time before sending an interrupt to LazyWorker thread. Sample output is
shown here:

31531 31541 31543 31547 31567 31573 31583 31601 31607 31627 31643
31649 31657 31663 31667 31687 31699 31721 31723 31727

Number generation has already been interrupted

Running lazy worker
 31729
Stopping prime number generator
Lazy worker: java.lang.InterruptedException: sleep interrupted

Note that the output shows the number 31729 generated even after the thread was interrupted.
This is because the number generator thread has not got its CPU slot before the main thread prints
the “has already been interrupted” message to the terminal.

If you introduce the Thread.sleep statement, the interrupt, and isInterrupted calls, you will
get output similar to what’s shown here:

43541 43543 43573 43577 43579 43591 43597 43607 43609 43613 43627
 43633
Stopping prime number generator
Number generator is not currently running

Running lazy worker
Lazy worker: java.lang.InterruptedException: sleep interrupted

Chapter 17: Threads 457

Now, the program prints the message stating that the number generator has already honored our
interrupt request. Finally, observe the request processed by the lazy worker thread. The message
shows that the thread was interrupted in its sleep.

TIP
A blocking method, when it catches the InterruptedException, clears
the interrupt status flag. If you want to preserve the evidence that the
interruption occurred so that code higher up on the call stack can
learn about it, call the interrupt method to set the flag once again,
as shown in the code fragment here:

catch (InterruptedException e) {
 // Restore the interrupted status
 Thread.currentThread().interrupt();
}

Joining
A thread may join with another thread; in such a case, the thread that wants to join with another
thread will have to wait for the other thread to complete its job (that is, run to completion) before
it continues. If the other thread never completes its job, the joining thread will have to wait
indefinitely. To overcome this situation, a thread may join for a specified period of time. In this
case, the thread will acquire control after the other thread has run to completion or the specified
time period is over, whichever occurs first.

Thread Synchronization
From our discussions so far, it is obvious that CPU allocation for thread execution is totally
asynchronous and therefore the thread execution order cannot be assumed. When these threads
access a common resource, keeping its state consistent becomes a great challenge in thread
programming. If a thread has partially modified a resource when it loses the CPU, no other
thread should be given access to this resource unless and until the first thread acquires the CPU
again and completes its modification of the resource, leaving it in a consistent state at all times.
Consider the stock exchange scenario, where several buyers may be trying to grab a stock’s sale
order placed at a very attractive price. The inventory that is the sale quantity for this order now
becomes a common resource that many buyers compete over to acquire. The access to this
resource must be carefully guarded and synchronized. In a banking scenario, the simultaneous
withdrawals by many concurrent users may leave the bank’s cash repository in an inconsistent
state, which certainly the bank won’t want to have happen. A web-based bulletin board may be
written to concurrently by many users—one user giving sports updates, another user discussing
political news, and other users just gossiping. Without controlled access to this bulletin board,
the articles can get mixed up at times.

In many situations in real life, you need to guard a common resource for which many compete.
The problem is solvable and is typically done using resource-locking techniques. Many low-level
constructs are available for providing synchronized access to a common resource. If you have taken
a course on operating systems, you have encountered terms such as semaphores, monitors, and
critical sections. Java initially abstracted most of these from developers by introducing a single

458 Java Programming

keyword, synchronized, in its initial version. Beginning in J2SE 5.0, access to these low-level
constructs was provided. You will learn these other constructs in the next chapter. In this chapter,
we focus on the synchronized keyword to better understand the thread synchronization.

To explain the synchronization issues and understand their solutions, we start with a concrete
example.

Bucket Transfers
Let’s suppose we have two buckets of balls and two threads, as illustrated in Figure 17-4. One
thread transfers a few balls from the left bucket into the right one, while the other thread does the
reverse operation. When a thread performs a transfer, it removes a few balls from one bucket and
puts them in the other bucket. Both these operations should be atomic (done as a single unit) to
keep the total system consistent. The total system consists of both the buckets and their contents.
At any time after the transfer is completed, the total number of balls in the two buckets together
must always remain constant. This can be achieved only if access to both buckets is guarded
during each transfer. Therefore, a thread should acquire exclusive access to both the buckets until
the transfer is complete, and only then can a consistent system state be guaranteed.

We will now discuss the program code that implements the bucket transfers so you can see
what happens when we do not have guarded access to the buckets. The full source for the bucket
transfers is given in Listing 17-4.

Listing 17-4 Bucket Ball Game Demonstrating Thread Synchronization

public class BucketBallGame {

 private int bucket[] = {10000, 10000};
 private static boolean RIGHT_TO_LEFT;

FIGure 17-4. Threads transfer balls from one bucket to another

Thread A

Thread B

Chapter 17: Threads 459

 public static void main(String[] args) {
 new BucketBallGame().doTransfers();
 }

 private void doTransfers() {
 for (int i = 0; i < 10; i++) {
 new Thread(new TransferThread(!RIGHT_TO_LEFT)).start();
 new Thread(new TransferThread(RIGHT_TO_LEFT)).start();
 }
 }

 public void transfer(boolean direction, int numToTransfer) {
 if (direction == RIGHT_TO_LEFT) {
 bucket[0] += numToTransfer;
 bucket[1] -= numToTransfer;
 } else {
 bucket[0] -= numToTransfer;
 bucket[1] += numToTransfer;
 }
 System.out.println("Total: " + (bucket[0] + bucket[1]));
 }

 private class TransferThread implements Runnable {

 private boolean direction;

 public TransferThread(boolean direction) {
 this.direction = direction;
 }

 @Override
 public void run() {
 for (int i = 0; i < 100; i++) {
 transfer(direction, (int) (Math.random() * 2000));
 try {
 Thread.sleep((int) (Math.random() * 100));
 } catch (InterruptedException ex) {
 }
 }
 }
 }
}

We first create two buckets by declaring an integer array of size 2:

private int bucket[] = {10000, 10000};

We also define a constant for determining the transfer direction:

private static boolean RIGHT_TO_LEFT;

460 Java Programming

In the main method, we create an application instance and call its doTransfers method:

new BucketBallGame().doTransfers();

In the doTransfers method, we create 10 instances of our TransferThread class that transfer
balls from left to right and 10 more instances that transfer from right to left:

for (int i = 0; i < 10; i++) {
 new Thread(new TransferThread(!RIGHT_TO_LEFT)).start();
 new Thread(new TransferThread(RIGHT_TO_LEFT)).start();
}

TransferThread is our thread, which is a private inner class and discussed later.
Subtracting the desired number from the first bucket and adding the same to the second bucket

performs the transfer of balls:

bucket[0] += numToTransfer;
bucket[1] -= numToTransfer;

After the transfer is over, we print the total number of balls from the two buckets:

System.out.println("Total: " + (bucket[0] + bucket[1]));

Finally, we look at the transfer thread class implementation:

private class TransferThread implements Runnable {

The class constructor receives a parameter, which we copy into a class variable for further use.
In the run method, we perform 100 transfers:

public void run() {
 for (int i = 0; i < 100; i++) {

For each transfer, we create a random number in the range of 0 to 1999:

transfer(direction, (int) (Math.random() * 2000));

We then cause the thread to sleep for a random time, in the range of 0 to 100 milliseconds:

Thread.sleep((int) (Math.random() * 100));

Now, run the application and observe the output. Initially, the output shows a total of 20,000,
which is correct because the number of balls in each bucket is 10,000. For a first few iterations,
this total remains 20,000; however, after a while this total changes to a figure other than 20,000.
Typical partial output is shown here:

Total: 20000
Total: 20000
Total: 20386
Total: 20386
Total: 20386

How is it that the total does not remain constant at 20,000? Have we lost some balls? In some
runs, you will find the total is more than 20,000. Are new balls created then? No. The answer to

Chapter 17: Threads 461

the original question is that we do not perform the ball removal and insertion operations as an
atomic unit—that is, as a unit that is not broken up. When one thread removes the balls from the
bucket, before it puts them into the second bucket, another thread gets the CPU. This new thread
modifies the bucket states without the knowledge of what the first thread has done. This leaves
the total system in an inconsistent state. To solve this problem, we must perform the ball removal
and insertion operations atomically. In other words, even if the running thread loses the CPU in
between the two operations, no other thread should be given access to the buckets unless and
until the first thread resumes and completes its previously uncompleted operation. To achieve
this, Java provides a simple keyword called synchronized. Let’s make a small change in our
program to implement this synchronization. Simply put the synchronized keyword between the
public and void literals in the transfer function declaration, as shown here:

public synchronized void transfer(boolean direction, int numToTransfer) {

Now run the program and observe the output. You will find that the output now remains
constant to 20,000. This is because each time only one thread at a time can perform a transfer.

Producer/Consumer Problem
The scenario described in the previous section is a very trivial situation used for demonstrating
synchronized access to a common resource. In real-life situations, you would require
synchronization between many contending threads. Java provides a special wait/notify mechanism
to achieve this—and that is what we will be discussing in this section. To teach wait/notify
implementation, it is common to use a pedagogical producer/consumer problem, which is what
we’ll do here.

We will first look at the classical producer/consumer problem in thread programming
(see Figure 17-5) and then show its implementation in a Java program.

Consider a situation where we have an empty bucket. A producer produces a pack of balls and
puts it in the bucket. As soon as the pack is placed, the consumer (who is waiting for the pack)
immediately picks it up. The producer now creates another pack and puts it in the bucket. As soon
as this pack of balls is in the bucket, the waiting consumer is notified and again immediately picks

FIGure 17-5. Producer/consumer scenario

ConsumerProducer

462 Java Programming

up the pack from the bucket. This process continues in tandem, where the producer keeps on
producing packs of balls and the consumer keeps on consuming those packs as soon as they are
available in the bucket. Note that the producer and consumer work independent of each other.
Therefore, the consumer must be notified whenever the producer adds a pack to the bucket. Java
provides the wait/notify construct to implement this functionality. The use of this functionality is
illustrated in Listing 17-5.

Listing 17-5 A Producer/Consumer Scenario in Thread Programming

public class ProducerConsumerGame {

 public static void main(String args[]) {
 Bucket bucket = new Bucket();
 new Thread(new Producer(bucket)).start();
 new Thread(new Consumer(bucket)).start();
 }
}

final class Consumer implements Runnable {

 private Bucket bucket;

 public Consumer(Bucket bucket) {
 this.bucket = bucket;
 }

 public void run() {
 for (int i = 0; i < 10; i++) {
 bucket.get();
 }
 }
}

final class Producer implements Runnable {

 private Bucket bucket;

 public Producer(Bucket bucket) {
 this.bucket = bucket;
 }

 public void run() {

 for (int i = 0; i < 10; i++) {
 bucket.put((int) (Math.random() * 100));
 }
 }
}

class Bucket {

Chapter 17: Threads 463

 private int packOfBalls;
 private boolean available = false;

 public synchronized int get() {
 if (available == false) {
 try {
 wait();
 } catch (InterruptedException e) {
 }
 }
 System.out.println("Consumer Got: " + packOfBalls);
 available = false;
 notify();
 return packOfBalls;
 }

 public synchronized void put(int packOfBalls) {
 if (available) {
 try {
 wait();
 } catch (InterruptedException e) {
 }
 }
 this.packOfBalls = packOfBalls;
 available = true;
 System.out.println("Producer Put: " + packOfBalls);
 notify();
 }
}

In the main method, we first create a bucket:

Bucket bucket = new Bucket();

We discuss the Bucket class later. In the main method, we create and start two threads:

new Thread(new Producer(bucket)).start();
new Thread(new Consumer(bucket)).start();

The Producer thread produces the balls and puts them in the bucket after they are produced.
The Consumer thread waits for the balls to become available in the bucket and then removes them
from the bucket when they do become available.

The Consumer class implements runnable and receives the Bucket object as an argument to its
constructor. In the run method, the consumer fetches the pack of balls from the bucket 10 times.

for (int i = 0; i < 10; i++) {
 bucket.get();
}

To fetch the pack, it calls the get method of the Bucket class.

464 Java Programming

Like the Consumer class, Producer is a thread class that receives a reference to the Bucket
object at the time of its construction. In the run method, it puts 10 packs in the bucket. The pack
size is set to a random number in the range 0 to 99:

for (int i = 0; i < 10; i++) {
 bucket.put((int) (Math.random() * 100));
}

Let’s now discuss the most important class—Bucket. The Bucket class declares two class
variables:

private int packOfBalls;
private boolean available = false;

Here, packOfBalls indicates the number of balls added to the bucket at any point in time,
and available is a boolean flag that is set to true whenever a pack is added to the bucket and is
reset after the pack is removed from the bucket. The get method is used for retrieving the pack
from the bucket:

public synchronized int get() {

The get method is synchronized because the method implementation uses the wait method,
which can be used only within a synchronized method or block. In the get method, we test the
condition of the available flag. If the flag is reset, we simply wait on the current object for the
condition to become true:

if (available == false) {
 try {
 wait();
 } catch (InterruptedException e) {
 }
}

The JVM will awaken this thread whenever some other thread sets the available condition.
When this happens, we reset the flag, notify the consumer, and return the value of packOfBalls
to the caller:

available = false;
notify();
return packOfBalls;

The producer ensures that the packOfBalls value is set before waking the waiting consumer
thread. This is done in the put method. The put method of the Bucket class is also synchronized
because it uses the notify method in its implementation:

public synchronized void put(int packOfBalls) {

The put method first checks whether it is allowed to put the balls in the bucket by checking the
bucket’s available status. If the bucket is not available, the method waits for it to become available:

Chapter 17: Threads 465

if (available) {
 try {
 wait();
 } catch (InterruptedException e) {
 }
}

It then copies the received parameter in the class variable, packOfBalls, and sets the available
flag to true:

packOfBalls = numberOfBalls;
available = true;

It then calls the notify method to inform the consumer that the balls are now available in the
bucket for its consumption:

notify();

Therefore, whenever the producer calls the put method on the Bucket, a notification is sent to
the waiting consumer. The consumer uses the get method to wait and retrieve the pack of balls
whenever it is available. The process will continue in tandem forever. Sample, partial output is
shown here:

Producer put: 64
Consumer got: 64
Producer put: 92
Consumer got: 92
Producer put: 60
Consumer got: 60

This producer/consumer problem is observed in many real-life situations. Consider a chat
room application where many users concurrently read/write their messages in a single room. If
the getter/setter methods are not synchronized, messages will get jumbled up. A similar thing
happens for a bulletin board that is read and written concurrently by many users. An auction site
might receive many bids and offers for a single item in a very short period of time. Therefore,
access to the board that displays the last bid/offer must be synchronized. If a single bank account
is accessible by a group of users, the deposits and withdrawals must be synchronized. A typical
database application where several records are read, written, and modified in a single table must
provide synchronized access to the table to avoid data corruption. These situations illustrate the
need for the proper synchronization of common resources in real-life applications.

Object Locks
When you use the synchronized keyword, it actually obtains a lock on the current object. In Java,
every object has an associated lock. You have so far seen the use of the synchronized keyword
on the method declarations. This, however, can be used on any block of code. For example, you
may provide an atomicity of operations on a block of code by enclosing it in a synchronized
block, as shown here:

synchronized (this) {
 // program statements;
}

466 Java Programming

This synchronized statement obtains a lock on the current object specified by the this keyword
and executes all the program statements enclosed in the curly braces as an atomic operation. Instead
of this, which is just a reference to the current object, you may use any other object reference. The
program will obtain a lock on this specified object.

CAuTION
Be aware that this will lock the whole object while execution of the
block is occurring on the “winning” thread. Therefore, any other
thread will have to wait to call any other method on that object.

When to Synchronize
Synchronization is essential for avoiding data corruption and race conditions that can lead to a
program crash, incorrect results, or unpredictable behavior. Even worse, these conditions are
likely to occur rarely and sporadically. Thus, an application may pass all its test conditions in a
development environment, yet fail sporadically in a production environment. Such problems are
hard to detect and reproduce. This, however, does not imply that you should synchronize each
and every method. In fact, doing so can lead you into a deadlock if the calls to synchronized
methods are not properly ordered, as explained in the next section. Inappropriate or excessive
synchronization also leads to an application’s poor performance. A synchronized call to an empty
method may be 20 times slower than the corresponding unsynchronized call. To understand why,
let’s discuss what synchronized really means.

The synchronized semantics guarantees that only one thread has access to the protected
section at any given time. Consider a case where you have two threads running on two different
processors, both having access to a common variable. This variable obviously resides in the
common main memory of your machine. Both processors may cache this variable. Thus, in the
absence of synchronization, the two threads may see a different value to a common variable read
from the processors’ respective caches. When synchronizing on a monitor, the Java Memory
Model (JMM) requires this cache to be immediately invalidated after the lock is acquired and then
flushed before it is released. Flushing the cache frequently can be expensive. This explains the
performance penalty in using synchronization.

NOTe
Other platforms typically implement the critical section facilities with
an atomic “test and set bit” machine instruction, thus making them
perform better than the Java platform in similar situations.

It is important to understand that even when a program contains only a single thread running on
a single processor, a synchronized method call will take longer to execute than an unsynchronized
method call. If the synchronization requires contending for the lock, the performance penalty is
substantially greater. This is because before a lock is obtained, several thread switches and system
calls may be happening in the system.

Therefore, the bottom line is this: A multithreaded program requires a good balance between
synchronizing enough to protect your shared data from corruption and yet not so much as to risk
a deadlock or cause poor performance. Using a volatile keyword can result in a more efficient
way to synchronize as explained in the sidebar.

Chapter 17: Threads 467

using volatile for Thread Synchronization
Marking the variable with the volatile keyword ensures that the same value is seen by all
threads at any given point in time—the threads are not allowed to keep local copies of a
volatile variable. Consider the following code fragment:

private int sharedVariable;

synchronized public int getSharedVariable() {
 return sharedVariable;
}

synchronized public void setSharedVariable(int sharedVariable) {
 this.sharedVariable = sharedVariable;
}

Here, the access to the sharedVariable is guarded by setting the accessor/mutator
methods as synchronized. A better way to do this is with the following code:

volatile private int synchronizedSharedVariable;

public int getSynchronizedSharedVariable() {
 return synchronizedSharedVariable;
}

public void setSynchronizedSharedVariable(int synchronizedSharedVariable) {
 this.synchronizedSharedVariable = synchronizedSharedVariable;
}

Now, we have marked the variable as volatile instead of making the access methods
synchronized. This is more efficient because volatile only synchronizes the value of just
one variable between the thread and main memory, whereas synchronizing a method
requires it to provide synchronization for all its variables between the thread and main
memory besides locking and releasing a monitor.

The Deadlock
One of the major problems in thread programming is the occurrence of deadlocks in programs
that are not carefully designed. When two or more threads compete to obtain a lock on a shared
resource and none of them can proceed until the other releases the lock it holds, a deadlock
occurs and none of the competing threads can continue. This is like when two people are standing
at a door, both holding it open for the other to pass through. Such a situation should obviously be
avoided. Figure 17-6 shows an example of a deadlock.

In this figure, the two threads perform synchronized access to their code. Consider the situation
where Thread 1 obtains a lock on Object A and then loses the CPU. Now Thread 2, which gains
the CPU, obtains a lock on Object B and executes a few code lines before losing the CPU. Thread 1,
which now has the CPU, proceeds with its code to obtain a lock on Object B. However, because

468 Java Programming

Object B has been locked by Thread 2, it cannot proceed and has to wait until the lock on Object B
is released by Thread 2. Now, Thread 2 gains the CPU one more time and proceeds with its own
code, in which it tries to obtain a lock on Object A. Because Object A has previously been locked
by Thread 1, Thread 2 cannot continue unless the lock on Object A is released by Thread 1. You can
see that each thread must wait on the other to release its lock and therefore neither can proceed. This
situation is called deadlock.

Solutions to Deadlock
Deadlocks have no simple solution. They can be avoided only by careful coding. However, three
techniques can be used to help you in detecting and preventing deadlocks in your code:

Lock ordering■■

Lock timeout ■

Deadlock detection■■

Lock Ordering
In our earlier example, deadlock can be avoided by maintaining the order in which the locks are
obtained and released by two threads. If locks on multiple objects are obtained and released in
the same order by both threads, a deadlock cannot occur. Thus, if both threads in our example
obtain the locks in the order Object A first, followed by Object B, a deadlock will not occur. The
general rule here is that in case of multiple locks, if all locks are always taken in the same order
by any thread, deadlocks cannot occur. However, knowing about all the locks needed ahead of
taking any of them may not always be the case.

Lock Timeout
Putting a timeout on lock attempts helps in preventing a deadlock situation. Let’s look at how
this happens. If a thread does not succeed in obtaining all the necessary locks within the given
timeout period, it will back up, freeing all locks taken so far. It then waits for a random amount
of time before making another attempt to obtain the locks. The random amount of waiting time
gives a fair opportunity for others to obtain locks. The problem with this technique is that the
synchronized keyword has no facility to specify this timeout. To use a timeout facility, use the
java.util.concurrent.locks.Lock interface introduced in J2SE 5.0 for thread synchronization.

FIGure 17-6. A deadlock situation

Thread 1 Thread 2

synchronized (B)

 synchronized (A)
…

synchronized (A)

 synchronized (B)
…

Chapter 17: Threads 469

The reentrantLock class in the same package implements this interface. The use of this class is
illustrated in the following code snippet:

Lock lock = new ReentrantLock();
lock.lock();
// critical section
lock.unlock();

You may use the tryLock (long timeout, Timeunit timeunit) method to specify the timeout
for attempts to acquire a lock.

To demonstrate how to use this Lock implementation, we modify the BucketBallGame class
discussed previously. To maintain the integrity of the entire system, earlier we used the synchronized
keyword on the transfer method. The same effect can be achieved by using locks, as shown in the
modified class in Listing 17-6.

Listing 17-6 Modified Bucket Ball Game Using Locks

import java.util.concurrent.locks.ReentrantLock;

public class ModifiedBucketBallGame {

 private int bucket[] = {10000, 10000};
 private static boolean RIGHT_TO_LEFT;
 ReentrantLock lock = new ReentrantLock();

 public static void main(String[] args) {
 new ModifiedBucketBallGame().doTransfers();
 }

 private void doTransfers() {
 for (int i = 0; i < 10; i++) {
 new Thread(new TransferThread(!RIGHT_TO_LEFT)).start();
 new Thread(new TransferThread(RIGHT_TO_LEFT)).start();
 }
 }

 public void transfer(boolean direction, int numToTransfer) {
 lock.lock();
 if (direction == RIGHT_TO_LEFT) {
 bucket[0] += numToTransfer;
 bucket[1] -= numToTransfer;
 } else {
 bucket[0] -= numToTransfer;
 bucket[1] += numToTransfer;
 }
 System.out.println("Total: " + (bucket[0] + bucket[1]));
 lock.unlock();
 }

 private class TransferThread implements Runnable {

470 Java Programming

 private boolean direction;

 public TransferThread(boolean direction) {
 this.direction = direction;
 }

 @Override
 public void run() {
 for (int i = 0; i < 100; i++) {
 transfer(direction, (int) (Math.random() * 2000));
 try {
 Thread.sleep((int) (Math.random() * 100));
 } catch (InterruptedException ex) {
 }
 }
 }
 }
}

The changes made to the original class definition are shown in bold typeface. We create the
Lock instance as an instance variable:

ReentrantLock lock = new ReentrantLock();

Once a lock object is available, we can enclose the critical section code anywhere in the
program by calling the lock method at the beginning of the critical section and the unlock
method at the end. Look at the placement of the lock.lock and lock.unlock statements in the
listing. The code enclosed between these two calls would be executed as an atomic operation,
and the system’s integrity is never compromised.

Deadlock Detection
If both these remedies of lock ordering and timeout are not feasible, we can resort to deadlock
detection, which is definitely a more difficult solution of deadlock prevention. In this solution, we
record every request and acquire a lock by all threads. Generally, this is stored in a map or graph
for ease of traversal. When a request for a lock is denied, the thread traverses this lock graph to
check for deadlocks. Consider the lock graph shown in Figure 17-7.

FIGure 17-7. Graph used in deadlock detection

Thread A Thread B Thread C Thread D

Lock 1 Lock 2 Lock 3 Lock 4

Requested ByTaken By

Chapter 17: Threads 471

Here, Thread A is holding Lock 1 and has requested Lock 2. The request fails. Therefore,
Thread A tries to find out why the request failed. It realizes from the graph that Lock 2, which it
has requested, is currently being held by Thread B. Now it moves further in the graph to detect
that Thread B is waiting for Lock 3. Continuing on, it finds out that Thread C is holding Lock 3,
which is requested by Thread B. Going further, it detects that Thread C is waiting on Lock 4,
which is currently held by Thread D. One more step and it finds out that Thread D is waiting for
Lock 1, which is held by Thread A itself. Now, Thread A knows that a deadlock has occurred and
its request for Lock 2 will not be fulfilled until the deadlock is resolved. So how do we resolve it?

A possible approach would be to release all locks and withdraw all pending requests, and then
wait a random amount of time before every thread tries acquiring the desired locks. There is no
guarantee that this second attempt of acquiring locks all over again would succeed, and we may
be required to repeat the entire process several times, especially if the number of threads involved
is large. A possible remedy to this could be to do a priority-based backup, where only certain
threads that have been assigned lower priorities are made to back up, while other threads continue
holding their locks. The priority for the backup itself may be randomly assigned whenever a deadlock
is detected.

From these discussions, we can make one conclusion for sure: Avoiding deadlocks is not
always easy, but careful coding can mitigate the situation.

Summary
Thread programming is considered one of the most important aspects of learning a new language,
and at the same time it is the most complex aspect to learn. In this chapter, you learned how to
create and use threads in your Java applications. A thread is a single unit of execution within an
operating system process. A process may contain multiple threads. The OS schedules these threads
on the CPU based on a predetermined scheduling policy. We discussed the preemptive and
nonpreemptive scheduling policies. Each thread is assigned a certain priority. In the case of
preemptive scheduling, a thread with a higher priority preempts the running thread, whereas in the
case of nonpreemptive scheduling, a running thread continues using the CPU even when a thread
with a higher priority is waiting. The JVM may derive its thread-scheduling functionality from the
underlying platform. We discussed the variations in JVM implementations on various popular
platforms. Threads are assigned a priority level. Java defines these levels in the range 1 to 10.
A separate queue for scheduling threads on the CPU is maintained for threads at each priority level.

To create threads in Java, you have two mechanisms. One is to implement the runnable
interface, and the other one is to subclass the Thread class. Implementing the runnable interface
is the recommended way. The Thread class provides several static methods to perform various
thread-related operations. You studied several of these methods in this chapter.

When multiple threads access a common resource, resource contention may occur. To avoid
this, you need to use locking mechanisms. Java provides an easy way of locking resources with
the use of the synchronized keyword. You learned the synchronization techniques with the help
of two code examples. In the next chapter, you learn about the concurrency framework introduced
in J2SE 5.0.

Chapter
18

Blocking Queues
and Synchronizers

473

474 Java Programming

s you saw in the previous chapter, the Java language has had support for threads and
concurrency from day one. You have seen the use of synchronization primitives such
as synchronized and volatile, and the use of the Thread class. These concurrency
primitives addressed the needs of the then-available hardware technology (in 1995),
where all commercially available machines offered only a single-core CPU for

processing. The threads in those days provided asynchrony, rather than concurrency, which was
adequate for the demands of that time. Now, by default, all machines come with a multicore
processor; your machine may even have multiple processors. So these days, software developers
need to write applications that leverage parallelism to fully exploit the available hardware.

The question is, what kinds of applications can leverage this parallelism? In many situations, the
parallelism helps in improving application performance. Consider the use-case of an automated
price quote system. Such a web application requires access to three databases—the pricing
database, which provides the item’s base price; the customer database, which provides the discount
structure for a customer; and the shipping database, which provides the basic shipping costs for
various modes of shipping. The computations and results provided by these three database accesses
are independent of each other; in the end, the three results are aggregated to generate a final price
quote, as depicted in Figure 18-1.

Let’s look at a few more use-cases where implementing parallelism can help. A game with
multiple animations can benefit from forking each animation to run on an independent processor.
An image-processing application, where each pixel in an image needs some sort of manipulation,

A

FIGure 18-1. Using parallelism in an automated price quote system

Pricing

Databases

Customer Shipping

Submit quote to customer

Price quote request

Chapter 18: Blocking Queues and Synchronizers 475

such as reversing its color, will benefit from splitting the number of pixels into smaller groups and
assigning each group to an independent core for processing. A game can be more exciting when
multiple events take place concurrently. A healthcare application may run various tests concurrently
to determine a patient’s diagnosis. An application that evaluates portfolios needs to communicate
with various markets concurrently. There is no end to this list; you will be able to find several areas
where parallelism can help improve application performance and generate a richer user experience.

From our discussions, do not jump to the conclusion that every application must use the
concurrency framework that you are going to learn about in this and the next chapter. Typical
sequential operations cannot be split into parallel programs and would continue running in a
single thread. The kinds of applications we’ve looked at so far in this book, which are inherently
small, do not require parallelism. Many GUI applications also do not require explicit thread
programming from the developer’s perspective.

In general, you would use the concurrency framework for a variety of performance-scaling
needs as well as for splitting heavy linear tasks into smaller tasks that can be executed concurrently.
Generally, CPU-intensive applications will be ideal candidates for exploiting parallelism.

You have seen the use of the interrupt, join, sleep, notify, and wait methods to implement
concurrency in our programs. The use of these methods was a bit tedious. J2SE 5.0 came up with a
higher-level framework to provide easier, simpler, and less-error-prone handling of threads. This is
called a concurrency framework, and it enables you to write applications that it can apply multiple
threads to. In turn, the VM maps those multiple threads onto the available multiple hardware threads.
On the other hand, if you write a single-threaded application (say, a for loop that iterates through
millions of records), the VM can only use one execution thread to do the work. And this can only
map to one hardware thread, even if 127 other hardware threads are idle. Higher-level concurrency
APIs can help you rewrite this into a multithreaded application. A lot of art and science is involved
in how different VM implementations map Java threads to hardware threads on different systems.
The important thing to note is that modern VMs on multiple-core/multiple-processor architectures
do make a mapping that is of great benefit to multithreaded applications. So let’s start with the
various synchronization constructs introduced in J2SE 5.0.

In particular, you will learn the following constructs in this chapter:

Blocking queues■■

Countdown latches ■

Semaphores ■

Barriers ■

Phasers ■

Exchangers■■

Blocking Queues
Many synchronization problems can be formulated with the help of blocking queues. A blocking
queue is a queue that blocks when a thread tries to dequeue from an empty queue or tries to
enqueue an item into a full queue. A thread trying to remove an item from an empty queue
blocks until some other thread puts an item into that queue. Similarly, a thread trying to insert an
item into a queue that is full will block until some other thread removes an item from that queue.
The blocking may be implemented by using either the polling or the wait-notify mechanism
discussed in the last chapter. In the case of polling, a reader thread calls the get method on the

476 Java Programming

queue periodically until a message becomes available in the queue. In case of the wait-notify
mechanism, the reader thread simply waits on the queue object that notifies it whenever an item
is available for reading.

In real life, you come across many situations where these blocking queues can be used.
Consider buying a ticket at the railway booth. When you approach the counter, you find line of
people (that is, a queue). You stand at the end of the queue and wait for your turn to come. The
person at the counter takes requests from the beginning of the queue—one request at a time.
Serving a request requires a few synchronization operations that take place at the counter. Once
one person is served, the next person in the line gets an opportunity. When more customers arrive
at the station, the queue grows dynamically. The size of a queue may be restricted due to space
limitations at some railway stations. The ticket officer who deals with only one customer at a time
becomes a point of key synchronization in this entire scenario. Both the consumer (the traveler)
and the producer (the ticket issuer) are relieved of the duty of taking care of synchronized access
to the shared resources (travel tickets). Without the implementation of a disciplined queue in this
scenario, all travelers would jump to get their hands on whatever tickets are available at the
counter, and chaos would ensue.

Another real-life scenario where blocking queues come to the rescue is in the implementation
of a chat server. In a typical chat application, multiple users communicate with each other
concurrently. The application has many reader and writer threads. The reader threads take
incoming messages and put them on the main message queue. The writer threads take messages
off the queue, one at a time, and send them to the appropriate chat clients. The use of a queue
effectively decouples the reading and writing processes. At any given time, if the queue is full, the
reader thread that has a message to post will have to wait for a slot to be available in the queue.
Similarly, if the queue is empty, all writer threads will have to wait until a message becomes
available in the queue. Thus, even if the speeds (connection and data transfer speeds) at which the
readers and writers operate vary greatly, the integrity of the data (messages) is never compromised.

Blocking queues are also useful in many other scenarios, such as a bulletin board service, a
stock-trading system, and more. You will see many practical applications of blocking queues and
their uses as you read further.

Characteristics of Blocking Queues
The typical characteristics of a blocking queue may be summarized as follows:

Blocking queues provide methods to add items to them. Calls to these methods are ■■
blocking calls, where the inserter of an item in the queue has to wait until space becomes
available in the queue.

The queues provide methods to remove items from them. Once again, these are blocking ■
calls, and takers are made to wait for an item to be put into an empty queue.

The ■ add and remove methods may optionally provide a timeout on their wait operations
and may be interruptible.

Generally, the ■ put and take operations are implemented in separate threads, thus providing
good isolation between the two types of operations. Also, they generally achieve this
without blocking the entire queue, thus improving the concurrency of these operations
significantly.

You cannot insert ■ null elements in a blocking queue.

A blocking queue may be bound by capacity. ■

Chapter 18: Blocking Queues and Synchronizers 477

The implementations are thread-safe. However, bulk operations such as ■ addAll may not
be necessarily performed atomically and may sometimes fail after a few elements have
been added.

A blocking queue does not intrinsically support a “close” or “shutdown” operation to ■■
indicate that no more items can be added.

From these characteristics, one can easily deduce that the primary application of a blocking
queue would lie in the producer-consumer scenario described in the previous chapter. These
queues can safely be used with multiple producers and multiple consumers.

The BlockingQueue Interface
J2SE 5.0 introduced this blocking queue construct as a part of the concurrency framework. The
BlockingQueue interface facilitates queue construction and provides several methods for
operating on a queue. Once a queue is constructed, you can use the add or remove method to
add or remove an element from the queue, as the names suggest. These methods throw some
exceptions in the case of a failure. A queue generally has a restricted size. If such a queue gets
full, an add operation on it fails. Similarly, a remove operation on an empty queue fails. Besides
these very obvious add/remove methods, the BlockingQueue interface provides put and take
methods, which block if the operation does not succeed. The put method blocks until an empty
slot is available in the queue, and the take method waits until an element is added to an empty
queue. The BlockingQueue also provides special methods called offer and poll. These methods
do not block; on the contrary, they return a special value to the caller so that the caller can
decide whether to wait or to proceed further with its work. Both these methods also provide a
timeout version, where they wait for the operation to succeed for a specified amount of time.

Implementations of the BlockingQueue Interface
J2SE 5.0 provides several implementations of the BlockingQueue interface. This section describes
these various implementations.

ArrayBlockingQueue
The ArrayBlockingQueue class implements a bounded blocking queue backed by an array. This
implements FIFO (first-in, first-out) ordering. New elements are inserted at the tail end, and
retrieval takes place from the head of the queue. The tail end of the queue is the element that’s on
the queue for the shortest amount of time, and the head element is the one on the queue for the
longest amount of time. This queue is of the fixed size, where the size is decided at the time of its
construction. The array capacity cannot be increased at a later time. An overloaded constructor
also allows you to specify the fairness policy for ordering waiting threads. If this policy is set to
true, all blocked operations for insertion or removal will be processed in FIFO order. By default,
this is set to false, indicating that the ordering may not be fair to the waiting threads. Although this
can cause starvation and predictability problems, it produces better throughput.

NOTe
In a situation where many threads compete for a shared resource, a
greedy thread may acquire it and make it unavailable to those waiting
for it for long periods of time. This situation is called starvation, where
the waiting threads starve for the resource to become available.

478 Java Programming

Another variation of the constructor takes a Collection parameter, through which you can
supply the initial data items to the queue.

LinkedBlockingQueue
The LinkedBlockingQueue extends the concept of the array-blocking queue by making the
maximum capacity optional. You may still specify the capacity to prohibit excessive expansion.
If you do not specify the capacity, the default is the max integer value. Not having a limit on the
capacity can be advantageous because the producers do not have to wait if the consumers are
behind schedule in picking up the items. Like the array-based queue, an overloaded constructor
can accept the initial feed from a collection. This queue generally has higher throughput than an
array-based queue, but at the same time has less-predictable performance. Most operations on
this queue run in constant time, except for the remove operations, which run in linear time.

PriorityBlockingQueue
A PriorityBlockingQueue is an unbounded queue, where you can decide on the priority ordering of
the elements, the same as PriorityQueue from Chapter 16. Priority can be decided by the natural
ordering of elements or by a comparator supplied by you. According to a priority queue’s ordering,
an attempt to insert noncomparable objects results in a ClassCastexception. If the system resources
are exhausted, an add operation may fail even though it is an unbounded queue. If the elements
have equal priorities, their ordering is not guaranteed. To enforce ordering in such situations, you
need to provide your own classes or comparators on secondary keys.

DelayedQueue
A DelayedQueue is a specialized priority queue where the ordering is based on the delay time
of each element—the time remaining before an element can be removed from the queue. The
DelayedQueue requires the objects to remain resident on the queue for a specified amount of
time before they are retrieved. The implementation allows element retrieval only when its delay
has expired. The element having the furthest (longest) delay is considered to be at the head of
the queue and is the first one available for retrieval. If the delay for none of the elements has
expired (in other words, all elements have a positive delay time), then the poll operation will
return null because nothing can be retrieved. A peek operation on such a queue will still allow
you to see the first unexpired element. The size method returns a total count of both expired and
unexpired elements.

SynchronousQueue
The SynchronousQueue implementation defines a blocking queue in which an insert operation
must wait for a corresponding remove operation, and vice versa. This is typically used in handoff
designs, where an object running in one thread must sync up with an object running in another
thread. A common application of this would be in a work-sharing system, where enough consumers
are available to ensure that producers do not have to wait to hand over their tasks. Also, the
converse is true in the same sense that enough producers are available to ensure consumers do not
have to wait. In fact, a synchronous queue does not have any internal capacity—not even the
capacity to hold a single object. Therefore, a peek operation would always return null because
nothing is available on the queue. The only time an object is available on the queue is when you are
trying to remove it. If you know Ada, you probably know its rendezvous channels; a synchronous
queue is quite similar to these. This class supports an optional fairness policy that, when set to true,
grants threads access in FIFO order. A synchronous queue is an obvious choice when you need a
task-handoff design where one thread needs to sync with another one.

Chapter 18: Blocking Queues and Synchronizers 479

TransferQueue
Java SE 7 introduced a new interface called TransferQueue that extends the BlockingQueue. Like a
synchronous queue, here a producer may wait for consumers to receive elements. For this, the
transfer method was added to this new interface. The existing put method of the BlockingQueue
enqueues elements without waiting for receipt. The transfer method is a blocking call; the tryTransfer
version of the transfer method is a nonblocking call with an optional timeout. The interface provides
getWaitingConsumerCount, which returns an estimate of the number of consumers waiting to receive
elements via take or a timed poll method. The hasWaitingConsumer method tests whether at least
one consumer is waiting to receive an element. A TransferQueue may be capacity bounded like other
blocking queues. The LinkedTransferQueue provides a concrete implementation of this interface.

We will now look at the use of blocking queues with the help of an example.

Stock-trading System
Consider the operation of a stock market, where millions of trades take place during the hours of
operation. Furthermore, consider all the traders placing buy and sell orders on IBM or Microsoft
stock. We will create a blocking queue to allow these traders to add sell orders to this queue as well
as to pick up the pending orders. At any given time, if the queue is full, a trader will have to wait
for a slot to become empty. Similarly, a buyer will have to wait until a sell order is available in the
queue. To simplify the situation, let’s say that a buyer must always purchase the full quantity of stock
available for sale and that no partial or over-purchases can be made. This is illustrated in Figure 18-2.

FIGure 18-2. Using blocking queues in a stock-trading system

IBM
Trades

Queue

Seller Threads

MSFT
Trades

Queue

Seller Threads

Queue

Seller Threads

Stock Exchange Server

Synchronized trade update

Buyer Threads Buyer Threads Buyer Threads

480 Java Programming

The multiple sellers put their sell orders in the queue. The queue is obviously created and
maintained by the stock exchange server. When a buyer comes in, he picks up an order from
the top of the queue and buys whatever quantity is available in the current sell order. This
requires synchronized access to the database and other resources on the server. The updates to
these resources are made by the underlying code on the server. Neither buyers nor sellers are
responsible for implementing any synchronization mechanism in their code. This is an example
of a blocking queue. The stock exchange server will create and operate such queues for each
traded scrip on the exchange.

The implementation of this scenario is given in Listing 18-1.

Listing 18-1 Stock Exchange Trade Server Based on Blocking Queues

import java.io.IOException;
import java.util.concurrent.*;

public class StockExchange {

 public static void main(String[] args) {
 System.out.printf("Hit Enter to terminate%n%n");
 BlockingQueue<Integer> orderQueue =
 new LinkedBlockingQueue<Integer>();
 Seller seller = new Seller(orderQueue);
 Thread[] sellerThread = new Thread[100];
 for (int i = 0; i < 100; i++) {
 sellerThread[i] = new Thread(seller);
 sellerThread[i].start();
 }
 Buyer buyer = new Buyer(orderQueue);
 Thread[] buyerThread = new Thread[100];
 for (int i = 0; i < 100; i++) {
 buyerThread[i] = new Thread(buyer);
 buyerThread[i].start();
 }
 try {
 while (System.in.read() != '\n');
 } catch (IOException ex) {
 }
 System.out.println("Terminating");
 for (Thread t : sellerThread) {
 t.interrupt();
 }
 for (Thread t : buyerThread) {
 t.interrupt();
 }
 }
}

class Seller implements Runnable {

 private BlockingQueue orderQueue;

Chapter 18: Blocking Queues and Synchronizers 481

 private boolean shutdownRequest = false;
 private static int id;

 public Seller(BlockingQueue orderQueue) {
 this.orderQueue = orderQueue;
 }

 public void run() {
 while (shutdownRequest == false) {
 Integer quantity = (int) (Math.random() * 100);
 try {
 orderQueue.put(quantity);
 System.out.println("Sell order by "
 + Thread.currentThread().getName()
 + ": " + quantity);
 } catch (InterruptedException iex) {
 shutdownRequest = true;
 }
 }
 }
}

class Buyer implements Runnable {

 private BlockingQueue orderQueue;
 private boolean shutdownRequest = false;

 public Buyer(BlockingQueue orderQueue) {
 this.orderQueue = orderQueue;
 }

 public void run() {
 while (shutdownRequest == false) {
 try {
 Integer quantity = (Integer) orderQueue.take();
 System.out.println("Buy order by "
 + Thread.currentThread().getName()
 + ": " + quantity);
 } catch (InterruptedException iex) {
 shutdownRequest = true;
 }
 }
 }
}

In the main function, we create an instance of LinkedBlockingQueue:

BlockingQueue<Integer> orderQueue = new LinkedBlockingQueue<Integer>();

Because the LinkedBlockingQueue has unlimited capacity, traders are able to place any
number of orders in the queue. If we had used an ArrayBlockingQueue instead, we would have
been restricted to a limited number of trades on each scrip.

482 Java Programming

Next, we create an instance of Seller that is a runnable class (the implementation is
discussed later):

Seller seller = new Seller(orderQueue);

We create 100 instances of our traders who put their sell orders in the queue. Each sell order will
have a random quantity. We thus create an array of 100 threads and schedule them for execution:

Thread[] sellerThread = new Thread[100];
for (int i = 0; i < 100; i++) {
 sellerThread[i] = new Thread(seller);
 sellerThread[i].start();
}

Likewise, we create 100 buyers who pick up the pending sell orders:

Buyer buyer = new Buyer(orderQueue);
Thread[] buyerThread = new Thread[100];
for (int i = 0; i < 100; i++) {
 buyerThread[i] = new Thread(buyer);
 buyerThread[i].start();
}

Once the producer and consumer threads are created, they keep running forever, placing orders
on and retrieving orders from the queue and blocking themselves periodically, depending on the
load at the given time. We need some means of terminating the application. Thus, the main thread
now waits for the user to hit the enter key on the keyboard:

while (System.in.read() != '\n');

When this happens, the main function interrupts all the running producer and consumer
threads, requesting that they abort and quit:

System.out.println("Terminating");
for (Thread t : sellerThread) {
 t.interrupt();
}
for (Thread t : buyerThread) {
 t.interrupt();
}

Now, let’s look at the implementation of Seller, which implements the runnable interface
and provides a constructor that takes our OrderQueue as its parameter. The run method sets
up an infinite loop:

public void run() {
 while (shutdownRequest == false) {

In each iteration, we generate a random number for the trade quantity value:

Integer quantity = (int) (Math.random() * 100);

Chapter 18: Blocking Queues and Synchronizers 483

The order is placed in the queue via a call to its put method. Note that this is a blocking call,
so the thread will have to wait for an empty slot in the queue, just in case the queue has a limited
capacity specified at the time of its creation.

orderQueue.put(quantity);

For the user’s benefit, we print the sell order details, along with the details of the thread that
has placed this order, to the user console:

System.out.println("Sell order by "
 + Thread.currentThread().getName() + ": " + quantity);

The run method will run indefinitely, placing orders periodically in the queue. This thread can
be interrupted by another thread via a call to its interrupt method. This is what the main thread does
whenever it wants to stop the trading. The interrupt method generates the Interruptedexception. The
exception handler simply sets the shutdownrequest flag to true, which causes the infinite loop in the
run method to terminate:

} catch (InterruptedException iex) {
 shutdownRequest = true;

Finally, let’s look at the implementation of Buyer, which is mostly similar to Seller, except for
its run method, which we’ll study now. The run method picks up a pending trade from the top of
the queue by calling its take method:

Integer quantity = (Integer) OrderQueue.take();

Note that the method will block if no orders are available in the queue. Once again, we print
the order and thread details for the user’s knowledge:

System.out.println("Buy order by "
 + Thread.currentThread().getName() + ": " + quantity);

Note that now we need synchronized access to the server resources to perform atomic updates
on the server. This now becomes the responsibility of the server implementation, and the seller and
buyer threads do not have to worry about synchronization issues.

Some typical program output is shown here:

Buy order by Thread-136: 46
Buy order by Thread-135: 26
Sell order by Thread-82: 75
Buy order by Thread-133: 96
Sell order by Thread-83: 54
Buy order by Thread-132: 22
Sell order by Thread-84: 29
Sell order by Thread-85: 79
Sell order by Thread-86: 76
Buy order by Thread-131: 35
Sell order by Thread-87: 89

The program terminates when the user hits the enter key on the keyboard.

484 Java Programming

If we had not used the blocking queues in this program, there would be contention in accessing
the trades placed on an unsynchronized queue. Everybody would try grabbing an order selling a
stock below the current market price. Multiple traders would pick up the same order, and chaos
and fights among traders would break out. Because the blocking queue ensures synchronized
access to the queue, the integrity of trades is never compromised.

We used the LinkedBlockingQueue in the preceding example; however, we could have used a
priority-based queue so that the trades are automatically arranged based on their bids and offers.
An order with the highest bid and the lowest offer always tops the queue. To use the priority-based
queue, we would need to provide an appropriate comparator.

In the next section, we discuss the use of the newly introduced LinkedTransferQueue class
(in Java SE 7).

The LinkedTransferQueue example
We already discussed this class and some of its methods earlier in the chapter, so in this section
we jump directly into its application. We will develop a “lucky number” generator that produces
a number using randomization and hands it over to a waiting customer. We create 10 customer
(consumer) threads. The consumer threads are created with a time gap of two seconds. If a
consumer is available, the lucky number generator thread (which is our producer) will produce a
number and hand it over to the consumer. Once a consumer receives its lucky number, it quits.
Thus, each consumer will get exactly one number. The lucky number generator, along with 10
consumers, is given in Listing 18-2.

Listing 18-2 A Lucky Number Generator Based on TransferQueue

import java.util.Random;
import java.util.concurrent.*;

public class LuckyNumberGenerator {

 public static void main(String... args) {
 TransferQueue<String> queue = new LinkedTransferQueue();
 Thread producer = new Thread(new Producer(queue));
 producer.setDaemon(true);
 producer.start();
 for (int i = 0; i < 10; i++) {
 Thread consumer = new Thread(new Consumer(queue));
 consumer.setDaemon(true);
 consumer.start();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException ex) {
 }
 }
 }
}

class Producer implements Runnable {

Chapter 18: Blocking Queues and Synchronizers 485

 private final TransferQueue<String> queue;

 Producer(TransferQueue<String> queue) {
 this.queue = queue;
 }

 private String produce() {
 return " your lucky number " + (new Random().nextInt(100));
 }

 public void run() {
 try {
 while (true) {
 if (queue.hasWaitingConsumer()) {
 queue.transfer(produce());
 }
 TimeUnit.SECONDS.sleep(1);
 }
 } catch (InterruptedException ex) {
 }
 }
}

class Consumer implements Runnable {

 private final TransferQueue<String> queue;

 Consumer(TransferQueue<String> queue) {
 this.queue = queue;
 }

 public void run() {
 try {
 System.out.println(" Consumer "
 + Thread.currentThread().getName() + queue.take());
 } catch (InterruptedException ex) {
 }
 }
}

In the main method, we create an instance of TransferQueue that stores String objects:

TransferQueue<String> queue = new LinkedTransferQueue();

The method then creates a single producer thread and starts it:

Thread producer = new Thread(new Producer(queue));

The producer thread takes the queue we just created as its parameter. After creating the
producer thread, the program creates 10 consumer threads with a gap of two seconds in between
every 2 threads:

Thread consumer = new Thread(new Consumer(queue));

486 Java Programming

The Producer that implements runnable stores the TransferQueue object received in its
constructor in a private field. The run method creates an infinite program loop, and we check
whether a consumer is waiting for a lucky number; if so, we create a lucky number and transfer
it to the waiting consumer:

if (queue.hasWaitingConsumer()) {
 queue.transfer(produce());
}

The producer thread then sleeps for one second before checking for another waiting consumer.
The Consumer class also implements runnable, and in its run method it receives the lucky

number by calling the take method on the TransferQueue object:

System.out.println(" Consumer "
 + Thread.currentThread().getName() + queue.take());

Once a lucky number is obtained, the consumer thread terminates. Some typical program
output is shown here:

 Consumer Thread-1 your lucky number 26
 Consumer Thread-2 your lucky number 53
 Consumer Thread-3 your lucky number 22
 Consumer Thread-4 your lucky number 58
 Consumer Thread-5 your lucky number 25
 Consumer Thread-6 your lucky number 76
 Consumer Thread-7 your lucky number 73
 Consumer Thread-8 your lucky number 67
 Consumer Thread-9 your lucky number 17
 Consumer Thread-10 your lucky number 41

Synchronizers
J2SE 5.0 added several synchronization constructs to the language as a part of the java.util.concurrent
package. It includes classes that offer semaphores, barriers, latches, and exchangers. We will now
study the use of these classes for synchronization.

Semaphores
Semaphores are useful when you want n number of entities to access a shared resource in a
synchronized way. A typical application of semaphores is observed in server applications where
multiple threads compete for resources that are in some way limited in number. For example, a
website with a lot of concurrency may receive several requests at any given time for certain data
stored in an internal database on the server. Because the database connections are expensive in
terms of time to create and resources held, you might create only a limited number of connections
and keep them in a pool. When a web request arrives to access the data, the server application
hands over one of the connections to it, provided one is available in the pool at that instance of
time. If not, the web request is made to wait until some connection is returned to the pool by one
of the existing users. In some situations, the server application may also decide to increase the pool
size if the demand is high. The semaphores help you in achieving this functionality, as you will
see shortly.

Chapter 18: Blocking Queues and Synchronizers 487

Semaphores allow n number of entities to access m number of resources in a synchronized
way. Contrast this with the use of the synchronized keyword, which allows access only by a single
entity. To explain this better, let’s look at a practical situation (see Figure 18-3).

A bank has multiple tellers to serve its customers. Consider this a semaphore count. When a
customer walks into the bank, he acquires a permit to engage the teller. After the agent is engaged,
the semaphore count is reduced by one. When all the available agents are engaged, the count
becomes zero. Now, when a new customer arrives, he cannot obtain a permit and therefore has to
wait until an agent becomes available. When the customer finishes his business, he releases his
permit, resulting in an increase in semaphore count. The new customer can now get a permit. Thus,
multiple customers can now get synchronized access to the bank resources.

The Semaphore class implements the semaphores in Java. When you instantiate this class,
you specify the number of permits. To acquire a permit, you use the acquire method. You may
acquire more than one permit by specifying it as a parameter to the acquire method. This is a
blocking call that blocks itself until a permit is available, or until the waiting thread is interrupted.
If you do not want the thread to block on a permit, use the tryAcquire method. It returns false if
the required number of permits is not available. The method takes an optional parameter that
specifies the amount of time for which the thread will wait for the permit to become available.

The implementation of our bank teller example is given in Listing 18-3.

Listing 18-3 Bank Teller Implementation Based on Semaphores

import java.util.concurrent.*;

public class Bank {

 private final static int COUNT = 100;
 private final static Semaphore semaphore =
 new Semaphore(2, true);

FIGure 18-3. A banking scenario that implements semaphores

Bank tellers

1
Engaged

2
Available

3
Engaged

4
Available

Waiting customers

Semaphore

Count = 2

Permit

488 Java Programming

 public static void main(String[] args) {
 for (int i = 0; i < COUNT; i++) {
 final int count = i;
 new Thread() {

 @Override
 public void run() {
 try {
 if (semaphore.tryAcquire(10,
 TimeUnit.MILLISECONDS)) {
 try {
 Teller.getService(count);
 } finally {
 semaphore.release();
 }
 }
 } catch (InterruptedException ex) {
 }
 }
 }.start();
 }
 }
}

class Teller {

 static public void getService(int i) {
 try {
 System.out.println("serving: " + i);
 Thread.sleep((long) (Math.random() * 10));
 } catch (InterruptedException ex) {
 }
 }
}

The Bank class declares two static variables. The COuNT variable controls the number
of customers who will visit the bank. The semaphore variable holds a reference to the created
Semaphore:

private static final int COUNT = 100;
private final static Semaphore semaphore = new Semaphore(2, true);

The first parameter to the Semaphore constructor specifies the number of permits. In this case,
we have set it to 2, indicating that the bank has only two agents. The second parameter specifies
the fairness setting. When set to true, it indicates the FIFO behavior—first come, first served.
Because overhead is involved in maintaining a queue of customers, this fairness setting need not
always be efficient. As discussed earlier, the default setting is false, where a customer arriving
later may obtain the permit earlier.

Chapter 18: Blocking Queues and Synchronizers 489

In the main method, we set up a loop to process requests from all 100 customers:

for (int i = 0; i < COUNT; i++) {

For each customer, we create an anonymous thread:

new Thread() {

In the overridden run method, the thread tries to acquire a permit by calling the tryAcquire
method of the Semaphore class:

public void run() {
 try {
 if (semaphore.tryAcquire(10, TimeUnit.MILLISECONDS))

The first parameter specifies the amount of time to wait, and the second parameter specifies
the unit of time. The Timeunit class defines several constants that allow you to specify the unit of
time, even in terms of the number of days. In our case, the thread waits for 10 milliseconds to
acquire a permit. If a permit is not obtained within this amount of time, the thread simply gives
up and continues with its work. This means that the customer no longer waits in the bank and just
walks away. If the permit is obtained, the thread requests the service by calling the getService
method on the Teller class, which is discussed later:

Teller.getService(count);

The getService method takes a parameter that identifies the current iteration count and thus
the executing thread. After the thread is done with the banker, it releases the permit by calling the
release method on the semaphore object:

} finally {
 semaphore.release();
}

Note that we have created an instance of an anonymous Thread class. To start this, we call
the start method on the created instance.

Now, let’s look at the Teller class. The Teller class defines one static method called
getService:

static public void getService(int i) {

In the method, we print the id for the currently executing thread:

try {
 System.out.println("serving: " + i);

We make the thread sleep for a random amount of time:

Thread.sleep((long) (Math.random() * 10));

The sleep time varies, anywhere from 0 to 10 milliseconds. This is done to simulate the
condition that each customer will take a variable amount of time with the agent. Due to this,
when you run the program multiple times, you will find that the number of customers served
on each run differs from the previous runs.

490 Java Programming

The output from two sample runs is shown here:

run 1:

serving: 1
serving: 7
serving: 9
serving: 93
serving: 94

run 2:

serving: 0
serving: 7
serving: 5

In the second run, obviously the customers were too impatient with the speed of the tellers
and quickly left the bank. Now, try changing the customer wait time from 10 milliseconds to a
higher value. You will now find that a greater number of customers is now served. This is because
the customers are now willing to spend more time in the bank waiting for an agent to become
available. You can also experiment by changing the number of permits to allocate more agents.

Barriers
A barrier is like a common crossover point, where everybody waits to join up with the others in
the team before crossing over. This is illustrated in Figure 18-4.

All members of the team decide to meet at one end of the bridge before crossing over. Once
a member arrives, he has to wait for others to reach the same junction. When everyone hits the
barrier, the program can continue with the next task. Once a barrier (that is, a meeting point) is
decided, any other team can use the same barrier to synchronize their actions.

Java provides the barrier implementation in the CyclicBarrier class. Using this class, a set of
threads is made to wait for each other to reach a common barrier point. This is typically used in
programs where a fixed-sized party of threads must occasionally wait for each other before they

FIGure 18-4. Illustrating a barrier type of synchronization construct

Meeting
point

Barrier

Execute
other task

Chapter 18: Blocking Queues and Synchronizers 491

can all proceed further. For example, in horse racing, all horses must reach the starting gate
before the race starts. This barrier is considered cyclic because it can be reused after all waiting
threads are released.

The CyclicBarrier class constructor takes a parameter that decides the number of members in
the team. Each member of the team, after completing its work, arrives at the barrier and waits by
calling its await method. When all the members arrive at the barrier, the barrier is broken and the
program can proceed. Another variation of the constructor takes an additional parameter that
refers to a runnable class, which is executed after the barrier breaks.

To illustrate the use of this class, we will write a program that computes ln (1–x), where ln is
the natural logarithm. The definition is given here:

ln (1-x) = - (x + x2/2 + x3/3 + x4/4 + ...) where |x| < 1

We will create a thread that computes a single term of this series. Thus, to compute 10 terms,
we will create 10 threads. Each thread puts the result in a common array and waits at a barrier for
the others to finish. When everybody finishes, a waiting thread computes the array sum and displays
the result to the user. The implementation is given in Listing 18-4.

Listing 18-4 Natural Logarithm Calculator Demonstrating a Cyclic Barrier

import java.util.concurrent.*;

public class NaturalLogCalc {

 private static final int numberOfTerms = 10;
 private static double[] termArray = new double[numberOfTerms];
 private static final float x = 0.2f;

 public static void main(String[] args) {
 CyclicBarrier barrier = new CyclicBarrier(numberOfTerms, new Runnable() {

 @Override
 public void run() {
 System.out.println("Computing series sum");
 double sum = 0;
 for (double term : termArray) {
 sum += term;
 }
 System.out.println("ln (1-" + x + ") equals " + -sum);
 }
 });
 for (int i = 0; i < numberOfTerms; i++) {
 new Thread(new TermCalc(barrier, i)).start();
 }
 System.out.println("Waiting...");
 }

 private static class TermCalc implements Runnable {

492 Java Programming

 private int termIndex;
 private CyclicBarrier barrier;

 public TermCalc(CyclicBarrier barrier, int termIndex) {
 this.barrier = barrier;
 this.termIndex = termIndex;
 }

 @Override
 public void run() {
 double result = Math.pow(x, termIndex + 1) / (termIndex + 1);
 termArray[termIndex] = result;
 System.out.println("Term " + (termIndex + 1) + ": " + result);
 try {
 barrier.await();
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 } catch (BrokenBarrierException ex) {
 ex.printStackTrace();
 }
 }
 }
}

The NaturalLogCalc class declares a few static variables:

private static final int numberOfTerms = 10;
private static double[] termArray = new double[numberOfTerms];
private static final float x = 0.2f;

The numberOfTerms decides the number of terms in the series to compute. The termArray
provides an array to store the result of each computation. The static variable x sets the value for x
in the expression ln (1–x). The main method creates an instance of the CyclicBarrier class:

CyclicBarrier barrier = new CyclicBarrier(numberOfTerms, new Runnable() {

 public void run() {
 System.out.println("Computing series sum");
 double sum = 0;
 for (double term : termArray) {
 sum += term;
 }
 System.out.println("ln (1-" + x + ") equals " + -sum);
 }
});

The first parameter to the constructor decides the number of parties. This is set to the number
of terms we want to compute. This naturally equals the number of threads we will create for
computing terms. The second parameter to the constructor is an instance of the runnable class
that will be executed after the barrier is broken. We use an anonymous class here. In the
overridden run method, the program computes the sum of all elements of the termArray and
prints the result to the user.

Chapter 18: Blocking Queues and Synchronizers 493

The main program now proceeds to create the threads for computing individual terms:

for (int i = 0; i < numberOfTerms; i++) {
 new Thread(new TermCalc(barrier, i)).start();
}

The TermCalc is a runnable class. Let’s look at its implementation:

private static class TermCalc implements Runnable {

The class is declared private because it will be used only within the enclosing class. It is also
declared static so that it is accessible within the static main method. In the run method, we compute
the term value and store it in the termArray at an appropriate index:

 public void run() {
 double result = Math.pow(x, termIndex + 1) / (termIndex + 1);
 termArray[termIndex] = result;

After the computation is done, the thread waits at the barrier:

barrier.await();

After everybody arrives at the barrier, the thread comes out of its await method call and
proceeds to completion. At this stage, the termArray is fully filled and the main program can
proceed to compute the sum of all the terms. When you run the program, you will see output
similar to the following:

Waiting...
Term 1: 0.20000000298023224
Term 3: 0.002666666785875958
Term 7: 1.8285716193063003E-6
Term 10: 1.0240001525879009E-8
Term 8: 3.2000003814697465E-7
Term 6: 1.0666667620341019E-5
Term 4: 4.0000002384185847E-4
Term 2: 0.020000000596046452
Term 5: 6.400000476837173E-5
Term 9: 5.688889651828388E-8
Computing series sum
ln (1-0.2) equals -0.22314355275894068

Note that every time you run the program, you will see a different order of execution for
the threads. Try changing the value of x and the number of terms to compute and observe the
execution results.

Countdown Latches
This is yet another synchronization tool provided beginning in J2SE 5.0. In some ways, a
countdown latch is like a generalized barrier from the previous section. It provides methods that allow
threads to wait for a condition; the only difference is that in the case of a barrier, the threads wait on
other threads, whereas in the case of a latch, threads wait for a certain count to reach zero. You
specify this count in the constructor. When this count reaches zero, all waiting threads are released.

494 Java Programming

After the count reaches zero, the latch is not reset and the condition that is now set to true remains
true forever. Note that in the beginning, the latch condition starts out with a false status. We will
now look at the concept of a countdown latch in the context of the stock-trading server discussed
previously.

In our earlier stock-trading example, which was discussed in the context of blocking queues,
we created several buyer and seller threads. Ideally, all these trades should have equal privilege
when the first order is placed on the exchange. However, because our program creates threads in
a definite chronological order, it is likely that the threads created first will find an opportunity to
execute before the other threads created later. To avoid this situation, we can make all the threads
wait with their orders until we give them the go-ahead signal. This is the purpose of the countdown
latch, which is why Java provides the CountDownLatch class. We specify the count in its
constructor. The countDown method decrements the count by one. Each thread, whenever it is
ready, is made to wait for this count to become zero by calling the await method. Thus, we create
all the threads, making each thread wait in its run method. After we have created all the threads,
we bring the count down to zero. Now, the threads will proceed with their execution. Which
thread gets the CPU first is now solely decided by the thread scheduler.

Likewise, when the stock exchange closes its operations at the end of the trading day, it may
need to confirm that all running threads have completed fully before proceeding with further
cleanup. This can be achieved by setting the count to 200 (note that we have created a combined
total of 200 threads of producers and consumers). We will ask each thread to decrement the count
by calling the countDown method at the end of its run method. We make the main thread wait
until this count becomes zero. Thus, the main thread cannot proceed until all threads signal their
successful completion of the run method. Once this happens, the main thread will continue with
any further cleanup operations.

The modified program that implements these countdown latches is given in Listing 18-5.

Listing 18-5 Enhanced Stock Exchange Using a Countdown Latch

import java.io.IOException;
import java.util.concurrent.*;

public class EnhancedStockExchange {

 public static void main(String[] args) {
 BlockingQueue<Integer> orderQueue =
 new LinkedBlockingQueue<Integer>();
 CountDownLatch startSignal = new CountDownLatch(1);
 CountDownLatch stopSignal = new CountDownLatch(200);
 Seller seller = new Seller(orderQueue, startSignal, stopSignal);
 Thread[] sellerThread = new Thread[100];
 for (int i = 0; i < 100; i++) {
 sellerThread[i] = new Thread(seller);
 sellerThread[i].start();
 }
 Buyer buyer = new Buyer(orderQueue, startSignal, stopSignal);
 Thread[] buyerThread = new Thread[100];
 for (int i = 0; i < 100; i++) {
 buyerThread[i] = new Thread(buyer);

Chapter 18: Blocking Queues and Synchronizers 495

 buyerThread[i].start();
 }
 System.out.println("Go");
 startSignal.countDown();
 try {
 while (System.in.read() != '\n');
 } catch (IOException ex) {
 }
 System.out.println("Terminating");
 for (Thread t : sellerThread) {
 t.interrupt();
 }
 for (Thread t : buyerThread) {
 t.interrupt();
 }
 try {
 stopSignal.await();
 } catch (InterruptedException ex) {
 }
 System.out.println("Closing down");
 }
}

class Seller implements Runnable {

 private BlockingQueue orderQueue;
 private boolean shutdownRequest = false;
 private static int id;
 private CountDownLatch startLatch, stopLatch;

 public Seller(BlockingQueue orderQueue,
 CountDownLatch startLatch, CountDownLatch stopLatch) {
 this.orderQueue = orderQueue;
 this.startLatch = startLatch;
 this.stopLatch = stopLatch;
 }

 public void run() {
 try {
 startLatch.await();
 } catch (InterruptedException ex) {
 }
 while (shutdownRequest == false) {
 Integer quantity = (int) (Math.random() * 100);
 try {
 orderQueue.put(quantity);
 System.out.println("Sell order producer # "
 + Thread.currentThread().getName()
 + ": " + quantity);
 } catch (InterruptedException iex) {

496 Java Programming

 shutdownRequest = true;
 }
 }
 stopLatch.countDown();
 }
}

class Buyer implements Runnable {

 private BlockingQueue orderQueue;
 private boolean shutdownRequest = false;
 private CountDownLatch startLatch, stopLatch;

 public Buyer(BlockingQueue orderQueue,
 CountDownLatch startLatch, CountDownLatch stopLatch) {
 this.orderQueue = orderQueue;
 this.startLatch = startLatch;
 this.stopLatch = stopLatch;
 }

 public void run() {
 try {
 startLatch.await();
 } catch (InterruptedException ex) {
 }
 while (shutdownRequest == false) {
 try {
 Integer quantity = (Integer) orderQueue.take();
 System.out.println("Buy order consumer # "
 + Thread.currentThread().getName()
 + ": " + quantity);
 } catch (InterruptedException iex) {
 shutdownRequest = true;
 }
 }
 stopLatch.countDown();
 }
}

In the main method, we create two latches as follows:

CountDownLatch startSignal = new CountDownLatch(1);
CountDownLatch stopSignal = new CountDownLatch(200);

Note that the count for the start signal is set to 1 and that for the stop signal is set to 200. Thus,
one single countdown operation on the start signal will release all its waiting threads for execution.
The stop signal count has to go from 200 to 0 before the waiting main thread can proceed. Each of
our individual buyer and seller threads will decrement the count by one. We send the references
to these latches in the Buyer and Seller constructors:

Seller seller = new Seller(orderQueue, startSignal, stopSignal);

Chapter 18: Blocking Queues and Synchronizers 497

At the beginning of the run method of both Buyer and Seller, we add the following code:

try {
 startLatch.await();
} catch (InterruptedException ex) {
}

Thus, after the thread is created, it is made to wait on the startLatch for a go-ahead signal. In
the main method, after we have created all the threads, we execute the following statement:

startSignal.countDown();

The countDown method brings the start latch count to zero. Now, all created threads can begin
their execution. All these ready-to-run threads will acquire the CPU based on the scheduling policy
of the underlying platform. The point is that each trader gets an equal priority to make the first trade.

At the end of the run method of both the Buyer and Seller classes, we add the following
statement:

stopLatch.countDown();

This decrements the stop count by one. In the main method, we wait on this count to become
zero by executing the await method:

try {
 stopSignal.await();
} catch (InterruptedException ex) {
}
System.out.println("Closing down");

The program proceeds only when the stopSignal count goes to zero. By this time, every trader
has had a chance to complete its pending trade. The main thread can now proceed with rest of
the cleanup.

Phaser
Java SE 7 introduced a new reusable synchronization barrier called Phaser that is similar in
functionality to CyclicBarrier and CountDownLatch; however, this class provides for more flexible
usage. The barriers you’ve studied so far worked on a fixed number of parties. A phaser works with
a variable number of barriers, in the sense that you can register a new party at any time and an
already registered party can deregister itself upon arrival at the barrier. So the number of parties
registered to synchronize on a phaser may vary over time. Like a CyclicBarrier, a phaser can be
reused. This means that after a party has arrived at a phaser, it may register itself one more time and
await another arrival. Thus, a phaser will have many generations. Once all the parties registered for
a particular phase arrive at the phaser, the phase number is advanced. The phase number starts with
zero and, after reaching Integer.MAX_VALue, wraps around to zero again. On a phase change, an
optional action may be performed by overriding its onAdvance method. This method can also
be used to terminate the phaser; once the phaser is terminated, all synchronization methods
immediately return and attempts to register new parties fail.

Another important feature of a phaser is that it may be tiered. This allows you to arrange
phasers in tree structures to reduce contention. A smaller group obviously has fewer parties
contending for synchronization. Arranging a large number of parties into smaller groups would
thus reduce contention. Even though it increases the total throughput, building a phaser requires

498 Java Programming

more overhead. Finally, one more important feature of a phaser is its monitoring. An independent
object can monitor the current state of a phaser. This monitor can query the phaser for the
number of parties registered and the number of parties that have arrived and have not arrived
at a particular phase number.

Now, let’s look at the use of the Phaser class with a practical example. Suppose we want to
write a horse-racing simulation game. We could consider the starting gate of the race to be the
barrier; when all the horses arrive at the starting gate, the race may begin. The time that each horse
needs to reach the starting gate may vary considerably and therefore synchronization at the barrier
is required. Once the race begins, each horse will deregister from the phaser, and the same phaser
(starting gate) may be reused for another race, scheduled at a later time. The complete simulation
program is presented in Listing 18-6.

Listing 18-6 A Horse-racing Simulation Program Using Phaser

import java.util.*;
import java.util.concurrent.Phaser;
import java.util.concurrent.atomic.AtomicInteger;

public class HorseRace {

 private final int NUMBER_OF_HORSES = 12;
 private final static int INIT_PARTIES = 1;
 private final static Phaser manager = new Phaser(INIT_PARTIES);

 public static void main(String[] args) {
 Thread raceMonitor = new Thread(new RaceMonitor());
 raceMonitor.setDaemon(true);
 raceMonitor.start();
 new HorseRace().manageRace();
 }

 public void manageRace() {
 ArrayList<Horse> horseArray = new ArrayList<Horse>();
 for (int i = 0; i < NUMBER_OF_HORSES; i++) {
 horseArray.add(new Horse());
 }
 runRace(horseArray);
 }

 private void runRace(Iterable<Horse> team) {
 log("Assign all horses, then start race");
 for (final Horse horse : team) {
 final String dev = horse.toString();
 log("assign " + dev + " to the race");
 manager.register();
 new Thread() {

 @Override
 public void run() {
 try {

Chapter 18: Blocking Queues and Synchronizers 499

 Thread.sleep((new Random()).nextInt(1000));
 } catch (InterruptedException ex) {
 }
 log(dev + ", please await all horses");
 manager.arriveAndAwaitAdvance();
 horse.run();
 }
 }.start();
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 }
 log("All arrived at starting gate, start race");
 manager.arriveAndDeregister();
 }

 private static void log(String msg) {
 System.out.println(msg);
 }

 private static class Horse implements Runnable {

 private final static AtomicInteger idSource = new AtomicInteger();
 private final int id = idSource.incrementAndGet();

 @Override
 public void run() {
 log(toString() + ": running");
 }

 @Override
 public String toString() {
 return "horse #" + id;
 }
 }

 private static class RaceMonitor implements Runnable {

 @Override
 public void run() {
 while (true) {
 System.out.println("Number of horses ready to run: "
 + HorseRace.manager.getArrivedParties());
 try {
 Thread.sleep(1);
 } catch (InterruptedException ex) {
 }
 }
 }
 }
}

500 Java Programming

We define the maximum horse count as 12, which is the typical average for big horse races.
We create a phaser by passing the initial count for the number of parties as 1:

private final static int INIT_PARTIES = 1;
private final static Phaser manager = new Phaser(INIT_PARTIES);

As more horses (parties) register on this phaser, the number of parties awaiting the
synchronization barrier will increase.

In the main method, we declare a thread variable called raceMonitor for holding a reference
to a thread object that independently monitors the number of horses that have arrived at the
starting gate. We create a monitoring thread that monitors the number of horses that have arrived
at the starting gate at a particular instance of time:

Thread raceMonitor = new Thread(new RaceMonitor());
raceMonitor.setDaemon(true);
raceMonitor.start();

After this, we create an application instance and call its managerace method:

new HorseRace().manageRace();

In the managerace method, we create an array for holding the Horse objects and initialize it
with the instances of Horses. We start the race by calling the runrace method, which takes this
horse array as an argument.

In the runrace method, each Horse in the team is registered with the phaser via a call to its
register method:

manager.register();

After this registration, we wait for a variable amount of time before calling the
arriveAndAwaitAdvance method. The current thread then arrives at the phaser and waits
for others to arrive.

After all horses arrive at the starting gate, the main thread sleeps for one second and then we
call the arriveAndDeregister method to release each horse from the starting gate. Now, the actual
race begins. We can use the phaser again to start another race by reregistering a set of horses.

The implementation of the Horse class is very straightforward. In the run and toString methods,
we simply print a message to the user. The most important thing in this class is the generation of the
unique ID for each horse. To create a unique ID, we would have used the synchronization
techniques we covered so far to increment the field ID. The class AtomicInteger provides this
facility with improved efficiency and without the use of synchronization constructs. We create a
static variable by instantiating the AtomicInteger class:

private final static AtomicInteger idSource = new AtomicInteger();

The incrementAndGet method atomically increments the value of this variable by one:

private final int id = idSource.incrementAndGet();

Note that creating multiple instances of the Horse class causes them to contend for this variable.
The raceMonitor thread class calls the getArrivedParties method on the manager (phaser

instance) to periodically print the number of horses that have arrived at the starting gate.

Chapter 18: Blocking Queues and Synchronizers 501

Typical partial output on a sample run is given here:

Number of horses ready to run: 0
Assign all horses, then start race
assign horse #1 to the race
assign horse #2 to the race
assign horse #3 to the race
Number of horses ready to run: 0
assign horse #4 to the race
assign horse #5 to the race
...
horse #3, please await all horses
horse #7, please await all horses
Number of horses ready to run: 5
horse #12, please await all horses
All arrived at starting gate, start race
Number of horses ready to run: 12
horse #5: running
horse #12: running
horse #9: running
horse #6: running

The output shows the various states of the application. In the beginning, we assign 12 horses
to the race. As horses arrive at the starting gate, they wait for all the others to arrive. Once all the
horses arrive, we start the race. In the output, you will see several periodic monitoring messages
that tell you how many horses have reached the starting gate at a particular instance of time.

exchangers
An exchanger allows two threads to exchange objects at a rendezvous point; this is generally
useful in pipeline designs. An exchanger is often used when a producer and consumer want to
exchange a resource. Remember the producer-consumer problem from the previous chapter? We
used wait-notify in its implementation; the same could now be achieved using exchangers. The
difference is that in the producer-consumer scenario, the producer produces objects, puts them in
a shared channel, and notifies the consumer. The consumer then picks up the produced objects
from the shared channel. In the case of an exchanger, each thread presents some object upon entry
into the exchange method and receives an object presented by the other thread upon its return
from the exchange method. Typically this is used in writing communications software where
there are two threads—one that collects some data in a communication buffer and the other that
empties the buffer and processes the data. The first thread waits until its buffer is completely
filled. At this time, it will exchange its full buffer with an empty buffer provided by the consumer
thread. The process will continue in a loop, where in each iteration the producer waits for its
buffer to be completely filled and then exchanges it for an empty buffer from the consumer.

The producer puts the items to exchange in its buffer. When the buffer gets full, the producer
waits for the consumer with an empty buffer where the contents can be transferred. Similarly,
the consumer consumes the items from its buffer. When the buffer is empty, the consumer waits
for the producer. When waits occur, the two buffers are exchanged and then both parties can
continue. For this to work satisfactorily, you must be sure that the producer is going to produce
items on an ongoing basis; otherwise, the items already added to the buffer will sit there waiting
for the buffer to get full.

502 Java Programming

Java implements this functionality with the help of the exchanger class. The class constructor
does not take any parameters, except for the type of object to exchange:

Class Exchanger<V>

The exchange method performs the actual exchange:

public V exchange(V x) throws InterruptedException

Another variation of the exchange method allows you to define a timeout during which the
thread remains dormant. Let’s now look at an example of using this class (see Figure 18-5).

The producer produces items and hands them over to the consumer on an on-going basis.
Both are given baskets. Initially, both baskets are empty. The producer produces the items and
puts them in his basket. The consumer keeps waiting for the items to be ready. When the
producer’s basket gets full, the two baskets are exchanged. This will be done with the help of the
exchanger class. The exchange does not require the use of any of the synchronization mechanisms
discussed in the previous chapter. The exchanger class takes care of all the needed synchronization
while accessing the two baskets in two threads. Now, the producer has an empty basket and the
consumer has a full basket. The producer will produce more items and fill his empty basket,
while the consumer will consume the items from his full basket. Eventually, the producer’s
basket will become full and the consumer’s basket will become empty. Another exchange
will take place at this time, and the process repeats itself. We will now write a program to
implement this operation (see Listing 18-7). Note that the program does not contain any
explicit synchronization constructs.

Listing 18-7 Producer/Consumer Implementation Using Exchanger

import java.util.*;
import java.util.concurrent.Exchanger;

public class ProductExchanger {

 public static Exchanger<List<Integer>> exchanger =
 new Exchanger<List<Integer>>();

 public static void main(String[] args) {
 Thread producer = new Thread(new Producer());

FIGure 18-5. Exchanger in action

Producer Consumer

Exchange

Chapter 18: Blocking Queues and Synchronizers 503

 Thread consumer = new Thread(new Consumer());
 producer.start();
 consumer.start();
 try {
 while (System.in.read() != '\n') {
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 producer.interrupt();
 consumer.interrupt();
 }
}

class Producer implements Runnable {

 private static List<Integer> buffer = new ArrayList<Integer>();
 private boolean okToRun = true;
 private final int BUFFSIZE = 10;

 public void run() {
 int j = 0;
 while (okToRun) {
 if (buffer.isEmpty()) {
 try {
 for (int i = 0; i < BUFFSIZE; i++) {
 buffer.add((int) (Math.random() * 100));
 }
 Thread.sleep((int) (Math.random() * 1000));
 System.out.print("Producer Buffer: ");
 for (int i : buffer) {
 System.out.print(i + ", ");
 }
 System.out.println();
 System.out.println("Exchanging ...");
 buffer = ProductExchanger.exchanger.exchange(buffer);
 } catch (InterruptedException ex) {
 okToRun = false;
 }
 }
 }
 }
}

class Consumer implements Runnable {

 private static List<Integer> buffer = new ArrayList<Integer>();
 private boolean okToRun = true;

504 Java Programming

 public void run() {
 while (okToRun) {
 try {
 if (buffer.isEmpty()) {
 buffer =
 ProductExchanger.exchanger.exchange(buffer);
 System.out.print("Consumer Buffer: ");
 for (int i : buffer) {
 System.out.print(i + ", ");
 }
 System.out.println("\n");
 Thread.sleep((int) (Math.random() * 1000));
 buffer.clear();
 }
 } catch (InterruptedException ex) {
 okToRun = false;
 }
 }
 }
}

The Productexchanger class first creates an instance of exchanger:

public static Exchanger<List<Integer>> exchanger =
 new Exchanger<List<Integer>>();

The exchanger operates on a list of integers as specified in the type parameter of its constructor.
This is declared public and static so that it can be accessed by the producer and consumer thread
classes without creating the class instance. The main method simply creates the two threads and
starts them:

Thread producer = new Thread(new Producer());
Thread consumer = new Thread(new Consumer());
producer.start();
consumer.start();

To terminate the program, the main thread waits indefinitely for the user to hit the enter key:

while (System.in.read() != '\n') {
}

When this happens, both producer and consumer threads are interrupted in their work:

producer.interrupt();
consumer.interrupt();

Note that this is the nice way of stopping a running thread. You make a request to the running
thread by interrupting it and then let the running thread decide when to stop. It would usually do
so after finishing whatever it is currently doing and comes to the logical end of a running process.

Now, let’s look at the producer class:

class Producer implements Runnable {

Chapter 18: Blocking Queues and Synchronizers 505

First, we create an empty buffer for the producer to hold our Integer items:

private static List<Integer> buffer = new ArrayList<Integer>();

In the run method, we set up an infinite loop. The okTorun flag is set to true by default. It
will be reset when the thread is interrupted. When this occurs, the loop will break.

while (okToRun) {

We now check whether the buffer is empty. If it is, we add a few random numbers to it until
the buffer is filled completely:

if (buffer.isEmpty()) {
 try {
 for (int i = 0; i < BUFFSIZE; i++) {
 buffer.add((int) (Math.random() * 100));
 }

We then put the thread to sleep for a random amount of time to simulate the condition that
producing and filling items take some finite amount of time:

Thread.sleep((int) (Math.random() * 1000));

The program now prints the buffer’s contents for the user’s knowledge:

System.out.print("Producer Buffer: ");
for (int i : buffer) {
 System.out.print(i + ", ");
}

At this stage, the producer thread requests an exchange with the exchanger. To do this, it calls
the exchange method on the exchanger object defined in the main program:

buffer = ProductExchanger.exchanger.exchange(buffer);

The exchange method takes the buffer to exchange as its parameter. After the exchange is
performed, the returned value will be the exchanged buffer, which in our case is going to be an
empty buffer. A call to the exchange method makes the calling thread wait for another thread to
arrive at this exchange point. When the other thread arrives, it transfers its object to it, receiving
the object given by the second thread in return. Note that a waiting thread may be interrupted, and
if that happens, it will no longer continue to wait on the other thread. If the current thread has its
interrupted status set upon entry into the exchange method, an Interruptedexception is thrown
and the thread’s interrupted status is cleared. When a thread calls an exchange method, if at that
time another thread is already waiting at the exchange point, it is awakened and scheduled to run.
The waiting thread receives the object passed in by the current thread and the current thread
returns immediately. If no other thread is waiting at the exchange when a thread calls the exchange
method, it is made to wait at the exchange point. It continues doing so until the point when some
other thread enters the exchange or interrupts the current thread.

506 Java Programming

Finally, in the exception handler we simply reset the okTorun flag so that the infinite loop
will terminate on its next iteration:

} catch (InterruptedException ex) {
 okToRun = false;
}

Now, let’s look at the Consumer class. As with the Producer class, we create an empty buffer
for the use of the consumer:

class Consumer implements Runnable {
 private static List<Integer> buffer = new ArrayList<Integer>();

In the run method, we set up an infinite loop that is terminated only when the thread is
interrupted:

while (okToRun) {

We test whether the buffer is empty; if it is, we initiate an exchange. Note that the actual
exchange does not take place until both parties are ready for an exchange. If the producer thread
fills its buffer before the consumer thread is able to empty its buffer, the producer thread is made
to wait at the exchange point. Similarly, if the consumer buffer clears its buffer before the
producer is able to fill its buffer completely, the consumer is made to wait at the exchange point.
When both buffers are ready for an exchange (that is, when the producer buffer is full and the
consumer buffer is empty), the exchange takes place:

if (buffer.isEmpty()) {
 buffer = ProductExchanger.exchanger.exchange(buffer);

After the exchange, we print the buffer contents to verify that the consumer has actually
received the items:

System.out.print("Consumer Buffer: ");
for (int i : buffer) {
 System.out.print(i + ", ");
}

To simulate the condition that the consumer will take a finite amount of time to consume all
the contents of the basket, we cause the thread to sleep for a variable amount of time before
emptying the buffer:

Thread.sleep((int) (Math.random() * 1000));
buffer.clear();

Typical program output is shown here:

Producer Buffer: 19, 19, 35, 25, 53, 55, 15, 41, 50, 14,
Exchanging ...
Consumer Buffer: 19, 19, 35, 25, 53, 55, 15, 41, 50, 14,

Producer Buffer: 65, 39, 21, 53, 95, 80, 90, 70, 25, 32,
Exchanging ...
Consumer Buffer: 65, 39, 21, 53, 95, 80, 90, 70, 25, 32,

Chapter 18: Blocking Queues and Synchronizers 507

Producer Buffer: 7, 26, 60, 24, 4, 54, 74, 22, 71, 52,
Exchanging ...
Consumer Buffer: 7, 26, 60, 24, 4, 54, 74, 22, 71, 52,

Producer Buffer: 20, 34, 50, 14, 91, 75, 39, 7, 98, 63,
Exchanging ...
Consumer Buffer: 20, 34, 50, 14, 91, 75, 39, 7, 98, 63,

Producer Buffer: 49, 49, 78, 72, 1, 40, 43, 79, 7, 35,
Exchanging ...
Consumer Buffer: 49, 49, 78, 72, 1, 40, 43, 79, 7, 35,

Note that after each exchange, the contents of the consumer buffer are identical to the
contents of the producer buffer. Thus, the buffers were exchanged as expected without the use
of any explicit synchronization constructs.

Summary
In this chapter, you studied many synchronization constructs provided in Java beginning in J2SE 5.0.
The use of these constructs relieves developers from employing any explicit synchronization in their
programs. Many synchronization needs can be modeled and solved using blocking queues. Java
provides several classes to implement blocking queue functionality, where you can create both
bounded and dynamically growing queues. You can prioritize the objects in the queue for obtaining
the service, and you can also decide on a delayed service for each object.

Besides blocking queues, J2SE 5.0 defines semaphores, countdown latches, barriers, and
exchangers. Semaphores allow the sharing of n shared resources among competing threads. The
countdown latch makes threads wait until the running threads bring a count value down to zero.
A barrier is a common point where the running threads meet after completing their individual
work. After each thread arrives at the barrier, a new task can be initiated. Until then, the new task
is made to wait. The exchanger allows an easy exchange between the individual buffers of the
producer and the consumer. The producer fills the buffer to its completion, and the consumer
consumes the items from its buffer until it becomes empty. When both the conditions are met
(that is, the producer buffer is full and the consumer buffer is empty), the exchanger performs an
exchange of the two buffers.

This chapter covered many synchronization constructs. The need for concurrency-enabled
programs is even bigger than the synchronization mechanisms discussed in this chapter. You will
understand these needs and how Java addresses them, including its latest Fork/Join framework, in
the next chapter.

Chapter
19

Callables, Futures,
Executors, and Fork/Join

509

510 Java Programming

he last two chapters covered various aspects of thread programming. Thread
programming is a vast subject. So far we have discussed how to create threads,
the various thread-synchronization issues, how deadlocks occur, and the different
mechanisms introduced in J2SE 5.0 to deal with thread synchronization. The
Concurrency framework defines several more classes that reflect the additional

aspects of thread programming we have not covered so far. The last chapter covered the different
types of blocking queues and several constructs for synchronization. This chapter now focuses on
the more advanced features of thread programming, including the latest additions in Java SE 7.

If you are a developer of highly scalable large-scale applications, you will need the features
covered in this chapter. This chapter will definitely help if you want to develop highly scalable,
CPU-intensive, real-time applications with lots of concurrency deployed on server farms for
scalability and performance. You will learn how to create a thread pool, how to submit tasks
to a thread pool so that they run concurrently, how to obtain the results of concurrent tasks, how
to monitor their processing, and so on. You will learn how to parallelize a large task by dividing
it into subtasks and executing them concurrently. This includes a good coverage of the newly
introduced (Java SE 7) Fork/Join framework.

Specifically, here is what you’ll learn in this chapter:

What callables and futures are■■

Understanding the ■ Callable interface

Understanding the ■ Future interface

Using ■ FutureTask class

Understanding executors ■

Creating and using thread pools ■

Scheduling tasks for future execution ■

Repeating a task with some periodicity ■

Retrieving the result of a first completed task ■

Understanding the Fork/Join framework ■

Understanding thread-safe collections■■

Callables and Futures
So far you have seen that to create a thread, you need to either implement the Runnable interface
or extend your class from the Thread class. This is simple enough; however, the created thread
has a serious limitation—its run method cannot return a value to its creator. Therefore, many
programmers have resorted to such inelegant techniques as writing to a file to return the results.
Another problem with Runnable is that it cannot throw any checked exceptions, so you must
handle all exceptions that occur during the code execution in the run method itself. Fortunately,
J2SE 5.0 addressed this programmer need and provided what is called a Callable and a Future.
So what are they? Whereas Thread is a class that simply models an execution of a task with no
expected result, a Callable is a construct that models execution of a task that produces a result.
A Future takes this one step further and models the execution of a task that allows for interrogation
of its progress and retrieval of its result.

T

Chapter 19: Callables, Futures, Executors, and Fork/Join 511

Prior to J2SE 5.0, if you wanted a thread to return a value to its creator, you would probably
write code similar to this:

Thread worker = new Thread(new WorkerThread());
worker.start();
worker.join();
String value = getSavedValue();

Although nothing is inherently wrong with this code, J2SE 5.0 provides a different and better
approach to this problem. You can now use the Callable interface for this purpose. A Future helps
in monitoring the Callable and retrieves its result. So let’s look at the Callable and Future interfaces.

The Callable Interface
A Callable interface is similar to a Runnable interface with a single-parameterized method
called call:

public interface Callable<V> {
 V call() throws Exception;
}

The call method can return any type, as specified by the generic parameter. Note that unlike
the run method in Runnable, the call method throws a checked exception. To implement Callable
with no return value, use Callable<Void>.

You cannot directly submit a Callable into a Thread for its execution. You need to use
ExecutorService to execute the Callable object. You do so by calling its submit method:

<T> Future<T> submit(Callable<T> task)

The submit method returns a Future object.

The Future Interface
When a caller submits a task to an executor, it returns a Future object to the caller. The interface
is declared as

interface Future <V>

where V represents the result type returned by the Future’s get method. The caller can use this
Future object to gain control over the requested task. The get method returns the result to the
caller. This method waits if the computation is not yet over. The overloaded get method accepts a
timeout as its parameter and waits, if necessary, for, at most, the given time for the computation
to complete and then retrieves its result, if available. The isDone method checks whether the task
is completed and returns true if so. The cancel method attempts to cancel the execution of the task,
and the isCancelled method returns true if the task was cancelled before it completed normally.

FutureTask is a wrapper class that implements both the Future and Runnable interfaces and
provides a convenient way to convert a Callable into both a Future and a Runnable.

How Callable and Future Work
To understand how to use Callable and Future in your applications, look at the diagram in
Figure 19-1.

512 Java Programming

The block on the right side shows a callable task. This is a Java class that implements the
Callable interface. The Callable interface contains a sole call method that a class developer must
implement. The call method usually contains the service implementation. To invoke this service,
you must instantiate the callable task class and run its call method. Because you want this to be
done asynchronously, you need some mechanism to invoke the call method. The Callable interface
is not like the Runnable interface, which can be submitted to the constructor of a Thread class for
execution. Java provides another class called ExecutorService to run a callable task. The caller
first creates or obtains an instance of ExecutorService and submits a callable task for execution.
The framework then returns a future object to the caller. This future object can be used to check
the status of a callable and to retrieve the result from the callable.

We will now look at how to use these interfaces to invoke an asynchronous operation that, upon
completion, returns a result to the caller.

Using Callables in Parallelizing Large Tasks
In this scenario, we have a cement-manufacturing company that maintains its sales data in
a spreadsheet, where the column represents the number of cement bags sold in a particular
month and the row represents the ID of the company to which the bags are sold. If there are
N number of customers, we will have an N × 12 matrix, where 12 is the number of months in
a year (see Figure 19-2).

Now, we will develop a program that computes the annual sales turnover for the company.
For this, we need the total number of bags sold throughout the year to all customers. For a large
customer base, this totaling could take a substantial amount of time. Therefore, we will perform
the yearly total for each customer in a separate thread. Assuming that we are running the application
on a multicore/multi-CPU machine, these yearly computations will be done in parallel, thus
increasing the total throughput of the program.

We create a thread that computes the sum of all elements in a given row. Thus, we can create
multiple threads and ask each one to compute the row sum for an independent row. Because each
of the row calculations is wholly independent from the others, we can do these computations in
parallel. Note that an algorithm cannot be arbitrarily split into parts. We need to look carefully
where work can be split into units and each unit executed independently of the others.

 When all threads finish their job, we take the total of all the individual sums, and this will be
the desired result.

FIGURE 19-1. Callable and Future at work

Caller

Executor
Service

Callable
Task

ExecuteSubmit

Future

Chapter 19: Callables, Futures, Executors, and Fork/Join 513

CaUTIOn
If you sum the total matrix in the following example by creating
a double for loop, it would most likely take less time to execute
compared to the thread pool approach used in this example. This
is because creating and managing the thread pool itself takes a
substantial amount of processing time. The use of a thread pool and
executor service would be justified when the matrix size becomes
sufficiently large and the algorithm complexity for each thread
increases substantially.

The implementation of this annual sales turnover calculator is given in Listing 19-1.

Listing 19-1 Annual Sales Turnover Calculator

import java.text.DateFormatSymbols;
import java.util.*;
import java.util.concurrent.*;

public class AnnualSalesCalc {

 private static int NUMBER_OF_CUSTOMERS = 100;
 private static int NUMBER_OF_MONTHS = 12;
 private static int salesMatrix[][];

 private static class Summer implements Callable {

FIGURE 19-2. Multiple threads totaling each row of a matrix

Client ID: 100

Jan Feb Mar Apr …

11 24 54 31 29 Sum1

Sum2

+

Sum3

+

+

+

…

+

…

Total

Sum4

Client ID: 101 72 32 21 76 22

Client ID: 102 56 33 39 32 41

Client ID: 103 81 21 16 19 42

… 12 54 19 33 43

… 32 46 72 23 22

514 Java Programming

 private int companyID;

 public Summer(int companyID) {
 this.companyID = companyID;
 }

 public Integer call() {
 int sum = 0;
 for (int col = 0; col < NUMBER_OF_MONTHS; col++) {
 sum += salesMatrix[companyID][col];
 }
 System.out.printf(
 "Totaling for client 1%02d completed%n", companyID);

 return sum;
 }
 }

 public static void main(String args[]) throws Exception {

 generateMatrix();
 printMatrix();

 ExecutorService executor = Executors.newFixedThreadPool(10);
 Set<Future<Integer>> set = new HashSet<Future<Integer>>();
 for (int row = 0; row < NUMBER_OF_CUSTOMERS; row++) {
 Callable<Integer> callable = new Summer(row);
 Future<Integer> future = executor.submit(callable);
 set.add(future);
 }
 int sum = 0;
 for (Future<Integer> future : set) {
 sum += future.get();
 }
 System.out.printf("%nThe annual turnover (bags): %s%n%n", sum);
 executor.shutdown();
 }

 private static void generateMatrix() {
 salesMatrix = new int[NUMBER_OF_CUSTOMERS][NUMBER_OF_MONTHS];

 for (int i = 0; i < NUMBER_OF_CUSTOMERS; i++) {
 for (int j = 0; j < NUMBER_OF_MONTHS; j++) {
 salesMatrix[i][j] = (int) (Math.random() * 100);
 }
 }
 }

 private static void printMatrix() {
 System.out.print("\t\t");

Chapter 19: Callables, Futures, Executors, and Fork/Join 515

 String[] monthDisplayNames =
 (new DateFormatSymbols()).getShortMonths();
 for (String strName : monthDisplayNames) {
 System.out.printf("%8s", strName);
 }
 System.out.printf("%n%n");
 for (int i = 0; i < NUMBER_OF_CUSTOMERS; i++) {
 System.out.printf("Client ID: 1%02d", i);
 for (int j = 0; j < NUMBER_OF_MONTHS; j++) {
 System.out.printf("%8d", salesMatrix[i][j]);
 }
 System.out.println();
 }
 System.out.printf("%n%n");
 }
}

The annualSalesCalc class declares two integer constants—nUMBER_OF_CUSTOMERS
decides the number of rows for our matrix, and nUMBER_OF_MOnTHS decides the number
of columns. The salesMatrix field represents a two-dimensional array of integers that is not yet
created. We will create the matrix in the main method. Next, we declare a class that computes
the row sum:

private static class Summer implements Callable {

The Summer class is declared as an inner class to annualSalesCalc and is private and static.
Because this class is not used elsewhere, it is declared private. It is declared static because it is
called in the static main method. The class also implements the Callable interface. The constructor
accepts an integer value that is the customer ID and stores it in a class variable for further use.

As a part of the interface, we need to provide an implementation of the call method. In our
case, we declare the call method to return an Integer data type:

public Integer call() {

The call method returns a generic type that can be mapped to any real data type. In our
example, this is mapped to the Integer data type. The method now computes the sum of all
elements within the specified row of the matrix by using a for loop:

int sum = 0;
for (int col = 0; col < NUMBER_OF_MONTHS; col++) {
 sum += salesMatrix[customerID][col];
}

After the summation is complete, the program prints a message to the user indicating that the
task by the current callable object is done and returns the computed result to the caller whenever
it is asked for:

System.out.printf("Totaling for client 1%02d completed%n", customerID);
return sum;

516 Java Programming

Now, let’s look at the main method that uses this callable task. In the main method, we first call
generateMatrix to generate a matrix and printMatrix to print the generated matrix to the console.
The implementation of both these methods is discussed later.

As discussed in the previous section, we need an executor service to invoke the Callable object.
The Executors class provides this service:

ExecutorService executor = Executors.newFixedThreadPool(10);

The newFixedThreadPool is a static method of the Executors class that accepts an integer
parameter. The value of this parameter determines the number of threads created by this method.
The method creates a fixed pool of threads that can be used for running different tasks. The method
returns an instance of the ExecutorService class.

TIP
Creating and destroying threads is usually time consuming. Also,
a thread that runs to its completion cannot be reused and must be
garbage-collected. Creating a pool of threads helps in overcoming
these difficulties. When you create a thread pool, the threads from
the pool will be reused to perform a certain task many times. Thread
pools are discussed in more detail later in this chapter.

Next, we declare a Set (refer to Chapter 16 for more on sets) for storing the Future objects that
can be used for monitoring the submitted tasks. A Future object takes a generic parameter. In our
example, we set this to the Integer data type. Thus, our Future object will return an Integer object
to the caller:

Set<Future<Integer>> set = new HashSet<Future<Integer>>();

Now, for each row of the matrix, we instantiate the Summer class, which is a Callable object:

for (int row = 0; row < NUMBER_OF_CUSTOMERS; row++) {
 Callable<Integer> callable = new Summer(row);

The Summer class implements the Callable interface and is discussed later. As seen in the
preceding statement, the Callable interface accepts a generic parameter of type Integer that is the
return data type used by its call method. To run this callable object, we call the submit method
on the executor object we created earlier:

Future<Integer> future = executor.submit(callable);

The submit method submits the callable object to one of the threads from its pool. The method
returns a Future object to the caller. The caller can use the get method on this Future object to
obtain the computation results. We add the returned Future object to our set so that ultimately we
can take the sum of all the elements of this set to compute the grand total:

set.add(future);

Chapter 19: Callables, Futures, Executors, and Fork/Join 517

After submitting all the tasks, the main function computes the grand total by using the following
for each loop:

int sum = 0;
for (Future<Integer> future : set) {
 sum += future.get();
}

Note that the program calls the get method on each future object stored in the set. The get
method returns the computation result whenever it is ready. The results may come in totally
unordered. Therefore, this is analogous to the barriers in the previous chapter. When results from
all future objects are obtained, the for loop terminates. After the grand total is computed, we print
it to the console:

System.out.printf("%nThe annual turnover (bags): %s%n%n", sum);

Finally, we shut down the executor service so as to free all its allocated resources:

executor.shutdown();

Let’s now look at the implementation of the generateMatrix method:

private static void generateMatrix() {

This method creates our salesMatrix array of integers:

salesMatrix = new int[NUMBER_OF_CUSTOMERS][NUMBER_OF_MONTHS];

The entire array is initialized by assigning a random number in the range of 0 to 99 for each
element. We use randomization here so that the program output differs on every run:

for (int i = 0; i < NUMBER_OF_CUSTOMERS; i++) {
 for (int j = 0; j < NUMBER_OF_MONTHS; j++) {
 salesMatrix[i][j] = (int) (Math.random() * 100);

The printMatrix method simply iterates through all array elements and prints its values to the
user console. Some typical program output is shown here:

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Client ID: 100 37 16 81 51 68 31 50 0 18 86 7 16
Client ID: 101 31 36 14 4 67 26 26 74 51 41 49 54
Client ID: 102 18 37 93 43 15 44 17 9 69 13 56 4
Client ID: 103 58 78 17 73 19 34 54 11 22 34 74 83
...
Totaling for client 195 completed
Totaling for client 196 completed
Totaling for client 197 completed
Totaling for client 198 completed
Totaling for client 199 completed

The annual turnover (bags): 59601

518 Java Programming

Note the ordering of the row computations. Each time you run the application, you may get a
different order, depending on how much time each thread takes to complete its task and how the
threads are scheduled for execution. You can experiment by increasing the matrix dimension and
studying the program output. If you increase the matrix dimension to a large value, comment out
the printMatrix statement to avoid cluttering the output on your console.

The FutureTask Class
The FutureTask class implements both Runnable and Future interfaces. Therefore, it provides
asynchronous computation due to its Runnable interface and provides the facility to cancel the
task through the future object returned to the caller. This class can be used to wrap a Callable or
Runnable object. For example, in the program code discussed in Listing 19-1, you can comment
out the line that contains the executor.submit call and add the next two lines shown here:

// Future<Integer> future = executor.submit(callable);
FutureTask<Integer> future = new FutureTask<Integer>(callable);
future.run();

The run method invokes the task and sets its result to the future object.
Alternatively, you may submit the instance of a FutureTask to an Executor for execution, as

follows:

executor.submit(future);

Because the FutureTask class also implements the Future interface, an instance of it can be
used to cancel the task, check its status, and so on. We will now look at how to cancel a job using
the Future object.

Creating Cancellable Tasks
In this demonstration, you learn how to create a task that can be cancelled before it runs to
completion. As mentioned earlier, to cancel a task, we use the Future object returned to us by
an executor. For task creation and execution, we will use the FutureTask class discussed in the
previous section.

In this demonstration, we continue with our stock exchange case study and develop a simulator
that can process millions of trade requests concurrently. We will pump in thousands of trade
requests into our simulator. The simulator contains a large pool of threads that executes these
requests. We will also write an evil thread, which randomly picks up a few orders and tries to
cancel them. If the order has already been executed, the cancellation request will fail. If a thread is
not allocated to process a pending order before the cancellation request arrives, the order will be
cancelled. If the trade order execution is in progress and the thread can be interrupted, a cancel
request arriving during the processing will terminate the rest of the processing, effectively cancelling
the order. We will be able to verify these situations in the test results. Our “evil” thread, in practical
terms, represents customers sending cancellation requests to the stock exchange after placing their
orders. The program that simulates this stocks order processor is given in Listing 19-2.

Chapter 19: Callables, Futures, Executors, and Fork/Join 519

Listing 19-2 A Stocks Order Processor Demonstrating Cancellable Tasks

import java.util.*;
import java.util.concurrent.*;

public class StocksOrderProcessor {

 static final int MAX_NUMBER_OF_ORDERS = 10000;
 static private ExecutorService executor =
 Executors.newFixedThreadPool(100);
 static private List<Future> ordersToProcess = new ArrayList();

 private static class OrderExecutor implements Callable {

 int id = 0;
 int count = 0;

 public OrderExecutor(int id) {
 this.id = id;
 }

 public Object call() throws Exception {
 try {
 while (count < 50) {
 count++;
 Thread.sleep(new Random(
 System.currentTimeMillis() % 100).nextInt(10));
 }
 System.out.println("Successfully executed order: " + id);
 } catch (Exception ex) {
 throw (ex);
 }
 return id;
 }
 }

 public static void main(String[] args) {
 System.out.printf("Submitting %d trades%n", MAX_NUMBER_OF_ORDERS);
 for (int i = 0; i < MAX_NUMBER_OF_ORDERS; i++) {
 SubmitOrder(i);
 }
 new Thread(new EvilThread(ordersToProcess)).start();
 System.out.println("Cancelling a few orders at random");
 try {
 executor.awaitTermination(30, TimeUnit.SECONDS);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 System.out.println("Checking status before shutdown");
 int count = 0;

520 Java Programming

 for (Future f : ordersToProcess) {
 if (f.isCancelled()) {
 count++;
 }
 }
 System.out.printf("%d trades cancelled%n", count);
 executor.shutdownNow();
 }

 private static void SubmitOrder(int id) {
 Callable<Integer> callable = new OrderExecutor(id);
 ordersToProcess.add(executor.submit(callable));
 }
}

class EvilThread implements Runnable {

 private List<Future> ordersToProcess;

 public EvilThread(List<Future> futures) {
 this.ordersToProcess = futures;
 }

 public void run() {
 Random myNextKill = new Random(System.currentTimeMillis()
 % 100);
 for (int i = 0; i < 100; i++) {
 int index =
 myNextKill.nextInt(StocksOrderProcessor.MAX_NUMBER_OF_ORDERS);
 boolean cancel = ordersToProcess.get(index).cancel(true);
 if (cancel) {
 System.out.println("Cancel Order Succeeded: " + index);
 } else {
 System.out.println("Cancel Order Failed: " + index);
 }
 try {
 Thread.sleep(myNextKill.nextInt(100));
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
}

The StocksOrderProcessor class creates a fixed pool of 100 threads to execute the orders
using the following declaration:

static private ExecutorService executor =
 Executors.newFixedThreadPool(100);

Chapter 19: Callables, Futures, Executors, and Fork/Join 521

It also creates an arrayList to hold the references to the orders to be executed:

static private List<Future> ordersToProcess = new ArrayList();

We declare an inner private class called OrderExecutor that performs the business logic for
executing the order. The class OrderExecutor implements Callable so that an executor can invoke
it asynchronously:

private static class OrderExecutor implements Callable {

In the class constructor, we pass an integer id to track the order number:

public OrderExecutor(int id) {
 this.id = id;
}

In the call method, we simply count up to 50. Before each count, we place the thread to sleep
for a variable amount of time:

try {
 while (count < 50) {
 count++;
 Thread.sleep(new Random(System.currentTimeMillis() % 100).nextInt(10));
 }

By causing the thread to sleep for a variable amount of time, we simulate the fact that each
order processed takes a different amount of time to execute. At the end of the call method, we
return the id so that we can later verify which orders ran to completion.

In the main method, we submit a huge number of orders to the order processor:

for (int i = 0; i < MAX_NUMBER_OF_ORDERS; i++) {
 SubmitOrder(i);
}

The SubmitOrder method creates a Callable instance that will be run at some later time. Each
Callable instance is tracked with a unique ID:

Callable<Integer> callable = new OrderExecutor(id);

Each created task is submitted for processing by calling the submit method of the ExecutorService
class. We store the future object returned by the submit method in our array list of pending orders:

ordersToProcess.add(executor.submit(callable));

After submitting a large number of trade requests, the main method creates an evil thread that
attempts to cancel a few orders at random:

new Thread(new EvilThread(ordersToProcess)).start();

The EvilThread, whenever it gets its time slot, creates a few cancellation requests and executes
them on the future objects stored in our pending orders list. We discuss the construction of
EvilThread shortly.

522 Java Programming

At this stage, some of our orders might have already been processed. The simulator will
continue processing the rest. If the order has been cancelled before the executor allocates a
thread, it will never run. To allow sufficient time to complete all the pending orders, we request
the executor to hang on for 30 seconds. This, in practical situations, would be the time for which
the stock exchange is open for trading.

executor.awaitTermination(30, TimeUnit.SECONDS);

Depending on the speed and capabilities (number of cores/CPUs) of your machine, you may
need to adjust this wait time to ensure that the main thread does not prematurely terminate before
all pending trade requests get a chance to execute on the simulator.

nOTE
The executor can wait precisely until all its assigned tasks run to
completion. We discuss this in the next section.

After the preceding timeout, we get a summary of how many orders were successfully cancelled.
This is done with a simple for loop, shown here:

int count = 0;
for (Future f : ordersToProcess) {
 if (f.isCancelled()) {
 count++;
 }
}

For each Future object in our collection of orders, we call its isCancelled method. This method
returns true if the execution of the corresponding Future object was successfully cancelled.

At the end of the main method, we shut down the executor to free all its allocated resources:

executor.shutdownNow();

Now, let’s look at the design of the EvilThread class. In the class constructor, we send our list
of pending orders so that the thread may send cancellation requests to a few of the Future objects
in this list:

public EvilThread(List<Future> futures) {
 this.ordersToProcess = futures;
}

In the run method, we create 100 cancellation requests. The Future object for cancellation is
selected at random:

int index = myNextKill.nextInt(StocksOrderProcessor.MAX_NUMBER_OF_ORDERS);
boolean cancel = ordersToProcess.get(index).cancel(true);

Calling the cancel method on the future object sends the cancellation request. We set the
parameter to the cancel method to true, indicating that if the job is already in progress, it may be
interrupted in its work. The cancel method returns a boolean result that indicates the success or

Chapter 19: Callables, Futures, Executors, and Fork/Join 523

failure of the cancellation request. In between every two requests, we place the thread to sleep
for a random amount of time:

Thread.sleep(myNextKill.nextInt(100));

Partial output of the sample run is presented here:

Successfully executed order: 2730
Successfully executed order: 2620
Successfully executed order: 2631
Cancel Order Succeeded: 4405
Successfully executed order: 2595
Successfully executed order: 2586
...
Successfully executed order: 2594
Successfully executed order: 2660
Cancel Order Failed: 958
Successfully executed order: 2652
Successfully executed order: 2693
Successfully executed order: 2680
...
Checking status before shutdown
86 trades cancelled

In the output, you can see that the cancellation of order 4405 succeeds because this order has
not yet been run. At this time, orders in the range of 2600–2700 are being processed. You can also
observe that the cancellation request for order 958 failed because the order was already executed,
which you can verify by looking at the earlier log. At the end we see the summary of cancelled
orders. Note that out of 100 requests, 86 were successfully cancelled. This number will change on
every run and will also depend on your machine configuration.

Executors
You have already seen the use of executors in your previous programs. The Executors class allows
you to create a pool of threads and returns an ExecutorService object to you. The executor
provides a standard means of decoupling task submission from task execution. Besides the basic
thread life-cycle support, it provides functions for statistics gathering, application management,
and monitoring. This is based on a producer-consumer design pattern that scales well for large
concurrent applications.

Using this service object, you can execute an instance of a Runnable or Callable class. You
simply need to submit this instance to the service object. The service picks up a thread from the
pool and hands your runnable object to it for execution. When the thread completes its execution,
it is not destroyed. Rather, it is returned to the pool for executing another task in the future. This
saves the overhead of creating and destroying threads.

The Executors class has a number of static methods for creating thread pools. You have already
seen the use of the newFixedThreadPool method. The newFixedThreadPool method creates a
thread pool of a fixed size. The threads will be assigned from this pool to the requesting task. If a
thread remains idle, it is not destroyed and is kept in the pool for an indefinite amount of time. The
Executors class also provides a method that creates a pool where the idle threads are automatically

524 Java Programming

destroyed after 60 seconds. This is called newCachedThreadPool. Because the threads are
automatically destroyed after a fixed period of time, they are also automatically created whenever
required. Therefore, you may find the newCachedThreadPool to be more efficient in terms of
memory footprint in situations where your demand for threads varies drastically over a period of
time. The Executors class also defines a method called newSingleThreadExecutor. As the name
suggests, this creates only a single thread of execution. However, after one task is over, the thread
is not destroyed and can be reassigned to another task. In the case of multiple simultaneous
requests, a queue will be maintained of all the pending requests and the thread will execute these
jobs sequentially.

The Executors class also provides another interesting method. This is called
newScheduledThreadPool and may be considered a replacement to java.util.Timer. The method
creates a fixed thread pool for scheduled execution. It returns a ScheduledExecutorService object
that provides several methods for the scheduled execution of tasks. We will now discuss the
various methods of this class.

Creating a Thread Pool for Scheduled Executions
Sometimes, you may want to create a thread that begins its execution after a specified time delay.
For example, you can set an alarm to ring after a specified amount of time elapses. In some
situations, you may want to run the thread repeatedly at a fixed rate or with a fixed delay between
subsequent executions. A typical application of this is a virus scanner. Such a utility starts
automatically every day at the scheduled time. Thus, it repeats itself every 24 hours. You would
use an executor service implemented in the ScheduledExecutorService class that runs the virus
scanner once every 24 hours. If you have multiple disks to scan or even a single disk with a large
capacity, you may prefer splitting this scan task into multiple units, where each unit scans a
particular disk or a part of a large disk.

Another application where this service is useful is a news aggregator. The aggregator collects
the latest news from various web-based sources and queues them on the client machine for view.
The news retrieval from the various sources may be done concurrently and will take a variable
amount of time, depending on the connectivity to the concerned source. The synchronization of
news items between the client and the various sources will be done periodically. If the frequency
at which this synchronization is performed is high, an overlap will occur between the new
synchronization task and the currently running task that has not yet finished retrieving all the news.
In such situations, it is better to run the tasks at a fixed delay between subsequent executions. The
ScheduledExecutorService class allows you to do this.

The ScheduledExecutorService Class
The ScheduledExecutorService class provides a method called schedule for future execution of a
task. It provides two overloads to this method:

<V>ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit)
ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit)

The method takes three parameters: the Callable or Runnable class instance, the delay time,
and the time unit. The method schedules the task specified by Callable or Runnable to run after
the given time delay. The unit for time measure is specified by the third parameter of the method.
The method returns a future object to the caller.

Chapter 19: Callables, Futures, Executors, and Fork/Join 525

Besides this simple delayed execution, the class provides a method called scheduleatFixedRate
that allows you to specify the rate at which the specified task is repeatedly executed. The first
run occurs after the given delay. The subsequent executions of the task start at delay + period,
delay + (2 × period), and so on. This kind of scheduling may be used for the virus scanner discussed
earlier and is illustrated in Figure 19-3.

The scheduleWithFixedDelay method executes the specified task for the first time after the
given delay. After this, the task is executed repeatedly with a fixed delay between the completion
of a run and the start of the next run. This kind of scheduling may be used in the news aggregator
applications discussed earlier. This is illustrated in Figure 19-4.

Let’s now look at the use of this class with a program example.

Demonstrating Scheduled Task Execution
The program presented in this section demonstrates how to schedule a task that repeats at a fixed
rate. The application is a virus scanner with a fixed-rate repeat. When the scan starts, the application
pops up a window on the screen that shows the scan status. The scanning stops after all the files on

FIGURE 19-3. Executing a task at a fixed rate

Submit First run

Delay

Second run Third run Fourth run

Time

Fixed period

FIGURE 19-4. Executing a task with a fixed delay

Submit First run

Delay

Second run Third run Fourth run

Time

Fixed period

526 Java Programming

the disk are traversed. Each scan may take a variable amount of time, which is simulated by the scan
thread sleeping for a variable amount of time. After the scan, the status window is closed and
then reopens when a new scan begins at the next scheduled time. The periodically repeating
virus-scanning program is given in Listing 19-3.

Listing 19-3 A Periodically Repeating Virus Scanner

import java.awt.*;
import java.text.DateFormat;
import java.util.*;
import static java.util.concurrent.TimeUnit.*;
import java.util.concurrent.*;
import javax.swing.*;

class VirusScanner {

 private static JFrame appFrame;
 private static JLabel statusString;
 private int scanNumber = 0;
 private static final ScheduledExecutorService scheduler =

 Executors.newScheduledThreadPool(5);
 private GregorianCalendar calendar = new GregorianCalendar();
 private static VirusScanner app = new VirusScanner();

 public void scanDisk() {
 final Runnable scanner = new Runnable() {

 public void run() {
 {
 try {
 appFrame.setVisible(true);
 scanNumber++;
 Calendar cal = Calendar.getInstance();
 DateFormat df = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.MEDIUM);
 statusString.setText(" Scan " + scanNumber
 + " started at " + df.format(cal.getTime()));
 Thread.sleep(1000 + new
 Random().nextInt(10000));
 appFrame.setVisible(false);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
 };

 final ScheduledFuture<?> scanManager =
 scheduler.scheduleAtFixedRate(scanner, 1, 15, SECONDS);

Chapter 19: Callables, Futures, Executors, and Fork/Join 527

 scheduler.schedule(new Runnable() {

 public void run() {
 scanManager.cancel(true);
 scheduler.shutdown();
 appFrame.dispose();
 }
 }, 60, SECONDS);
 }

 public static void main(String args[]) {
 appFrame = new JFrame();
 Dimension dimension =
 Toolkit.getDefaultToolkit().getScreenSize();
 appFrame.setSize(400, 70);
 appFrame.setLocation(
 dimension.width / 2 - appFrame.getWidth() / 2,
 dimension.height / 2 - appFrame.getWidth() / 2);
 statusString = new JLabel();
 appFrame.add(statusString);
 appFrame.setVisible(false);
 app.scanDisk();
 }
}

The VirusScanner creates a thread pool by calling the newScheduledThreadPool method on
the Executors class:

private static final ScheduledExecutorService scheduler =
 Executors.newScheduledThreadPool(5);

For multiple concurrent scans, we use the threads from this pool. scanDisk is the method that
does all the hard work. First, we create a thread class:

final Runnable scanner = new Runnable() {

In the run method, we show the elsewhere-created status window to the user:

appFrame.setVisible(true);

We display the scan number and the time at which the scan started in the status window. We
now cause the current thread to sleep for a variable amount of time:

Thread.sleep(1000 + new Random().nextInt(10000));

The constant addition factor of 1000 ensures that the window will remain open for a minimum
of one second. In an actual program, you would have the virus-scanning code in place of this sleep
statement. We put the thread to sleep here to give the illusion that the scanning is in progress for a
certain amount of time. When the thread is awakened from its sleep, we hide the status window,
giving the feeling to the user that the current scan cycle is over.

528 Java Programming

To run this scanner periodically at a fixed rate, we used the previously created scheduler:

final ScheduledFuture<?> scanManager =
 scheduler.scheduleAtFixedRate(scanner, 1, 15, SECONDS);

This scanner task runs every 15 seconds after an initial delay of 1 second. The scheduler
returns a future object that we will use to cancel the scanning after a certain period of time.
To allow this cancellation, we create another anonymous thread:

scheduler.schedule(new Runnable() {

 public void run() {
 scanManager.cancel(true);
 scheduler.shutdown();
 appFrame.dispose();
 }
}, 60, SECONDS);

nOTE
All timings in this program are given in seconds so that you can see
the effect of the simulation. In a real application, you would perform
the virus scan once a day or every couple of hours.

In the run method of this thread, we cancel the scanner task, shut down the scheduler, and
dispose of the status window. This thread runs only once after a time delay of 60 seconds.
Therefore, our simulation will run periodically for a total of one minute. Every 15 seconds the
virus scan status window pops up on the screen and will stay there for a variable amount of time,
with a minimum of 1 second.

Finally, in the main method, we simply create the status window, set its location, and call the
scanDisk method. Note that the main thread terminates immediately after this, and the threads
created in the scanDisk method continue to leave throughout the next minute.

Obtaining the Results of the First Completed Execution
So far you have seen how to submit tasks to an executor for immediate, delayed, and periodic
runs. You also know that an executor may provide and maintain multiple threads so that your
jobs can be executed concurrently. When you submit multiple jobs to an executor, there may be
situations where you want to process the result of whatever job is completed rather than waiting
on each task to complete individually. The get method of the executor we have used so far waits
for the job completion. In case of multiple task submissions, you would create a loop for obtaining
the results of each computation, which may look like this:

for (Future<T> result : results)
 result.get();

Thus, the results are obtained sequentially. If a particular task takes too long to reach completion,
the current get call will block onto it. Even if other tasks have finished earlier, you will not be able to
obtain their results. To overcome this problem, the ExecutorCompletionService class comes to your
rescue. It monitors the tasks submitted to an executor. You wait for the results to come out, one after

Chapter 19: Callables, Futures, Executors, and Fork/Join 529

another, by calling the take method. It returns the Future object representing the next completed
task, waiting if none are completed. This class is useful in many practical situations where you
want to proceed as soon as some tasks complete. For example, you may submit multiple requests
to an automated price quote system, where each request takes a variable amount of execution time
depending on several factors in its computations. As soon as a result is available for any of the
submitted tasks, you want to present the quote to the waiting customer rather than making him
wait for all other tasks to compute their individual quotes. We will now consider the use of this
service via a concrete example.

Demonstrating the ExecutorCompletionService Class
When you submit multiple tasks to an executor, these tasks run concurrently and finish in a
variable amount of time. In many situations, you would be interested in knowing when a task
reaches its completion. For this, Java defines a class called ExecutorCompletionService that helps
you in monitoring a task’s completion. Upon completion, tasks are placed on a queue that can be
accessed using the take method of the ExecutorCompletionService class. This is a lightweight class
that can be used without incurring much of the overhead for processing a group of tasks.

As an example, consider a task that computes m raised to n (mn), where m is a real number
and n is an integer in the range 0 to 1000. We will use simple multiplication to compute the
result. The time taken to compute the result will largely depend on the number of multiplication
operations we need to perform, which is basically the value of n. We will create multiple tasks
and submit them to the Executor, as we did in earlier examples. We then create an instance of
ExecutorCompletionService by passing the previously created executor as a parameter to its
constructor. The service will keep on monitoring the completed tasks. As the results come out,
we print them to the terminal. The full program is given in Listing 19-4.

Listing 19-4 Retrieving the First Available Result from Multiple Tasks

import java.util.ArrayList;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class MultipleServices {

 public static class Exp implements Callable {

 private double m;
 private int n;

 public Exp(double m, int n) {
 this.m = m;
 this.n = n;
 }

 public Double call() {
 double result = 1;
 for (int i = 0; i < n; i++) {
 result *= m;

530 Java Programming

 try {
 Thread.sleep(10);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 System.out.printf("%nComputed %.02f raised to %d%n", m, n);
 return result;
 }
 }

 public static void main(String[] args) {
 ExecutorService executor = Executors.newFixedThreadPool(10);
 ArrayList<Callable<Double>> tasks = new ArrayList<Callable<Double>>();

 for (int i = 0; i < 10; i++) {
 double m = Math.random() * 10;
 int n = (int) (Math.random() * 1000);
 System.out.printf("Created task for computing: "
 + "%.02f raised to %d\n", m, n);
 tasks.add(new Exp(m, n));
 }

 ExecutorCompletionService service =
 new ExecutorCompletionService(executor);
 for (Callable<Double> task : tasks) {
 service.submit(task);
 }
 Lock lock = new ReentrantLock();
 for (int i = 0; i < tasks.size(); i++) {
 try {
 lock.lock();
 Double d = (Double) service.take().get();
 System.out.printf("Result: %E%n", d);
 lock.unlock();
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 } catch (ExecutionException ex) {
 System.out.println("Error detected during task execution");
 }
 }
 executor.shutdown();
 }
}

We first create a callable task:

public static class Exp implements Callable {

Chapter 19: Callables, Futures, Executors, and Fork/Join 531

The class constructor accepts the values of m and n as parameters and stores them in the
instance fields. The call method repeatedly performs the multiplication operation to compute
the value of mn:

public Double call() {
 double result = 1;
 for (int i = 0; i < n; i++) {
 result *= m;

After each iteration, we cause the thread to sleep for a few milliseconds to introduce a deliberate
delay in the computation:

Thread.sleep(10);

After the for loop terminates, we print a message to the user and return the result of computation
to the caller:

System.out.printf("%nComputed %.02f raised to %d%n", m, n);
return result;

In the main method, we create a fixed thread pool by using the ExecutorService:

ExecutorService executor = Executors.newFixedThreadPool(10);

We declare an array of Callable tasks. We create multiple tasks and add those to the array for
deferred execution:

ArrayList<Callable<Double>> tasks = new ArrayList<Callable<Double>>();

To create the tasks, we set up a for loop. For each task, we generate random values for m and
n so that execution takes a different amount of time for each task. Each created task is added to
the tasks array:

for (int i = 0; i < 10; i++) {
 double m = Math.random() * 10;
 int n = (int)(Math.random() * 1000);
 tasks.add(new Exp(m, n));
}

Next, we create an instance of ExecutorCompletionService by passing the previously created
executor as a parameter to its constructor. The service will now monitor the completion of jobs
submitted to the executor service:

ExecutorCompletionService service = new ExecutorCompletionService(executor);

To submit the tasks to the executor, we call its submit method:

for (Callable<Double> task : tasks) {
 service.submit(task);
}

532 Java Programming

To check whether any of the tasks has completed its work, we set up a for loop and call the
take method on the service object:

Lock lock = new ReentrantLock();
for (int i = 0; i < tasks.size(); i++) {
 try {
 lock.lock();
 Double d = (Double) service.take().get();
 System.out.printf("Result: %E%n", d);
 lock.unlock();
 } catch (InterruptedException ex) {

Note that the take method waits for the first result to become available. The loop that iterates
10 times retrieves the results of the 10 submitted tasks, one after another, as they become available.
When the result becomes available, we retrieve its value by calling the get method on the returned
future object. We print the returned value to the user console.

System.out.printf("Result: %E\n", d);

Note that we execute the get method and the print statement in a synchronized block so that
the task’s purpose and its output always appear together on the console.

At the end, we shut down the service:

executor.shutdown();

This ensures that all existing tasks get an opportunity to run to completion and that no new tasks
will now be accepted. Calling the shutdown method does not mean that all previously submitted tasks
will be cancelled at once. On the contrary, it just initiates an orderly shutdown so that all previously
submitted tasks get an opportunity to run to completion. However, calling shutdown ensures that no
new tasks will now be accepted. Additionally, Java defines a few more policies for shutdown. If
ExecuteExistingDelayedTasksafterShutdownPolicy is set to false, existing delayed tasks whose delays
have not yet elapsed are cancelled. If ContinueExistingPeriodicTasksafterShutdownPolicy is set to
true, future executions of existing periodic tasks will be cancelled.

Typical partial output is shown here:

Created task for computing: 1.68 raised to 151
Created task for computing: 4.03 raised to 894
Created task for computing: 4.13 raised to 666
Created task for computing: 4.66 raised to 671
Created task for computing: 0.50 raised to 944
Computed 1.68 raised to 151
Result: 7.000069E+33
Computed 1.13 raised to 245
Result: 3.925909E+12
Computed 6.29 raised to 278
Result: 1.264098E+222
Computed 5.15 raised to 360
Result: 1.416120E+256

Compare the order in which the tasks are submitted with the order in which the results are
retrieved and printed. Clearly, the tasks that complete earlier print their results to the console
before the other tasks that are still in progress.

Chapter 19: Callables, Futures, Executors, and Fork/Join 533

This kind of application, where a single task of computing exponentials on a large set of
numbers can be split into smaller independent tasks, becomes an ideal candidate for concurrent
programming. Given the multicore machines available on the market today, each subtask would
run on an independent core and the program throughput would increase appreciably. So always
look out for situations where a large linear task can be divided into smaller independent tasks
and, wherever permissible, use the executor service to run these tasks in parallel. The executor
completion service allows you to monitor the completion of these tasks and gives you the output
of the task that completes first. The order in which the tasks complete need not match the order
in which they are submitted.

Fork/Join Framework
The applications in this and the previous two chapters no doubt exploited the parallelism provided
by the modern-day computers; however, we still need finer-grained parallelism. For example,
consider the computation of Fibonacci numbers using a recursive algorithm. In the Fibonacci
solution, the following takes place:

fibonacci(n – 1) + fibonacci(n – 2)

We can assign each of these two tasks to a new thread, and when they complete we add up the
two results. In fact, the computation of each factor can be further divided into two parts; the
process can continue until the computation becomes a simple linear problem. These kinds of
algorithms are called divide and conquer, where a big problem is divided into smaller ones
and the results are combined to conquer the solution. These kinds of algorithms are easy to
parallelize, and this is the fine-grained parallelism we are looking for. Java SE 7 introduced a new
framework called the Fork/Join framework to simplify the implementation of this type of divide-
and-conquer algorithm. This framework, developed by Doug Lea, is based on his original paper
from June 2000 (refer to http://gee.cs.oswego.edu/dl/papers/fj.pdf). Figure 19-5 shows the structure
of a Fork/Join algorithm.

A large task is divided into several parts that are queued for later computation. A queued task
may divide itself into further smaller parts. A thread picks up the task from the queue and executes
it. When all threads complete, the partial results are combined to generate a final result. “Fork”
refers to the division of tasks, and “Join” refers to the merging of the results. Each worker thread

FIGURE 19-5. Processing of a Fork/Join algorithm

Code Result

Processed

Processed

Processed

http://gee.cs.oswego.edu/dl/papers/fj.pdf

534 Java Programming

maintains a double-ended queue of tasks. Tasks are executed in youngest-first order. When a
worker thread has no more tasks to execute, it attempts to steal a task from another worker’s deque
tail. If it fails to steal and has no other work to do, it backs off. The advantage of this stealing is
reduced contention because stealers steal from the opposite end of the deque than workers. Also,
the stolen tasks are the larger units of work that lead to further recursive division. Note that the
recursive divide-and-conquer algorithms generate larger tasks early. This divide-and-conquer
model is depicted in Figure 19-6.

A big task such as Task 1 is divided into two or more subtasks. Each subtask is further
divided into new subtasks, until a subtask becomes simple enough to solve. The subtasks are
solved recursively.

To understand the Fork/Join framework, you need to understand two classes—ForkJoinPool
and ForkJoinTask—which we will now discuss.

The ForkJoinPool Class
The class ForkJoinPool is an ExecutorService for running ForkJoinTasks. This class differs from
other kinds of ExecutorServices by employing the work stealing described earlier. During its
construction, you may specify the pool size as a parameter to the constructor. If you use a no-
argument constructor, by default, it creates a pool of size that equals the number of available
processors. Although you specify an initial pool size, the pool adjusts its size dynamically in an
attempt to maintain enough active threads at any given point in time. The ForkJoinPool provides
methods for the management and monitoring operations on submitted tasks. Another important
difference compared to other ExecutorServices is that this pool need not be explicitly shutdown
upon program exit because all its threads are in daemon mode.

There are three different ways of submitting a task to the ForkJoinPool. In the case of a
desired asynchronous execution, you call its execute method with ForkJoinTask as a parameter.
In the task itself, you need to call its fork method to split the work between multiple threads. If
you want to await on obtaining the result, you call the invoke method on the pool. Inside the
ForkJoinTask you then call its invoke method. The invoke method commences performing this
task and returns its result after the task is completed, or it throws an unchecked exception or
Error if the underlying computation fails. Lastly, you can submit the task to the pool by calling
its submit method, which returns a Future object that you can use for checking status and
obtaining the result on its completion.

FIGURE 19-6. A recursive divide-and-conquer algorithm

Task 1

Task 2

Task 5 Task 6

Task 8 Task 7

Task 4

Task 3

Chapter 19: Callables, Futures, Executors, and Fork/Join 535

TIP
Use a single ForkJoinPool for all parallel-tasks execution in a
program; otherwise, its use will not justify the overhead involved
in its construction and bookkeeping of a large number of threads.

The ForkJoinTask Class
This is an abstract class for creating tasks that run within a ForkJoinPool, described previously. The
Recursiveaction and RecursiveTask are the only two direct, known subclasses of ForkJoinTask.
When submitted to a ForkJoinPool, it begins its execution. As its name indicates, ForkJoinTask
employs two operations—fork and join. Once started, it usually starts other subtasks. The join
operation awaits the task’s completion and extracts its results when the task completes. The
ForkJoinTask implements Future and is, therefore, a lightweight form of Future. The implementation
of the get method of the Future interface can be used for waiting on the computation to be
completed and then retrieving its result. You may use the invoke method for performing the task;
it returns the result after the task completes. The invokeall method can accept a collection of
tasks as its argument—the method forks all tasks in the specified collection and returns after each
task completes or if an exception is encountered.

The ForkJoinTask class provides several methods for checking the execution status of a task.
The isDone method returns true if a task completes in any way. The isCompletednormally method
returns true if a task completes without cancellation or encountering an exception, and isCancelled
returns true if the task was cancelled. Lastly, isCompletedabnormally returns true if the task was
either cancelled or encountered an exception.

You would not generally subclass the ForkJoinTask class directly; rather, you would create a class
based on RecursiveTask or Recursiveaction, which are the abstract subclasses of the ForkJoinTask
class. The RecursiveTask class is used when a task returns a result, and the Recursiveaction is used
when it does not return a result. In both cases, you would need to implement the compute method in
your subclass that performs the main computation desired by the task.

You should perform only relatively small amounts of computations (typically 100 to 10,000
computational steps) in a ForkJoinTask. In the case of larger tasks, the benefits of parallelism
diminish quickly. For smaller tasks, memory and task maintenance turns out to be expensive.
You should usually split a large task into smaller subtasks, typically via recursive decomposition.
All these things may sound too complicated to you; however, the use of this framework in
practical situations is very easy, as you will see soon.

We will now look at a concrete implementation that shows how to use the Fork/Join framework
for implementing divide-and-conquer algorithms. Instead of using the conventional algorithm for
generating Fibonacci numbers, we will take on a slightly more complex problem to illustrate the use
of this framework.

Sorting an Enormous array of Floats
Suppose we have a very large chunk (say, a million records) of floating-point numbers. We are
required to write a program to sort these numbers in ascending order. The well-known sorting
techniques running on a single thread would take an unduly long time to create a sorted array.
This kind of problem perfectly fits the divide-and-conquer paradigm. We will split the entire
input array into smaller arrays and sort each one independently. We will keep on merging the
sorted arrays into a larger array to create the final sorted array.

536 Java Programming

The complete sort program is presented in Listing 19-5.

Listing 19-5 Parallel Merge Sort Based on the Fork/Join Framework

import java.util.concurrent.*;

public class ParallelMergeSort {

 private static ForkJoinPool threadPool;
 private static final int THRESHOLD = 16;

 private static void sort(Comparable[] objectArray) {
 Comparable[] destArray = new Comparable[objectArray.length];
 threadPool.invoke(new SortTask(objectArray,
 destArray, 0, objectArray.length - 1));
 }

 static class SortTask extends RecursiveAction {

 private Comparable[] sourceArray;
 private Comparable[] destArray;
 private int lowerIndex, upperIndex;

 public SortTask(Comparable[] sourceArray,
 Comparable[] destArray,
 int lowerIndex,
 int upperIndex) {
 this.sourceArray = sourceArray;
 this.lowerIndex = lowerIndex;
 this.upperIndex = upperIndex;
 this.destArray = destArray;
 }

 @Override
 protected void compute() {
 if (upperIndex - lowerIndex < THRESHOLD) {
 insertionSort(sourceArray, lowerIndex, upperIndex);
 return;
 }

 int midIndex = (lowerIndex + upperIndex) >>> 1;
 invokeAll(new SortTask(sourceArray, destArray, lowerIndex, midIndex),
 new SortTask(sourceArray, destArray, midIndex + 1, upperIndex));
 merge(sourceArray, destArray, lowerIndex, midIndex, upperIndex);
 }
 }

 private static void merge(Comparable[] sourceArray,
 Comparable[] destArray, int lowerIndex,

Chapter 19: Callables, Futures, Executors, and Fork/Join 537

 int midIndex, int upperIndex) {
 if (sourceArray[midIndex].compareTo(
 sourceArray[midIndex + 1]) <= 0) {
 return;
 }

 System.arraycopy(sourceArray, lowerIndex,
 destArray, lowerIndex, midIndex - lowerIndex + 1);

 int i = lowerIndex;
 int j = midIndex + 1;
 int k = lowerIndex;

 while (k < j && j <= upperIndex) {
 if (destArray[i].compareTo(sourceArray[j]) <= 0) {
 sourceArray[k++] = destArray[i++];
 } else {
 sourceArray[k++] = sourceArray[j++];
 }
 }
 System.arraycopy(destArray, i, sourceArray, k, j - k);
 }

 private static void insertionSort(Comparable[] objectArray,
 int lowerIndex, int upperIndex) {
 for (int i = lowerIndex + 1; i <= upperIndex; i++) {
 int j = i;
 Comparable tempObject = objectArray[j];
 while (j > lowerIndex
 && tempObject.compareTo(objectArray[j - 1]) < 0) {
 objectArray[j] = objectArray[j - 1];
 --j;
 }
 objectArray[j] = tempObject;
 }
 }

 public static Double[] createRandomData(int length) {
 Double[] data = new Double[length];
 for (int i = 0; i < data.length; i++) {
 data[i] = length * Math.random();
 }
 return data;
 }

 public static void main(String[] args) {
 int processors = Runtime.getRuntime().availableProcessors();
 System.out.println("No of processors: " + processors);

 threadPool = new ForkJoinPool(processors);
 Double[] data = createRandomData(1000);

538 Java Programming

 System.out.println("Original unsorted data:");
 for (Double d : data) {
 System.out.printf("%3.2f ", (double) d);
 }
 sort(data);
 System.out.println("\n\nSorted Array:");
 for (Double d : data) {
 System.out.printf("%3.2f ", d);
 }
 }
}

In the main method, we first obtain the number of available processors on the machine where
the code is currently running:

int processors = Runtime.getRuntime().availableProcessors();

We will create a thread pool of this size, which is the optimal number for running on the
available hardware. If you create a pool of a higher size, contention for the available CPUs will
occur. We create the thread pool by instantiating ForkJoinPool and passing the pool size as a
parameter to its constructor:

threadPool = new ForkJoinPool(processors);

After creating the thread pool in the main method, we construct an array of some random data:

Double[] data = createRandomData(1000);

The implementation of createRandomData is very straightforward—it uses the Random class
to generate data points in the range of 0 to 1,000 and initializes each element of the array with this
randomly generated data. The number of data points created equals the argument to the function,
which in this case is 1000. Making this figure large will prove the efficiency of our parallel-sort
algorithm, but we have kept this at a reasonable level for testing purposes. The main method then
prints this random data for our knowledge. We call the sort method to sort the generated data and
once again print it to the console so the user can verify the sorting.

Let’s now look at the implementation of the sort method. The sort method accepts the object
array, the elements of which are to be sorted in ascending order:

private static void sort(Comparable[] objectArray) {

We declare a temporary destination array of equal size to store the result of sorting:

Comparable[] destArray = new Comparable[objectArray.length];

We then create a SortTask and submit it to our thread pool by calling its invoke method:

threadPool.invoke(new SortTask(objectArray,
 destArray, 0, objectArray.length - 1));

The SortTask takes four parameters: the array to be sorted and the destination array for the
sorted objects as well as the start index and the end index in the source array, between which
the elements are to be sorted. The SortTask is the heart of our program. It derives its functionality
from the Recursiveaction class. Note that because our sorting algorithm does not directly return

Chapter 19: Callables, Futures, Executors, and Fork/Join 539

a result to its caller, we create our task based on Recursiveaction. Had our algorithm returned a
value, as in the case of Fibonacci number calculation, we would have derived our class from
RecursiveTask. As part of creating a concrete implementation for the SortTask class, we need to
override the abstract method compute. In the compute method, we check the number of
elements to be sorted—if it is less than the predefined THRESHOLD (16), we call the
insertionSort method to sort its elements:

if (upperIndex - lowerIndex < THRESHOLD) {
 insertionSort(sourceArray, lowerIndex, upperIndex);
 return;
}

Otherwise, we create two subtasks and call them recursively. Each subtask receives its source
data array as half of the original array. The first subtask is created by constructing a SortTask
instance as follows:

new SortTask(sourceArray, destArray, lowerIndex, midIndex)

The second subtask is created by the following code:

new SortTask(sourceArray, destArray, midIndex + 1, upperIndex)

The midIndex in these two constructors defines the midpoint of the original array. The two tasks
are submitted to the pool by calling

invokeAll (task1, task2)

where task1 and task2 are the previously created two tasks.
Note that this process of splitting a task into subtasks continues recursively until each subtask

becomes small enough (when the number of elements in the array is less than THRESHOLD). All
the split subtasks are submitted to the pool recursively, and when they complete, the compute
method calls merge:

merge(sourceArray, destArray, lowerIndex, midIndex, upperIndex);

Understanding the merge and insertionSort methods is left as an exercise for the reader (they
should not be too difficult to understand).

Now, try running the program. You may experiment with different array sizes and also add
code to determine the execution time to fully appreciate the efficiency of divide-and-conquer
algorithms. Partial output of the program is shown here:

No of processors: 4

598.44 261.95 496.39 496.92 476.67 320.68 618.45 263.29 649.88
417.24 925.36 317.36 899.89 564.64 405.76 230.71 849.37 232.94
242.52 407.35 354.44 384.48 856.25 223.49 61.96 132.42 232.37
222.20 677.12 754.12 392.38 561.74 327.93 498.97 757.74 796.42
597.76 931.88 886.19 42.08 325.37 449.34 635.51 646.15 144.01
 94.04 228.72 642.97 946.81 877.13 957.41 530.22 25.55 494.06
366.14 250.76 532.89 590.16 711.51 706.68 165.47 596.75 282.87
668.37 556.00

540 Java Programming

...

 0.43 1.22 3.97 5.39 5.52 6.52 7.51 7.55 9.71 10.29
11.77 12.15 13.10 15.26 16.68 19.06 20.71 21.96 22.25 23.07
23.23 25.01 25.10 25.55 25.88 26.62 28.82 29.03 29.08 29.28
35.80 38.77 40.47 41.55 41.82 42.08 50.57 51.18 52.09 54.49
55.08 55.16 55.83 56.03 56.57 56.73 56.77 61.72 61.83 61.96
62.28 63.58 67.49 69.79 70.12 70.98 71.54 71.66 72.54 76.14
80.60 83.45 84.11 85.58 86.20 91.09 92.13 92.45 94.04 96.69
97.42 97.59 98.15 100.05 100.50 101.34

Before concluding this chapter, let’s look at the thread-safe collections, which were first
introduced in J2SE 5.0.

Thread-safe Collections
The collections we discussed in Chapter 16 are not thread-safe. Therefore, if multiple threads access
a collection, data corruption may occur unless the developer provides his own synchronizations.
The new collection classes introduced in J2SE 5.0 have created wrappers on the existing classes,
providing concurrency to those classes.

The Vector and Hashtable classes provided in the initial release of Java were thread-safe.
However, as of J2SE 1.2, these were deprecated and declared obsolete. They were replaced by
the arrayList and HashMap classes, which are not thread-safe. To introduce thread safety, Java
provided synchronization wrappers. Thus, you could create a thread-safe List or Map using the
following declarations:

List<E> synchArrayList = Collections.synchronizedList(new ArrayList<E>());
Map<K, V> synchHashMap = Collections.synchronizedMap(new HashMap<K, V>());

Although this solved the concurrency issues at that time, it is now recommended that you use
the newly created collection classes. With the introduction of concurrency utilities in J2SE 5.0, Java
provided concurrent implementations for maps, sorted sets, and queues. The blocking queue we
used earlier is thread-safe. The two new classes, ConcurrentHashMap and ConcurrentSkipListMap,
provide the map implementations. The ConcurrentSkipListSet implements a set, and
ConcurrentLinkedQueue provides the queue implementation, as their names suggest. They employ
sophisticated algorithms to minimize contention and to provide concurrency in data access.

Because they support concurrency, they return weakly consistent iterators, which may or may not
reflect all modifications made to the underlying data structure after it was constructed. However, they
are not guaranteed to return a value twice and also do not throw a ConcurrentModificationException,
as in the case of collection classes in the java.util package. For the insertion and removal of
associations in a map, the new classes provide methods called putIfabsent and remove for this
purpose. The putIfabsent method ensures that only one thread adds an item to the cache. The remove
method atomically removes the key and value, if present, in the map. Finally, the replace method
atomically replaces a value associated with the specified key.

One of the major additions to this java.util.concurrent package in Java SE 7 is the introduction
of the ConcurrentLinkedDeque class. This is an unbounded concurrent deque (double-ended
queue) based on linked nodes. You would use this class when many threads in your program want
to share a collection, where the concurrent insertion, removal, and access operations are
guaranteed to execute safely across multiple threads.

Chapter 19: Callables, Futures, Executors, and Fork/Join 541

Collections can be used in many practical scenarios. For example, in the stock exchange server
scenario, the trades may be maintained in some type of collection; in an online chat application,
the different threads of communication may be maintained in some form of collection. A data
logger application may collect data from many concurrent channels and put it in some form of
collection. In all such practical situations, using these thread-safe collections can save you a lot of
headaches in managing the concurrency of these shared objects.

In conclusion, if you need concurrency in collections, it is better to use the newly introduced
classes in the java.util.concurrent package. If you do not need concurrency in your programs,
continue using the older classes in the java.util package.

The ThreadLocalRandom Class
We’ll discuss one more addition to Java SE 7 in the Concurrency framework before closing this
chapter: the ThreadLocalRandom class. This class defines a random number generator isolated
to the current thread. You will use this class when multiple tasks in your program use random
numbers in parallel in thread pools. Rather than sharing an object of a Random class, as we have
been doing in all our programs so far, you would use ThreadLocalRandom, which results in less
overhead and contention in concurrent programs. Typically, to generate a random number using
this class, you use the syntax ThreadLocalRandom.current().nextLong(n), where n is the upper
bound for the generated number and the lower bound is zero. Of course, you get variations on
the next method that generate integers and double numbers. The overloads on these allow you
to set both lower and upper bounds. So consider using this class in your concurrent programs if
you need random numbers in your threads.

Summary
The Runnable interface allows you to create a task that can be run asynchronously by submitting it
to a thread. When such asynchronous execution runs to its completion, it neither implicitly notifies
its creator nor returns the results to it. The caller and future concepts introduced in J2SE 5.0 help
overcome this situation. A caller is created by implementing a Callable interface. It has a sole
method named call. This method is executed asynchronously, just the way the run method executes
in the Runnable interface. The caller who wants to execute this asynchronous method must create
an instance of a Callable object and submit it to an Executor for execution. The executor returns a
Future object to the caller for monitoring, controlling, and obtaining the results of the method
execution. Such execution may take place immediately after its submission or may be delayed for
the specified time. The task may also be repeatedly executed at a fixed rate or with a fixed delay
between subsequent runs. The Executors class provides these facilities. You learned the use of the
ExecutorService class for managing the life cycle and to track the progress of asynchronously
submitted tasks. The ScheduledExecutorService class helps in scheduling commands after a given
delay, or to execute them periodically. This chapter also introduced you to the newly added Fork/
Join framework, which explores fine-grained parallelism in your algorithms.

The chapter concluded with a brief discussion of the thread-safe collections introduced in
J2SE 5.0. Most of the methods of these thread-safe collection classes are the same as their earlier
counterparts. The chapter discussed a few new methods of these collection classes. In the next
chapter, you learn another important feature—network programming.

Chapter
20

Network Programming

543

544 Java Programming

o far you have learned many aspects of Java programming. The last three chapters
covered the important topic of thread programming. In this chapter, you will learn
another important feature in Java—network programming. As a matter of fact,
network programs are so common that you might be wondering why we did not
cover them earlier in the book. Network programs most of the time are multiuser

applications. These are essentially client/server applications, where a single server application
serves many clients. The server application, because it uses the same application logic for serving
different clients, requires the use of threads for efficient processing. Therefore, it would have made
little sense discussing network programming without first covering threads.

Network programming plays a vital role in today’s distributed computing era. Whatever
applications you use these days generally require a collaboration with applications running on other
machines—whether local or remote. This requires applications to support network programming.
There are many examples of network applications in real life. The Yahoo! or Google chat
application you use everyday is a network application. An online stock-trading application is a
network application. Checking your bank balances online involves yet another network application.
Browsing oracle.com in your web browser involves a network application. In fact, any web-based
application requires network programming, and that’s what you will be learning in this chapter.

Java, right from its beginning, provided excellent support for network programming. JDK 1.0
provided a rich set of libraries for creating networked applications; in fact, at one stage, Java was
“advertised” as a network programming language.

You will be learning the following in this chapter:

Network programming concepts■■

Creating a socket connection to a remote server ■

Reading the home page of any website ■

Using the ■ URL class to download any webpage

Spying for incoming cookies from websites ■

Writing a server application ■

Serving multiple clients simultaneously ■

Writing a practical file storage server application ■

Understanding the use of the ■ InetAddress class

Writing a multicast server and client■■

Networking
To understand how different computers connected on a network communicate with each other, let’s
consider the telephone network within the premises of a fictional office. In the office, a telephone
receptionist is appointed. The receptionist waits on incoming calls. When the phone rings, she
responds to the call and connects the caller to the requested person. The two parties—the caller and
the requested person in the organization—communicate with each other without the receptionist
overhearing the conversation. The receptionist now waits for another call. When a new call comes
in, once again she responds to the call and connects the new caller to someone in the organization.
The process continues until all the incoming lines available in the office are busy. Anyone calling the
office number will now get a busy signal. This entire process is illustrated in Figure 20-1.

S

Chapter 20: Network Programming 545

A similar process occurs when multiple computers connected in a physical network want to
communicate with each other over a centralized server. We will first consider the case of two
computers communicating with each other, and later on expand the idea to multiple computers.
The case of point-to-point communication is illustrated in Figure 20-2.

For two machines to communicate with each other based on the network programming model,
one of the machines must be in listening mode, as in the case of the telephone operator in the
office scenario. The machine shown on the right side in Figure 20-2 is a listener to the incoming
calls. Every machine connected to a network has a certain unique IP (Internet Protocol) address.
The server sets up a port on which it is continually listening for incoming requests. An IP and port
are similar to an office telephone number. Your office telephone has a fixed number that you let
your clients know. The clients dial this number to connect to your office. Similarly, any machine
that wants to connect to the server (the machine on the right in Figure 20-2) uses the known IP and
the port number while making the connection. How does the client connect to the server? We say
that the client makes a socket connection to the server by creating a Socket object from the classes

FIGURe 20-1. Our office telephone network

Telephone
Operator

FIGURe 20-2. Two machines communicating with each other in a network programming model

Internet server
listening to port 80

New Socket
(”www.yahoo.com”, 80);

Client

Port
80

546 Java Programming

provided in the Java library. So what is a socket? A socket is a software endpoint that establishes
bidirectional communication between a server and a client. A socket associates the server program
with a specific IP and port number. A client anywhere in the physical network holding a reference
to this socket communicates with the server program using this socket. The client obtains this socket
object with the following statement:

Socket s = new Socket("www.yahoo.com", 80);

The Socket constructor takes two arguments: The first argument is the URL (Uniform Resource
Locator) string, and the second argument is a port number. The URL represents the IP address of the
server. Each server connected to the Internet has a unique address provided by an organization
called InterNIC, which provides worldwide Internet domain name registration services. The port
number is any number in the range 0 to 0xFFFF that you designate to your server application.
Note that a certain range of numbers has been reserved universally for certain kinds of applications.
When you create server applications, you will have to be sure not to use the reserved port numbers.
The port number 80 is one such reserved number on which an HTTP (Hypertext Transfer Protocol)
server is set up. Several other constructors are defined in the Socket class; some of these use the
InetAddress class we will be discussing later in the book. You are encouraged to look up the API
documentation to learn the other constructors.

When a Socket object is successfully created, the two machines will communicate with each
other with the help of an established socket, which is general terminology used in the network
programming model to indicate an endpoint of a communication link between the two processes.
Java and some other languages use the name “Socket” to refer to a socket connection.

After a socket connection is established, we use the streams to send data back and forth between
the two processes. A socket holds two streams—one for data input and the other for data output. This
is shown in Figure 20-3.

FIGURe 20-3. Using streams on a TCP/IP socket connection

Client

Socket (host, port #)
(Attempt to connect)

OutputStream

InputStream

Socket.close ()

Server

ServerSocket (port #)

ServerSocket.accept ()

Socket ()

OutputStream

InputStream

Socket.close ()

http://www.yahoo.com

Chapter 20: Network Programming 547

The server creates a server socket and keeps listening on it for incoming requests. A client
makes a socket connection to the server. The server may accept or reject the client request. If a
request is accepted, the client and server are connected using a common socket. The client opens
input and output streams on the created socket. To send data to the server, it writes to the output
stream. To read data coming from the server, it reads the input stream. When the communication
is over, generally the client will close the socket, breaking the link between the two machines.
Let’s look at this concept further via a concrete program example.

Simple Home Page Reader
When you surf on the Net, your browser makes connections to HTTP servers located worldwide
and retrieves the contents of the pages hosted by those sites. For example, when you type a typical
URL (such as http://www.oracle.com) into your browser, a socket connection is made to the remote
server hosted by Oracle, an HTTP request gets its contents, its home page (index.html) is fetched,
and finally the page contents are displayed in the browser’s client area. The browser interprets the
HTML tags in the page contents and renders formatted output in its display area. We will now
develop an application that does exactly this for a browser, but at a very crude level. In particular,
our application will not have an HTML interpreter and will simply display the page contents in
plain-text format on the console.

First, the application makes a socket connection to a well-known IP and port number. Once a
socket connection is established, it opens the input and output streams on it. Then it sends a GeT
request through the output stream to the server. The server may respond to the request by sending
the contents of its home page to our application. The client simply waits for the server to respond,
and whenever the contents arrive, it reads and prints them to the console line by line.

The home page reader application is shown in Listing 20-1.

Listing 20-1 A Web Home Page Reader Application Using Sockets

import java.net.*;
import java.io.*;
import java.util.Scanner;

public class HomePageReader {

 public static void main(String[] args) {
 try {
 Socket socketObject = new Socket("www.yahoo.com", 80);
 try {
 OutputStream outStream = socketObject.getOutputStream();
 String str = "GET / HTTP/1.0\n\n";
 outStream.write(str.getBytes());
 InputStream inStream = socketObject.getInputStream();
 Scanner reader = new Scanner(inStream);
 while (reader.hasNextLine()) {
 String line = reader.nextLine();
 System.out.println(line);
 }
 } finally {

http://www.oracle.com
http://www.yahoo.com

548 Java Programming

 socketObject.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Java defines its network classes in the java.net package. Therefore, we first import this package
into our application:

import java.net.*;

In the main function, we make a socket connection by constructing an object of the Socket class:

Socket socketObject = new Socket("www.yahoo.com", 80);

The first argument to the constructor is the IP address of a known domain—in this case, it is
Yahoo!. You could also replace this IP address with the string "87.248.122.122", which is the
physical IP assigned to yahoo.com and is subject to change at any time in future. All the web
browsers listen to the standard port number 80 for serving contents based on HTTP. Therefore,
we specify a port number of 80 in the preceding statement.

NOTe
If you are running this code in your office environment, a proxy server
may be installed for HTTP connections. In this case, you need to use
another constructor that specifies the type of proxy to be used.
Socket socketObject = new Socket(new Proxy(Proxy.Type.Socks,
 new InetSocketAddress("socks.abcom.com", 1080)));
socketObject.connect (new InsetSocketAddress(www.yahoo.com, 80));

If this attempt to connect fails, the program generates an exception. We catch this exception
and print the stack trace to understand the type of error that occurred. If the connection succeeds,
the program obtains the output stream associated with the connected socket.

OutputStream outStream = socketObject.getOutputStream();

Next, we construct an HTTP GeT request:

String str = "GET / HTTP/1.0\n\n";

GeT is the most common HTTP method. It says, “Get me this resource.” The resource itself is
specified as the next token in the string. The slash (/) in the preceding statement indicates the
desired resource, which means “Get me the contents of the default home page file from the path
‘/’ at the specified host address.” The home page may be index.html or default.html or any other
file, as decided by the server. The protocol used for communication is HTTP version 1.0, as
specified by the next token in the preceding string. We now send this string to the server through
the output stream object we obtained earlier:

outStream.write(str.getBytes());

http://www.yahoo.com
http://www.yahoo.com

Chapter 20: Network Programming 549

Now, we need to read the response from the server. For this, we obtain the input stream object
from the socket connection:

InputStream inStream = socketObject.getInputStream();

We create a Scanner object and repeatedly read the contents provided by the server until no
more lines are found:

Scanner reader = new Scanner(inStream);
while (reader.hasNextLine()) {
 String line = reader.nextLine();
 System.out.println(line);
}

At the end, the program closes the socket connection:

} finally {
 socketObject.close();
}

NOTe
It is important that your application closes the socket connection after
its use. The open sockets are not garbage-collected and need to be
explicitly closed for freeing the resources.

When you run the program, you will get the following output:

HTTP/1.0 200 OK
Date: Thu, 09 Jun 2011 07:56:48 GMT
P3P: policyref="http://info.yahoo.com/w3c/p3p.xml", CP="CAO DSP COR CUR ADM
DEV TAI PSA PSD IVAi IVDi CONi TELo OTPi OUR DELi SAMi OTRi UNRi PUBi IND
PHY ONL UNI PUR FIN COM NAV INT DEM CNT STA POL HEA PRE LOC GOV"
Cache-Control: private
Set-Cookie: IU=deleted; expires=Wed, 09-Jun-2010 07:56:47 GMT; path=/; domain=.yahoo.com
Set-Cookie: PH=deleted; expires=Wed, 09-Jun-2010 07:56:47 GMT; path=/; domain=.yahoo.com
...
Content-Type: text/html;charset=utf-8
Age: 2
Server: YTS/1.20.0

<!DOCTYPE html>
<html lang="en-US" class="y-fp-bg y-fp-pg-grad bkt701" style="">
<!-- m2 template -->
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>Yahoo!</title>
 <meta http-equiv="X-UA-Compatible" content="chrome=1">

The complete output is not shown here. Obviously, the output on your machine will differ,
depending on the current home page hosted at the time. Note the html tag toward the end of the

http://info.yahoo.com/w3c/p3p.xml

550 Java Programming

shown output. Your browser interprets this HTML code and renders a formatted output in its
client area. Because our client application does not understand these HTML tags, it simply gives
the output in text format.

The home page reader application discussed here is a pretty low-level application that uses
sockets directly. Java provides a higher abstraction to retrieve a webpage hosted on any server in
the world. You will now learn about two new classes—URL and URLConnection—for doing this.

The URL Class
The URL class makes accessing web resources as easy as accessing a local file on your machine.
URL stands for Uniform Resource Locator. The syntax for a URL is specified as follows:

scheme://domain:port/path?query_string#fragment_id

A sample URL string looks like this:

http://www.oracle.com/us/technologies/java/index.html

The “http” part of the URL represents the scheme, popularly known as the protocol. The
“www.oracle.com” part is the domain. The port, when not specified, takes a default value of 80.
The substring “/us/technologies/java/index.html” specifies the path. This particular URL string
does not contain the query_string subpart.

The Java URL class is an abstraction of the URL identifier. It provides functions for opening a
connection to a specific URL, reading/writing data from/to this URL, and reading/writing header
information as well as performing several other operations on the URL. You will be using the
same I/O classes from the java.io package to read from and write to a URL that you used on files
and socket connections.

The URL class provides several overloaded constructors. In its simplest form, it takes a single
string parameter that specifies the URL, as just illustrated. The other versions accept protocol, host,
port, and other types of parameters. You are encouraged to look up the javadocs for further details.
The openConnection method opens a connection to the remote object. It provides several get
methods to retrieve the parts of the URL string. You use the getInputStream and getOutputStream
methods to obtain the input and output streams, respectively, for reading from and writing to a
remote URL.

The URLConnection Class
Opening a connection on the URL instance returns an object of type URLConnection. This is
an abstract class that represents a communication link between the application and a URL.
HttpURLConnection and JarURLConnection provide the concrete implementations of this
class. Once a connection is established, you call the setDoInput method to set the inward
communication from the server to the application, which is the default. Similarly, to write to
the server, you set the connection to the output mode by calling the setDoOutput method; the
default value for the doOutput flag is false.

Let’s now consider an example that shows the use of URLConnection class. We will develop
a simple webpage browser in the next section that uses the URL and URLConnection classes.
Unlike the home page reader discussed earlier, this application is able to read from a remote web
object using several available protocols.

scheme://domain:port/path?query_string#fragment_id
http://www.oracle.com/us/technologies/java/index.html
http://www.oracle.com%E2%80%9D

Chapter 20: Network Programming 551

Webpage Reader
The webpage reader application first constructs a URL object based on the specified URL string.
Then it opens a connection on this URL and reads the contents in the specified remote object. The
application code is given in Listing 20-2.

Listing 20-2 A URL-based Webpage Reader

import java.io.InputStream;
import java.net.*;
import java.util.Scanner;

public class WebPageReader {

 public static void main(String[] args) {
 try {
 String strURL =
 "http://www.oracle.com/us/technologies/java/index.html";
 URL url = new URL(strURL);
 URLConnection connection = url.openConnection();
 InputStream inStream = connection.getInputStream();
 Scanner reader = new Scanner(inStream);
 while (reader.hasNextLine()) {
 String line = reader.nextLine();
 System.out.println(line);
 }
 reader.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The main method declares a URL string strURL, as follows:

String strURL = "http://www.oracle.com/us/technologies/java/index.html";

This URL string can be anything you want. If the string points to an invalid URL, the program
will catch an exception at runtime. You may also use other protocols such as ftp to retrieve the
contents of the remote object using FTP (File Transfer Protocol).

The following statement constructs a URL object:

URL url = new URL(strURL);

A connection to this URL is made by calling the openConnection method on it that returns an
object of type URLConnection:

URLConnection connection = url.openConnection();

To read the data from the remote object, we obtain the input stream from the connection object:

InputStream inStream = connection.getInputStream();

http://www.oracle.com/us/technologies/java/index.html
http://www.oracle.com/us/technologies/java/index.html

552 Java Programming

Now, we can use our usual InputStream methods to read the contents from the remote
machine and print them to the console. At the end, we close the input stream by calling its close
method. Invoking the close method on the InputStream or OutputStream of a URLConnection
after a request may free network resources associated with this instance, unless particular protocol
specifications specify different behavior for it.

So far we’ve looked at the client side of network programming. Before moving on to server
programming, I will like to discuss one more important class—java.net.HttpCookie.

The HttpCookie Class
A website uses a cookie to send state information to a user’s browser, and a browser uses the
cookie to return the state information to the original site. Websites use cookies for client session
management, personalization, and tracking a user’s web-browsing habits. If you look at the
output of the program given in Listing 20-1, presented earlier, you will notice the presence of
Set-Cookie fields in it. The general syntax of an HTTP response is shown here:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: user=sanjay
Set-Cookie: password=10101; Expires=Wed, 19 Jun 2021 12:00:00 GMT
...
(content of page)

The web server sends these lines of Set-Cookie when it wants the browser to store cookies.
The Set-Cookie is a directive to the browser to store the cookie and send it back in future requests
to the server. If the browser does not support cookies or if cookies are disabled, obviously this
directive is ignored. The browser, in its new request, sends the cookies back to the server using
the following general syntax:

GET /technetwork/java/index.html HTTP/1.1
Host: www.oracle.com
Cookie: user=sanjay; password=10101
Accept: */*

The server now knows that the new request is related to the previous one. The server may
answer the request by sending the requested page, possibly adding other cookies.

The HttpCookie class represents these cookies in Java. It provides several methods to parse
the cookie contents. Methods include getDomain, getName, getValue, hasexpired, and so on.
You will be using some of these methods in the CookieSpy program we are going to discuss
shortly. To retrieve the cookies from the HTTP response, the class provides a static parse method
that returns a list of HttpCookie objects constructed from the Set-Cookie and Set-Cookie2 header
strings. Like the getter methods, the class provides several setter methods that a server uses after
creating a cookie object.

To handle cookies, the java.net package provides two more classes (CookieManager and
CookieHandler) and two interfaces (CookiePolicy and CookieStore). The CookieManager provides
a concrete implementation of CookieHandler that provides methods for getting/putting cookies
besides other functions. The CookiePolicy implementation decides the policy for accepting/
rejecting cookies. Lastly, as its name indicates, the CookieStore represents storage for cookies.
You will be using these interfaces and classes in the CookieSpy program.

http://www.oracle.com

Chapter 20: Network Programming 553

Spying for Cookies
Generally, websites don’t tell you when they send cookies to your machine. Although cookies
cannot carry viruses and cannot install malware on your computer, they can be used to track your
browsing activities (which is considered an invasion of privacy by law in some countries). Also,
hackers can steal them to gain access to your web account and other sensitive information the
cookies may contain. Therefore, we will develop a spy program that lists out the cookies sent to
your machine by any website you usually browse. The code for the CookieSpy program is given
in Listing 20-3.

Listing 20-3 A Spy Utility for Web Cookies

import java.io.IOException;
import java.net.*;
import java.text.SimpleDateFormat;
import java.util.List;

public class CookieSpy {

 private final static String TIME_FORMAT_NOW = "HH:mm:ss";
 private final static SimpleDateFormat sdf =
 new SimpleDateFormat(TIME_FORMAT_NOW);

 public static void main(String[] args) {
 try {
 String urlString = "http://www.yahoo.com";

 CookieManager manager = new CookieManager();
 manager.setCookiePolicy(new CustomCookiePolicy());
 CookieHandler.setDefault(manager);

 URL url = new URL(urlString);
 URLConnection connection = url.openConnection();
 Object obj = connection.getContent();
 List<HttpCookie> cookies = manager.getCookieStore().getCookies();
 for (HttpCookie cookie : cookies) {
 System.out.println("Name: " + cookie.getName());
 System.out.println("Domain: " + cookie.getDomain());
 long age = cookie.getMaxAge();
 if (age == -1) {
 System.out.println("This cookie will expire when "
 + "browser closes");
 } else {
 System.out.printf("This cookie will expire in %s "
 + "seconds%n", sdf.format(age));
 }
 System.out.println("Secured: "
 + ((Boolean) cookie.getSecure()).toString());
 System.out.println("Value: " + cookie.getValue());
 System.out.println();
 }

http://www.yahoo.com

554 Java Programming

 } catch (MalformedURLException e) {
 System.out.println("Invalid URL");
 } catch (IOException e) {
 System.out.println("Error in I/O operation");
 }
 }
}

class CustomCookiePolicy implements CookiePolicy {

 public boolean shouldAccept(URI uri, HttpCookie cookie) {
// return uri.getHost().equals("yahoo.com");
 return true;
 }
}

The main method first creates an instance of the CookieManager class:

CookieManager manager = new CookieManager();

Besides the no-argument constructor used here, the CookieManager class provides another
constructor that takes two parameters—a CookieStore and a CookiePolicy. You would use this
constructor if you want the manager to use your customized store and policy for accepting/
rejecting cookies. If you just want to use customized policies and not a customized store, the
CookieManager provides a method called setCookiePolicy to set your own policies and continue
using its default store. In our case, we set our customized policy:

manager.setCookiePolicy(new CustomCookiePolicy());

We then set this manager as the default in the CookieHandler:

CookieHandler.setDefault(manager);

CookieHandler is at the core of all cookie management. It uses the manager set in the preceding
statement to use the customized store and policies, if provided. When you get a response to your
web request, this handler will intercept the response and store the cookies, if any, in its store. To
send a web request and get a response, we use the following code:

URL url = new URL(urlString);
URLConnection connection = url.openConnection();
Object obj = connection.getContent();

We now obtain the list of received cookies by calling the getCookies method of the CookieStore:

List<HttpCookie> cookies = manager.getCookieStore().getCookies();

For each cookie in the list, we print its various members:

for (HttpCookie cookie : cookies) {
 System.out.println("Name: " + cookie.getName());
 ...
}

Chapter 20: Network Programming 555

Now, let’s look at the CustomCookiePolicy class that implements CookiePolicy. The interface
provides one sole method, called shouldAccept, that we implement as follows:

public boolean shouldAccept(URI uri, HttpCookie cookie) {
 return true;
}

The method simply returns true, suggesting that regardless of the values of the two parameters it
receives, it would accept any cookie. Now, suppose you want to accept the cookies conditionally;
for example, you may decide not to accept any cookies coming from yahoo.com. You would do so
by replacing the preceding return statement with the following:

return uri.getHost().equals("yahoo.com");

Now, try running this code on the specified Yahoo! site. You will see output similar to the
partial output shown here:

Name: fpc
Domain: www.yahoo.com
This cookie will expire in 14:15:35 seconds
Secured: false
Value: d=uaopc3ToR..MGhrtVbW1DjiAHEDyLTGUEf5vFfdiCC7FuBeb8LMu5F3UeMm8JVNlFQC
1qCLoe0znpglXs3uofuX2K.K6CbZgF5Nj6Hwgpw7ObWN.Ajw4KorrSpr2uXwbVrOImaiy63kmORX
5_uqAfZ5gy1rurYE3edYAQQpADepRpDSXEKDch8kue7Zjdrl171ByPn8-&v=2

Name: B
Domain: .yahoo.com
This cookie will expire in 23:03:20 seconds
Secured: false
Value: 04h4rp96vgq4i&b=3&s=9p

Name: fpc_s
Domain: in.yahoo.com
...

Try setting the policy so as to reject cookies from yahoo.com, as explained earlier. This time,
you will not get any cookies listed on your terminal. Try the program with different sites such as
google.com to see what cookies it sends to your machine.

One last thing to cover before we close this section: the implementation of a custom cookie
store. The default cookie store provided in Java’s implementation should suffice in most cases. You
would want to implement your own store should you wish to keep cookies in your own persistent
storage. To create your own store, you create a custom store class that implements CookieStore:

class CustomCookieStore implements CookieStore {

As a part of the interface implementation, you need to provide definitions for the add, remove,
and removeAll methods as well as the get, getCookies, and getURIs methods. You may create
a store in an internal HashMap or persistent storage on your disk. The CookieManager will
automatically call your add method to save cookies for every incoming HTTP response, and it will

http://www.yahoo.com

556 Java Programming

call the get method to retrieve cookies for every outgoing HTTP request. Remember, it is your
responsibility to remove any cookie instances that have expired.

Having seen how to write the client applications that communicate with a remote server, we
will now cover how to write an HTTP server application.

echo Server Application
In the previous section, you learned how to write a client application. In this section, you will learn
how to write a server application. The server application requires you to use the ServerSocket class.
This class implements server sockets. A server socket is a socket (endpoint of communication—
remember the definition of socket given previously) that waits for requests to come in over the
network. Based on the request, it performs some operation and optionally returns a result to
the requester.

In this section, we develop an echo server application. The echo server sets up a server socket
listening on a certain port for incoming client requests. A client makes a connection to the server
using this port number and writes some data to our echo server. The echo server will read the
data and send it back to the client “as is.” The full program is given in Listing 20-4.

Listing 20-4 A Server That Echoes Back the Client Message

import java.net.*;
import java.io.*;

public class EchoServer {

 private static ServerSocket server = null;

 public static void main(String[] args) {
 byte buffer[] = new byte[512];
 new Thread(new Monitor()).start();

 try {
 server = new ServerSocket(10000);
 System.out.println("Server Started");
 System.out.println("Hit Enter to stop the server");

 while (true) {
 Socket socketObject = server.accept();
 InputStream reader = socketObject.getInputStream();
 reader.read(buffer);
 OutputStream writer = socketObject.getOutputStream();
 writer.write(buffer);
 socketObject.close();
 }
 } catch (SocketException e) {
 System.out.println("Server is down");
 } catch (IOException ex) {
 ex.printStackTrace();

Chapter 20: Network Programming 557

 }
 }

 private static void shutdownServer() {
 try {
 server.close();
 } catch (IOException ex) {
 }
 System.exit(0);
 }

 private static class Monitor implements Runnable {

 public void run() {
 try {
 while (System.in.read() != '\n') {
 }
 } catch (IOException ex) {
 }
 shutdownServer();
 }
 }
}

We declare a class field of type ServerSocket:

private static ServerSocket server = null;

In the main function, we declare a buffer for storing the data that comes from the input stream:

byte buffer[] = new byte[512];

We create a Monitor thread and submit it for execution:

new Thread(new Monitor()).start();

The Monitor thread waits for the user to hit the enter key and then closes the server. The Monitor
class is discussed later.

We create a server socket by instantiating the ServerSocket class:

server = new ServerSocket(10000);

The class constructor takes one argument that specifies the port number on which the server
would be listening. In our example, the server listens to incoming requests on port 10000. Note
that you cannot arbitrarily pick up any number for assignment to a port. There are many ports that
are already reserved. A few well-known reserved ports include port 80 (HTTP), port 21 (FTP), port
25 (SMTP), port 23 (Telnet), and port 53 (DNS). The port numbers range from 0 to 65535 and are
divided into three ranges: the well-known ports (0 through 1023), the registered ports (1024
through 49151), and the dynamic and/or private ports (49152 through 65535). For a complete list
of ports, refer to the IANA registry (www.iana.org/assignments/port-numbers). A value of 0 in the
port numbers registry indicates that no port has been allocated. Passing 0 as an argument to the
ServerSocket constructor results in the automatic allocation of a port.

http://www.iana.org/assignments/port-numbers

558 Java Programming

After the server socket is created, we need to make it wait for the input requests. This is done
by calling its accept method:

Socket socketObject = server.accept();

The accept method is a blocking call and will wait indefinitely until a client request is received.
When it breaks from this blocking call, it returns an object of the Socket type. This is your socket
connection to the client who is currently connected to you. Just the way the client opens input and
output streams on the connected socket, similarly the server program obtains the input and output
streams on the connected socket. The following statement obtains the input stream from the socket:

InputStream reader = socketObject.getInputStream();

The program now reads the data from the input stream by calling the read method of the
InputStream class:

reader.read(buffer);

We now obtain the output stream on the socket and write the buffer contents to it:

OutputStream writer = socketObject.getOutputStream();
writer.write(buffer);

Finally, we close the socket by calling its close method:

socketObject.close();

The program now does another iteration of the while loop, where it will block again for another
request from a client. Because this is an infinite loop, we need some means of shutting down the
server. This is exactly the purpose behind creating the Monitor thread.

The Monitor class implements Runnable, and its run method simply blocks itself for keyboard
input from the user:

while (System.in.read() != '\n') {
}

The loop ignores all input except the enter key. At this event, it calls the shutdownServer
method of the application. In the shutdownServer method, we close the server socket and quit
the application by calling the System.exit method:

server.close();

Closing the socket also results in closing an associated channel, if any. After the server socket is
closed, any thread currently blocked in accept throws a Socketexception. We catch this exception
and print the “Server down” message to the user. Note that if there is no thread that is currently
blocked in the accept method, this message will not be printed to the console. Later on in this
chapter, you will be developing a multiuser server application that creates multiple threads, each
thread holding its own socket connection. In this situation, the chances of a Socketexception
occurring are greater, and you will likely see the “Server down” message on the console.

Chapter 20: Network Programming 559

With any other type of exception, we print a stack trace. Note that the Socketexception is a
subclass of IOexception:

} catch (SocketException e) {
 System.out.println ("Server is down");
} catch (IOException ex) {
 ex.printStackTrace();
}

Now, let’s look at what kinds of exceptions can occur in this code. Creating an instance of
ServerSocket can generate three types of exceptions: An IOexception is generated if an I/O error
occurs while opening the socket, a Securityexception occurs if a security manager exists and its
method does not allow this operation, and an IllegalArgumentexception occurs if the port parameter
is outside the specified range of valid port values. A call to the accept method may generate four
different types of exceptions: IOexception, Securityexception, SocketTimeoutexception, and
IllegalBlockingModeexception. The first two types of errors occur under the conditions explained
earlier. The SocketTimeoutexception error occurs if a timeout was previously set and has now been
reached. The IllegalBlockingModeexception occurs if this socket has an associated channel that is in
nonblocking mode and there is no connection ready to be accepted. The close method throws an
IOexception if an I/O error occurs while closing the socket. As mentioned earlier, closing the server
socket will make the thread blocked in the socket’s accept method throw a Socketexception.

Testing the echo Server Application
To test the echo server application, compile and run the code in a command window. You will
see the message “Server Started” on the console. The server keeps waiting for clients to connect.
We will use the client HomePageReader.java, developed in the previous section. Simply modify
the URL and the port number in the socket connection statement as follows:

Socket socketObject = new Socket("localhost", 10000);

The URL is now set to localhost, which specifies the IP for your local machine. The port is set
to 10000, which is where our echo server is listening to incoming requests.

Recompile the client program and run it from a different command window. The client program
will print the following message in its command window:

GET / HTTP/1.0

Note that it prints your GeT request along with the two newline characters embedded in the
request. Thus, the server echoes back the client message “as is.” You may try changing the request
string and observe the program output. Now, shut down the server by terminating the server
application and try running the client application. You will see an error message printed to the
console informing you that the connection to the server is refused.

560 Java Programming

Serving Multiple Clients
The echo server developed previously is capable of serving only a single client at a time. While
it is serving one client, if another client tries to connect to the server, the new client will get the
“connection refused” error. A client may try repeatedly to make a socket connection for a
predefined timeout period.

TIP
To specify a timeout for making a socket connection, use the following
code snippet. The second parameter to the connect method specifies
the time in milliseconds. The first parameter to the connect method is
an instance of the InetSocketAddress class that specifies the URL and
the port number to which you wish to connect.
Socket socketObject = new Socket();
socketObject.connect(new InetSocketAddress("localhost", 10000), 100);

If the server response time is much smaller than the frequency at which the client requests arrive
at the server, the “connection refused” error may not occur frequently and would be acceptable to
the clients. If the client receives this error; at the most, it will have to retry connecting to the server,
with a good possibility that the next time the connection will succeed. However, if the server takes
a long time to process the client request and to send a response to the client, this “connection
refused” error may not be acceptable to many waiting clients. We will now modify our server
application so that it can provide better service to the simultaneous multiple clients. The idea is
depicted in Figure 20-4.

As in the previous case, our server application listens to the incoming requests on a designated
port. Multiple clients will connect to the server using this port number. Whenever a client requests
a connection, the server spawns a thread and passes the connected socket to the created thread.
The client and this thread will now communicate with each other using the connected socket.
For every client that requests a connection to the server, the server application creates a new
thread and assigns it to the requesting client. Thus, we can now have multiple clients connecting
to the server at the same time, and these clients are served by independent threads assigned by the

FIGURe 20-4. Serving multiple clients by creating threads on the server

Client 1

Client 2

Client 3

Client 4

Port
123

Thread 1

Thread 2

Thread 3

Thread 4

Server

Chapter 20: Network Programming 561

server. When large numbers of clients attempt to connect to the server, the server may eventually
run out of resources, and in such a case the connection to the new client would be refused. This
situation will not occur that frequently, as in the earlier case. We will now modify our echo server
application to implement this concept.

Serving Simultaneous Clients
To serve multiple clients, the modified server application will need to create a thread for each
received client request. We will pass the connected client socket to this thread so that the client and
the corresponding thread can communicate directly with each other. The server will now be free to
receive the next client request. The modified echoServer application is given in Listing 20-5.

Listing 20-5 A Threaded Server Application That Services Multiple Clients

import java.net.*;
import java.io.*;
import java.util.concurrent.*;

public class EchoMultiServer {

 private static ServerSocket server = null;
 private static ExecutorService threadPool;

 public static void main(String[] args) {
 try {
 threadPool = Executors.newCachedThreadPool();
 threadPool.submit(new Monitor());
 server = new ServerSocket(10000);
 System.out.println("Server listening on port 10000 ...");
 System.out.println("Hit Enter to stop the server");
 while (true) {
 Socket socketObject = server.accept();
 System.out.println("Thread created");
 threadPool.submit(new EchoThread(socketObject));
 }
 } catch (SocketException e) {
 System.out.println("Server is down");
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private static void shutdownServer() {
 try {
 server.close();
 } catch (IOException ex) {
 }
 threadPool.shutdown();
 System.exit(0);
 }

562 Java Programming

 private static class Monitor implements Runnable {

 @Override
 public void run() {
 try {
 while (System.in.read() != '\n') {
 }
 } catch (IOException ex) {
 }
 shutdownServer();
 }
 }
}

class EchoThread implements Runnable {

 private Socket socketObject = null;
 private byte buffer[] = new byte[512];

 public EchoThread(Socket socketObject) {
 this.socketObject = socketObject;
 }

 @Override
 public void run() {
 try {
 try {
 InputStream reader = socketObject.getInputStream();
 reader.read(buffer);
 OutputStream writer = socketObject.getOutputStream();
 writer.write(buffer);
 } finally {
 socketObject.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In the main method, we create a cached thread pool for executing our worker threads and a
single instance of the Monitor thread:

threadPool = Executors.newCachedThreadPool();

We create a Monitor thread and submit it for execution:

threadPool.submit(new Monitor());

The Monitor thread waits for the user to hit the enter key and then closes the server. The Monitor
class was discussed earlier with the echoServer class.

Chapter 20: Network Programming 563

We also create an instance of ServerSocket listening to port 10000:

server = new ServerSocket(10000);

We then set up an infinite loop for accepting client requests:

while (true) {
 Socket socketObject = server.accept();

The accept method call is a blocking call that waits for client requests to arrive. After a client
request arrives, the accept method returns a Socket object. We now create a thread and pass
this socket object in the thread’s constructor and submit the created thread to the thread pool
for execution:

threadPool.submit(new EchoThread(socketObject));

The program loops back to the accept method, where it waits for another client to connect.
The echoThread class implements the Runnable interface:

class EchoThread implements Runnable {

The class constructor receives a Socket object as a parameter and copies it to a local variable
for later use. In the run method, we obtain the input stream on the socket object and read the
data into the buffer from the input stream:

InputStream reader = socketObject.getInputStream();
reader.read(buffer);

We write this data back to the output stream on the same socket. Thus, whatever data we
receive from the client is echoed back to the client:

OutputStream writer = socketObject.getOutputStream();
writer.write(buffer);

Finally, we close the socket by calling its close method.

socketObject.close();

Note that the echoThread simply sends back the received string to the client. If this thread
were to do something more, such as accessing a server resource, you would be required to
implement the various synchronization techniques you learned in the previous chapters to ensure
resource integrity.

Running the echoMultiServer Application
To run the echoMultiServer application, you first compile the application using the javac compiler.
After the program compiles successfully, you run it on the command prompt as follows:

C:\360\ch20>java EchoMultiServer

When the server starts, it prints an appropriate message to the user console and waits for the
clients to connect.

564 Java Programming

Testing the echoMultiServer Application
To test the echoMultiServer application, we will modify our earlier HomepageReader application.
The modified program creates 100 clients, each making an independent socket connection to the
multiserver. You will observe that the server serves all these clients concurrently. The modified
client application is shown in Listing 20-6.

Listing 20-6 A Client Application for Testing the Multiserver

import java.io.*;
import java.net.*;
import java.util.Scanner;

public class EchoMultiClient {

 private static int counter;

 public static void main(String[] args) {
 for (int i = 0; i < 100; i++) {
 counter++;
 new Thread(new Client(counter)).start();
 }
 }

 private static class Client implements Runnable {

 private int counter;

 public Client(int counter) {
 this.counter = counter;
 }

 public void run() {
 try {
 Socket socketObject = new Socket();
 socketObject.connect(
 new InetSocketAddress("localhost", 10000), 1000);

 try {
 OutputStream oStream = socketObject.getOutputStream();
 String str = "Hello from Client " + counter;
 oStream.write(str.getBytes());
 InputStream inStream = socketObject.getInputStream();
 Scanner in = new Scanner(inStream);
 while (in.hasNextLine()) {
 String line = in.nextLine();
 System.out.println(line);
 }
 Thread.sleep(10);
 } finally {
 socketObject.close();

Chapter 20: Network Programming 565

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

In the main method, we simply create a loop to instantiate 100 client threads:

for (int i = 0; i < 100; i++) {
 counter++;
 new Thread(new Client(counter)).start();
}

The client is a Runnable class that accepts the counter as a parameter to its constructor. The
counter is a static class field that numbers the created threads:

private static class client implements Runnable {

The client is declared private and static, the same as our previous declarations. The run method
creates a Socket and binds it to the localhost at port 10000. We also set a timeout of 1,000 milliseconds
just to ensure that the client tries for a successful socket connection for a reasonable amount of time:

public void run() {
try {
 Socket socketObject = new Socket();
 socketObject.connect(
 new InetSocketAddress("localhost", 10000), 1000);

The rest of the client code is similar to the socket client application discussed in Listing 20-1.
It basically writes a message to the server and prints the “server returned” message to the console.

When you run the application, you will see the following typical output:

Hello from Client 8
Hello from Client 9
Hello from Client 15
Hello from Client 12
Hello from Client 4
Hello from Client 11
Hello from Client 17
...

Also, observe the server console. You will notice that several threads are created. Each created
thread prints an informative message to the console. The server output is shown here:

Thread Created
Thread Created
Thread Created
...

Try changing the timeout in the socket connection statement. If this time is set to a low value,
you may see a few timeout exceptions on the console. If you do not get any timeouts, it means

566 Java Programming

the server is running really fast to serve all these clients promptly. You might now introduce a
deliberate time lag between the two accept calls in the server’s infinite while loop by placing the
thread to sleep for some time.

Writing a File Storage Server Application
Now that you have learned the basics of network programming, we will discuss how to develop a
more practical application. We will be developing a file storage server where you can upload a file
of your choice. For this, the server will need to create a server socket and listen to the incoming
requests. A client makes a connection to the server and sends a file to the server for storage. The
server receives the file contents over the established socket connection to the client, and it stores
the file by appending a unique string to its filename. The client can later on request the file back
from the server. In this case, the file stored on the server will be downloaded to the client machine.

We will discuss the construction of both the server and client applications. First, let’s look at
the server implementation.

A Cloud Storage Server
The file storage server sets up a server socket and waits for the client requests. A client request
consists of a command followed by a filename and its contents. The command is an integer value
of 0 or 1, where 0 indicates the request for storage and 1 indicates a request for retrieval. The
server accepts only text-based files for storage. The complete program is given in Listing 20-7.

Listing 20-7 A File Storage Server Application

import java.io.*;
import java.net.*;
import java.util.logging.*;

public class CloudStorageServer {

 private static ServerSocket server;

 public static void main(String[] args) {
 Socket requestSocket = null;
 new Thread(new Monitor()).start();

 try {
 server = new ServerSocket(10000);
 System.out.println("Server started:");
 System.out.println("Hit Enter to stop server");
 try {
 while (true) {
 requestSocket = server.accept();
 new Thread(
 new RequestProcessor(requestSocket)).start();
 }
 } finally {
 requestSocket.close();
 }

Chapter 20: Network Programming 567

 } catch (Exception ex) {
 Logger.getLogger(
 CloudStorageServer.class.getName()).log(Level.SEVERE,
 null, ex);
 }
 }

 private static void shutdownServer() {
 try {
 server.close();
 } catch (IOException ex) {
 }
 System.exit(0);
 }

 private static class Monitor implements Runnable {

 public void run() {
 try {
 while (System.in.read() != '\n') {
 }
 } catch (IOException ex) {
 }
 shutdownServer();
 }
 }

 private static class RequestProcessor implements Runnable {

 private Socket requestSocket;

 public RequestProcessor(Socket requestSocket) {
 this.requestSocket = requestSocket;
 }

 @Override
 public void run() {
 try {
 DataInputStream reader =
 new DataInputStream(requestSocket.getInputStream());
 DataOutputStream writer = new DataOutputStream(
 requestSocket.getOutputStream());
 int cmd = reader.readInt();
 String fileName = reader.readUTF();
 String message;
 if (cmd == 0) {
 message = "Put ";
 } else {
 message = "Get ";
 }
 message += fileName + " requested";
 System.out.println(message);

568 Java Programming

 if (cmd == 0) {
 uploadFile(reader, fileName);
 } else if (cmd == 1) {
 downloadFile(writer, fileName);
 }
 } catch (IOException ex) {
 Logger.getLogger(
 CloudStorageServer.class.getName()).log(Level.SEVERE,
 null, ex);
 }
 }

 private void uploadFile(DataInputStream in, String fname) {
 try {
 BufferedWriter writer = new BufferedWriter(
 new FileWriter("server-" + fname));
 String str;
 while (!(str = in.readUTF()).equals("-1")) {
 writer.write(str);
 writer.newLine();
 }
 in.close();
 writer.close();
 System.out.println("'" + fname
 + "' saved under name '" + "server-" + fname + "'");
 } catch (IOException ex) {
 Logger.getLogger(
 CloudStorageServer.class.getName()).log(Level.SEVERE,
 null, ex);
 }
 }

 private void downloadFile(DataOutputStream out, String fname) {
 try {
 BufferedReader reader = new BufferedReader(
 new FileReader("server-" + fname));
 String str = reader.readLine();
 while (str != null) {
 out.writeUTF(str);
 str = reader.readLine();
 }
 out.writeUTF("-1");
 reader.close();
 out.close();
 } catch (IOException ex) {
 Logger.getLogger(
 CloudStorageServer.class.getName()).log(Level.SEVERE,
 null, ex);
 }
 }
 }
}

Chapter 20: Network Programming 569

The main function creates a server socket listening to port 10000:

server = new ServerSocket(10000);

It sets up an infinite loop that awaits client requests. When a request is received, it creates a
thread for processing the request and passes the socket object to it during its construction:

while (true) {
 requestSocket = server.accept();
 new Thread(
 new RequestProcessor(requestSocket)).start();
}

Now, let’s look at the thread implementation that processes the request:

private static class RequestProcessor implements Runnable {

The RequestProcessor is a static private inner class. The class constructor receives a Socket
object as a parameter and stores it in its instance field.

The run method creates DataInputStream and DataOutputStream objects on the socket
connection:

DataInputStream reader = new DataInputStream(requestSocket.getInputStream());
DataOutputStream writer = new DataOutputStream(requestSocket.getOutputStream());

The readInt method of the DataInputStream class reads the command from the client
application:

int cmd = reader.readInt();

The readUTF method reads the name of the file that the client is going to upload:

String fileName = reader.readUTF();

We call the uploadFile or downloadFile method, depending on the user’s command.
In the uploadFile method, we create a file in the server’s current working directory with the

prefix “server-” added to the filename and then create a BufferedWriter on it:

BufferedWriter writer = new BufferedWriter(new FileWriter("server-" + fname));

The program now continuously reads from the input stream and writes to the output file
created in the server’s current working directory until the string “-1” is received, which marks
the end-of-file condition:

while (!(str = in.readUTF()).equals("-1")) {
 writer.write(str);
 writer.newLine();
}

At the end, we attempt to close both the input and output streams:

in.close();
writer.close();

570 Java Programming

In the downloadFile method, we create a reader on the previously stored file:

BufferedReader reader = new BufferedReader(new FileReader("server-" + fname));

We now read the file line by line and send its contents to the output stream using a while loop:

String str = reader.readLine();
while (str != null) {
 out.writeUTF(str);
 str = reader.readLine();
}

We mark the end-of-data condition by writing “-1” to the output stream. Finally, we attempt
to close both files. Note that in the case of an error, the server simply logs the error, which the
server administrator can look up at a later time; no error is reported to the client.

Having discussed the server code, we will now discuss the client implementation.

A Cloud Store Client
The cloud store client developed in this section can both upload and download a file from the
remote sever. This is a command-line application that accepts two parameters: The first parameter
specifies the get/put command, and the second specifies the filename. The program establishes a
socket connection to the remote server and uses it for uploading/downloading the specified file.
The client program is given in Listing 20-8.

Listing 20-8 A File Upload/Download Program

import java.io.*;
import java.net.*;

public class CloudStore {

 public static void main(String[] args) {
 Socket requestSocket = null;

 if (args.length < 2) {
 System.out.println("Usage: java CloudStore get/put filename");
 System.exit(0);
 }

 int cmd = 0;
 switch (args[0]) {
 case "get":
 cmd = 1;
 break;
 case "put":
 cmd = 0;
 break;
 }

Chapter 20: Network Programming 571

 String fileName = args[1];
 try {
 try {
 requestSocket = new Socket();
 requestSocket.connect(
 new InetSocketAddress("localhost", 10000));
 DataOutputStream writer = new DataOutputStream(
 requestSocket.getOutputStream());
 writer.writeInt(cmd);
 writer.writeUTF(fileName);
 if (cmd == 0) { //put
 BufferedReader reader = new BufferedReader(
 new FileReader(fileName));
 String str = null;
 while ((str = reader.readLine()) != null) {
 writer.writeUTF(str);
 }
 writer.writeUTF("-1");
 System.out.println(filename + " uploaded successfully");
 reader.close();
 writer.close();
 } else { //get
 DataInputStream reader = new DataInputStream(
 (requestSocket.getInputStream()));
 BufferedWriter fileWriter = new BufferedWriter(
 new FileWriter(fileName));
 String str = null;
 while (!(str = reader.readUTF()).equalsIgnoreCase("-1")) {
 fileWriter.write(str);
 fileWriter.newLine();
 System.out.println(str);
 }
 reader.close();
 fileWriter.close();
 }
 } finally {
 requestSocket.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In the main method, the client establishes a socket connection. (I used the same machine for
running the server, so the server is specified as localhost.) If you use a remote server, specify the
appropriate URL for the server or its IP address.

requestSocket = new Socket();
requestSocket.connect(new InetSocketAddress("localhost", 10000));

572 Java Programming

The client application now opens DataOutputStream on the output stream of the
established socket:

DataOutputStream writer = new DataOutputStream(requestSocket.getOutputStream());

The writeInt method writes the command, and the writeUTF method writes the filename to
the socket stream:

writer.writeInt(cmd);
writer.writeUTF(fileName);

To read the contents of the file specified on the command line, we use the BufferedReader class:

BufferedReader reader = new BufferedReader(new FileReader(fileName));

The program reads the file contents, line after line, by calling the readLine method of the stream
reader class and writes the read contents to the output stream by calling its writeUTF method:

while ((str = reader.readLine()) != null) {
 writer.writeUTF(str);
}

At the end, we write the string “-1” to the output stream to indicate the end of contents:

writer.writeUTF("-1");

CAUTION
The use of “-1” as the EOF marker might not be appropriate because
your text file might contain this string, resulting in a partial reading
of the file at the client’s end. When you use low-level sockets for
communication, you need to be careful in designing the proper
protocol and handshaking between the two machines.

For downloading the previously stored file, we open a DataInputStream on the socket
connection:

DataInputStream reader = new DataInputStream((requestSocket.getInputStream()));

 We also create a file for writing the downloaded contents:

BufferedWriter fileWriter = new BufferedWriter(new FileWriter(fileName));

We keep on reading from the input stream until we receive the terminating string specified by -1:

while (!(str = reader.readUTF()).equalsIgnoreCase("-1")) {

For each line read, we write its contents followed by a newline character to the local file:

fileWriter.write(str);
fileWriter.newLine();

We also print the read line to the user’s console for a quick look at the downloaded file:

System.out.println(str);

Chapter 20: Network Programming 573

Testing the File Upload/Download Utility
Compile the server application, open a command window, and then start the server using the
following command:

C:\360\ch20>java CloudStorageServer

You will see the following message on your console:

Server started:
Hit Enter to stop server

The server is now waiting for the client requests. Open another command window and run
the client using the following command:

C:\360\ch20>java CloudStore put notes.txt

The program will upload the notes.txt file to the server. The file must be available in the local
folder from where the application is run. After the file is uploaded, the application prints a
message to the user:

notes.txt uploaded successfully

Note that this message is not a guarantee that the server received the file contents without
errors and saved it on its local storage. The server does not return any error conditions to the
client. To check whether there were any errors in this operation, you will need to check the
server console. You will see the following message on the server console if the file was
successfully saved:

put notes.txt requested
'notes.txt' saved under name 'server-notes.txt'

You can verify the physical presence of this file on the server in the working directory where
you started the server application and check its contents. To download the previously uploaded
file, use the following command:

C:\360\ch20 java CloudStore get notes.txt

The contents of the previously uploaded notes.txt file will be downloaded from the server and
stored in the local file with the same name in the working directory where you started the client
application.

NOTe
To focus on socket programming, we have kept the server and client
applications simple by avoiding the handshaking in communications,
especially for error reporting. To develop an application similar to
this for uploading /downloading files to a remote machine, you would
probably use a web container and servlets/JSPs (Java Server Pages).
A web container would use sockets for communication like the one
described in this application.

574 Java Programming

The InetAddress Class
The InetAddress class is a utility class that represents an IP address, which is either a 32-bit or
128-bit unsigned number used by Internet Protocol (IP). The protocols such as Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), and Stream Control Transport Protocol
(SCTP) are built on top of IP. The instance of this class consists of an IP address and possibly its
corresponding host name. The class converts numeric addresses to host names, and vice versa.
The other networking classes that you have studied previously, such as Socket and ServerSocket,
use this class for identifying hosts.

The class does not have any public constructors, which means you cannot create any arbitrary
addresses. All created addresses must be checked with DNS (Domain Name System). To create an
InetAddress object, you must use one of the available factory methods. The getLocalHost factory
method returns the InetAddress object that represents the local host. The getByName method
accepts the host name as its parameter and returns the corresponding InetAddress object. Both
methods throw an UnknownHostexception if they are unable to resolve the host name. The
getAllByName factory method returns an array of InetAddress objects that represent all the addresses
the given name resolves to—note that DNS mappings allow you to associate a single name with a
set of machines (IP addresses). This method may throw an Unknownexception like the other two
methods if it cannot resolve the name to at least one address.

The class provides various getter methods that return the host name, address, and so on.
The isMulticastAddress method checks whether the InetAddress is an IP multicast address.
Inet4Address and Inet6Address are the two direct, known subclasses of this class. As the name
indicates, Inet4Address represents an IP version 4 address and Inet6Address represents an IP
version 6 address. For so many years, we have been using IPv4 addresses that consist of four
parts—each being a byte of data. The IPv6 address consists of eight 16-bit pieces and will soon
be in use as the Internet keeps growing.

We have used a variation of the class InetSocketAddress in our earlier examples while connecting
to a remote server. The simple example given in Listing 20-9 illustrates the use of this class.

Listing 20-9 DNS Resolution Application

import java.net.*;

public class DNSLookup {

 public static void main(String[] args) {
 InetAddress[] inetHost = null;
 try {
 System.out.println("List of Google servers");
 inetHost = InetAddress.getAllByName("www.google.com");
 for (InetAddress address : inetHost) {
 System.out.println(address);
 }
 System.out.println("\nList of CNN servers");
 inetHost = InetAddress.getAllByName("cnn.com");
 for (InetAddress address : inetHost) {
 System.out.println(address);
 }
 System.out.println("\nLocal machine");

http://www.google.com

Chapter 20: Network Programming 575

 System.out.println(InetAddress.getLocalHost().toString());
 } catch (UnknownHostException ex) {
 ex.printStackTrace();
 }
 }
}

In the main method, we call the getAllByName static method of the InetAddress class. The
method takes a host as the parameter and returns an array of the associated IP addresses. First, we
list out all servers hosted by Google and then by CNN. At the end, we list out the IP address of our
local machine. When you run this application, you will see output similar to the following (note
that by the time you run this code, Google/CNN might have changed/added a few servers):

List of Google servers
www.google.com/74.125.236.48
www.google.com/74.125.236.49
www.google.com/74.125.236.50
www.google.com/74.125.236.51
www.google.com/74.125.236.52

List of CNN servers
cnn.com/157.166.224.26
cnn.com/157.166.226.26
cnn.com/157.166.255.19
cnn.com/157.166.224.25
cnn.com/157.166.255.18
cnn.com/157.166.226.25

Local machine
Poornachandra-Sarangs-iMac.local/10.0.1.2

From this output, you can see that Google has hosted their website on five different IPs, whereas
CNN hosts their website on six known servers. The output shows that the local machine has only
one IP associated with it (which, of course, goes without saying).

Broadcasting Messages
So far what you have seen in this chapter is the development of client/server applications, where
one or more clients connect to a known server and communicate with it. This communication
takes place over TCP, which provides reliable, ordered delivery of a stream of bytes from a
program running on one computer to another program running on another computer. In some
situations, you might need to make a general broadcast of a message on a network, without
caring about the guaranteed and orderly delivery of data. Consider the case of a news network
that continually transmits news on its channel regardless of whether anyone is watching. A client
that connects to the channel receives the news currently being broadcast. All previous broadcasts
are not delivered to the client. A client might not even be interested in the past broadcasts.

We will now develop such an application in Java using a DatagramSocket, which is Java’s
mechanism for network communication via UDP instead of TCP. This class represents a socket
that is used for sending and receiving datagram packets. It can be used for sending multiple
packets on a network. When multiple packets are sent from one machine to another, each one

http://www.google.com/74.125.236.48
http://www.google.com/74.125.236.49
http://www.google.com/74.125.236.50
http://www.google.com/74.125.236.51
http://www.google.com/74.125.236.52

576 Java Programming

may take a different route and therefore the packets at the receiving end may not arrive in the
same order as the sending order. In situations where datagrams are used, this is acceptable. For
example, consider a server that broadcasts news on a channel; the order in which the news items
are received by the client rarely matters. In some cases, the packets could be lost in the transit
and the client might not receive them. Consider a server that broadcasts atomic clock time ticks
on the network. Let us say that the server broadcasts a message every second. If a few of these
messages are lost, the client does not care because it is usually interested in the current time and
not all the older beeps that the server has broadcasted.

We will now discuss the construction of such a broadcasting server. We cover the server
application first, followed by a client that receives the current broadcasts from the server.

Writing a Stock Quotes Server
Our server application will broadcast the latest trade executed on the stock exchange. Such
broadcasts take place periodically as trades are executed. The server application is given in
Listing 20-10.

Listing 20-10 Exchange Server Broadcasting Trades

import java.io.*;
import java.net.*;
import java.text.SimpleDateFormat;
import java.util.Calendar;

public class StockTradesServer {

 public static void main(String[] args) {
 try {
 Thread tradesGenerator = new Thread(
 new StockTradesGenerator());
 tradesGenerator.setDaemon(true);
 tradesGenerator.start();
 System.out.println(
 "Stock trades broadcast server started");
 System.out.println("Hit Enter to stop server");
 while (System.in.read() != '\n') {
 }
 } catch (IOException ex) {
 System.out.println("Error starting server");
 }
 }

 private static class StockTradesGenerator implements Runnable {

 private DatagramSocket broadcastSocket = null;
 private String[] stockSymbols = {"IBM", "SNE", "XRX", "MHP", "NOK"};
 private static final String TIME_FORMAT_NOW = "HH:mm:ss";

 public StockTradesGenerator() {
 try {

Chapter 20: Network Programming 577

 broadcastSocket = new DatagramSocket(4445);
 } catch (SocketException ex) {
 System.out.println("Error making socket connection");
 }
 }

 public void run() {
 byte[] buffer = new byte[80];

 try {
 while (true) {
 int index = (int) (Math.random() * 5);
 float trade = generateRandomTrade(index);
 String lastTrade = String.format("%s %.2f @%s",
 stockSymbols[index], trade, now());
 buffer = lastTrade.getBytes();

 try {
 InetAddress groupBrodcastAddresses =
 InetAddress.getByName("230.0.0.1");
 DatagramPacket packet = new DatagramPacket(buffer,
 buffer.length, groupBrodcastAddresses, 4446);
 broadcastSocket.send(packet);
 Thread.sleep((long) (Math.random() * 2000));
 } catch (Exception ex) {
 System.out.println("Error in communication");
 }
 }
 } finally {
 broadcastSocket.close();
 }
 }

 private float generateRandomTrade(int index) {
 float trade = (float) Math.random();

 switch (index) {
 case 0:
 trade += 118;
 break;
 case 1:
 trade += 29;
 break;
 case 2:
 trade += 8;
 break;
 case 3:
 trade += 26;
 break;
 case 4:
 trade += 14;
 break;

578 Java Programming

 }
 return trade;
 }

 private String now() {
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new SimpleDateFormat(TIME_FORMAT_NOW);
 return sdf.format(cal.getTime());
 }
 }
}

The main method of the application creates and runs an instance of StockTradesGenerator
that generates random trades periodically for a predefined list of stocks:

Thread tradesGenerator = new Thread(new StockTradesGenerator());
tradesGenerator.setDaemon(true);
tradesGenerator.start();

The main application thread terminates when the user hits the enter key.
In the StockTradesGenerator thread class, we declare a DatagramSocket variable and a few

strings that represent some of the stock symbols:

private DatagramSocket broadcastSocket = null;
private String[] stockSymbols = {"IBM", "SNE", "XRX", "MHP", "NOK"};

The class constructor creates an instance of DatagramSocket that binds to port 4445:

broadcastSocket = new DatagramSocket(4445);

In the run method, we set up an infinite loop for broadcasting the trade as and when it executes
on the exchange. To simulate a real-life-like situation, we pick up the stock symbol from the
stockSymbols array at random. We also generate the trade price at random and add it to a fixed
value for each stock symbol:

int index = (int) (Math.random() * 5);
float trade = generateRandomTrade(index);

We now format the last trade (the generated price and the current time) in a string and get its
contents in a byte buffer:

String lastTrade = String.format("%s %.2f @%s", stockSymbols[index], trade, now());
buffer = lastTrade.getBytes();

The method now gets the current system time and formats it using a predefined formatter.
The program then sets up an IP address for broadcast:

InetAddress groupBrodcastAddresses = InetAddress.getByName("230.0.0.1");

A datagram packet is constructed by instantiating the DatagramPacket class:

DatagramPacket packet = new DatagramPacket(buffer, buffer.length,
 groupBrodcastAddresses, 4446);

Chapter 20: Network Programming 579

The first parameter to the constructor defines the packet contents, the second parameter decides
the contents’ length, the third parameter specifies the IP, and the fourth parameter specifies the port
number. The packet is broadcast on the network by calling the send method of the socket:

broadcastSocket.send(packet);

We sleep for some time before sending the next packet:

Thread.sleep((long) (Math.random() * 2000));

Because this is a server application, we maintain a log of exceptions for the administrator to
examine at a later time. So let’s look at what kind of exceptions this server application may
generate at runtime. Constructing a DatagramSocket may generate a Socketexception or a
Securityexception. A Socketexception is generated if the socket could not be opened or could
not bind to the specified local port. The Securityexception is generated if a security manager
exists and its checkListen method does not allow this operation. The DatagramPacket constructor
we have used in our application does not throw any exceptions. The class declares a few more
overloaded constructors. The constructors that take a SocketAddress as one of the parameters
may throw an IllegalArgumentexception and a Socketexception. The constructor we have used
here takes InetAddress as one of the parameters. The getByName method of the InetAddress
class may throw an UnknownHostexception if no IP address for the specified host can be found.
A Securityexception may be thrown for the usual reasons that the security manager exists and
its checkConnect method does not allow the current operation. Finally, the send operation of
DatagramSocket may generate various exceptions. Obviously, it would throw an IOexception
if an I/O error occurs during sending. A Securityexception occurs for the usual reasons that the
security manager exists and the checkMulticast or checkConnect method does not allow the send
operation. The method may throw a PortUnreachableexception if the socket is connected to a
currently unreachable destination port—throwing of this exception is not guaranteed. If the
socket has an associated channel, which is in nonblocking mode, the method will throw an
IllegalBlockingModeexception. Lastly, if the socket is connected and the connected address and
packet address differ, an IllegalArgumentexception would be thrown. Note that when any of
these exceptions occur, we log them on the server and do not attempt to inform the client, which
is really not required because this type of communication (datagram) is not really guaranteed.

When you run the application, the server keeps broadcasting the trade packets continuously.
Let’s now look at a client application that connects to the server and displays the contents of the
received packets on its console.

Writing the Stock Trader Client
The stock trader client connects to the multicast stock trades server described in the previous
section and prints trade information to the user console whenever such information is received
from the server. The full source for the client is given in Listing 20-11.

NOTe
We intentionally declare the main method of the following client
application as throwing an IOException so as to keep the exception-
handling code away from the main application logic and not clutter it
up. As said in Chapter 8, a good practice is to handle errors close to
where they occur.

580 Java Programming

Listing 20-11 Client Program That Receives Trades from a Stock Exchange Server Application

import java.io.*;

import java.net.*;

public class StocksTrader {

 public static void main(String[] args) throws IOException {

 MulticastSocket socket = new MulticastSocket(4446);

 InetAddress address = InetAddress.getByName("230.0.0.1");

 socket.joinGroup(address);

 for (int i = 0; i < 10; i++) {

 byte[] buffer = new byte[256];

 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);

 socket.receive(packet);

 String received = new String(packet.getData(), 0, packet.getLength());

 System.out.println("Last Trade: " + received);

 }

 socket.leaveGroup(address);

 socket.close();

 }

}

The main method creates an instance of MulticastSocket that binds to port 4446:

MulticastSocket socket = new MulticastSocket(4446);

The program builds an InetAddress corresponding to the broadcast address set up in the server:

InetAddress address = InetAddress.getByName("230.0.0.1");

We call the joinGroup method on the socket to bind it to the multicast group:

socket.joinGroup(address);

We then read the last 10 trades broadcast by the server. For this, we create a DatagramPacket
and pass it as a parameter to the receive method of the socket instance:

DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
socket.receive(packet);

Note that receive is a blocking call and therefore waits for the server broadcast. After receiving
the packet, we retrieve its contents in a string:

String received = new String(packet.getData(), 0, packet.getLength());

The getData method retrieves the packet contents, and the getLength method returns the length
of its contents. The program then prints these contents to the console:

System.out.println("Last Trade: " + received);

Chapter 20: Network Programming 581

After reading the last 10 trades, we disconnect the socket from the multicast group and close it:

socket.leaveGroup(address);
socket.close();

Let’s now look at the various exceptions this program may generate. The MulticastSocket
constructor may generate an IOexception if an I/O error occurs while creating the socket. It may
also throw a Securityexception if the checkListen method of the existing security manager does not
allow this operation. The joinGroup method may generate an IOexception if an error occurs while
joining or the specified address is not a multicast address. It throws a Securityexception if the
checkMulticast method of the existing security manager does not allow the join operation. The
leaveGroup method may generate an IOexception and Securityexception for reasons similar to a
join operation. The receive operation on the socket may generate various kinds of exceptions. An
IOexception is thrown if an I/O error occurs. A SocketTimeoutexception occurs if a timeout was
previously set and it has expired. The PortUnreachableexception is thrown if the socket is currently
connected to an unreachable destination, and lastly the IllegalBlockingModeexception is thrown
when the associated channel of the socket is in nonblocking mode. On the occurrence of any of
these errors, we simply print a stack trace to the user console for detailed information on the type of
error that occurred. Typically, for network applications, the stack trace helps in better understanding
and diagnosing, if required, the type of error rather than using a customized error message.

Running the Server and Client
To run the server, on a new command window type the following command:

C:\360\ch20>java StockTradesServer

Leave the server running in this window and open another window for starting the client.
Type the following command to run the client:

C:\360\ch20>java StocksTrader

You will see the following messages printed on the console.

Last Trade: NOK 14.56 @10:01:58
Last Trade: XRX 8.32 @10:01:59
Last Trade: SNE 29.62 @10:01:59
Last Trade: NOK 14.08 @10:02:01
Last Trade: IBM 118.78 @10:02:02
Last Trade: MHP 26.33 @10:02:03
Last Trade: SNE 29.32 @10:02:05
Last Trade: IBM 118.51 @10:02:05
Last Trade: SNE 29.66 @10:02:06
Last Trade: IBM 118.97 @10:02:08

Note that the output on your machine will differ from the preceding output and will differ on
every run due to the randomization used to generate trades.

582 Java Programming

Support for SCTP
So far you have seen the use of two network protocols—TCP and UDP. Another option is SCTP.
It provides the reliable, ordered delivery of data like TCP but operates in the message-oriented
fashion like UDP. It is session oriented, and an association between the two endpoints must be
established before any data can be transmitted. The connection between two endpoints is
referred to as an association between those endpoints. It has direct support for multihoming.
This means that an endpoint may be represented by more than one address. This is illustrated
in Figure 20-5.

Each address may be used for sending and receiving data, thus providing network redundancy.
Endpoints exchange a list of addresses during association setup. One address is designated as a
primary address; the peer communicates to this default address.

The I/O operations operate on messages, and message boundaries are preserved. Each
association may support multiple independent logical streams. This is illustrated in Figure 20-6.

The data packet now includes stream identifiers in addition to the usual sequence numbers.
SCTP monitors the association paths using a built-in heartbeat. If a path failure is detected, it
sends traffic over the alternate path. The application need not even know that a failover recovery
occurred. Failover can also be used to maintain network application connectivity. Thus, SCTP
provides a powerful mechanism for supporting high availability and increased reliability.

Along with SCTP, there is also a need for other protocols such as the Session Initiation Protocol
(SIP), which is used for negotiating and defining a communication session’s parameters. To explain
the purpose and enrollment process, you use the Session Description Protocol (SDP), which defines
a format for session characterization and media definition. SDP can be used with a number of
transport protocols, such as Session Announcement Protocol (SAP), SIP, HTTP, and others.

The Java API now defines a new package, com.sun.nio.sctp, to support SCTP. The API and
implementation are publicly accessible, so you can write your network applications based on
SCTP. However, SCTP is not a part of the Java SE platform at this time.

FIGURe 20-5. Multihoming in an SCTP connection

Network
adapter 1

Network
adapter 2

Wireless
Network

Wireless
adapter 1

Wireless
adapter 1

Wired
Network

Network
adapter 1

Network
adapter 2

SCTP
Client SCTP

Server

Chapter 20: Network Programming 583

Summary
In this chapter, you studied another important set of classes from the Java libraries for networking.
Java right from its beginning provided good support for creating network applications. The java.net
package provides a set of classes for this purpose. The Socket class represents a client socket, and a
ServerSocket class is used for creating a server application. The communication over the socket is
abstracted using stream classes. You open an input stream for reading from a socket and an output
stream to send data out on a socket. To serve multiple clients, you would create a thread on the
server for each accepted request. You pass the connected socket object to this thread. The client
and the thread on the server communicate with each other using this socket.

In this chapter, you learned to write home page and webpage reader applications based on
the URL and URLConnection classes. You also developed a cookie spy application that checks
on the incoming cookies sent by websites. You developed an echo server that responds to
requests coming from many concurrent clients.

The network applications include programs such as chat, file server, and news broadcast. You
learned to create a simple file storage server that allows clients to upload files on the server. You
also learned the use of the InetAddress class that represents an IP address.

The communication in a network application need not always be point-to-point. In certain
situations such as a news broadcast, the server will broadcast messages on a channel on a
continuous basis. A client connects to the server and receives the currently broadcasted messages.
Java supports this functionality through the use of the DatagramSocket and DatagramPacket
classes. In addition to TCP and UDP, Java libraries now support SCTP.

In the next chapter, you learn a few more classes from the Java libraries.

FIGURe 20-6. SCTP association containing multiple streams

PeerPeer

SCTP Association

Stream 1

Stream 2

Stream N

Stream 0

Chapter
21

Utility Classes

585

586 Java Programming

ach of our previous chapters was dedicated to a specific topic. This chapter, however,
is different from earlier chapters. Java provides several utility classes for various
purposes. This chapter covers some of these utility classes. Covering the entire set of
these classes is beyond the scope of a single book, so I have picked only the most
commonly used classes and discuss only their important methods. In particular, we

cover the String class, the date and time classes, and the Reflection and Introspection mechanism.
Under these three headings, here is what you will be learning in this chapter:

The ■■ String class

The various techniques of string manipulations■■

Comparing string objects■■

Creating formatted output■■

Date and time classes ■

The ■■ Calendar class

The ■■ GregorianCalendar class

Developing a local time converter application■■

The Introspection and Reflection mechanism of Java ■

Understanding the ■■ Class class

Using the ■■ Method class for dynamic invocation

Creating a class browser application for dynamic discovery and execution of an ■■
unknown class

The String Class
We have used the String class in earlier chapters to represent an array of characters. At that time,
we did not use the powerful functionality provided in this class for manipulating strings. We will
now cover several of these methods in this chapter. Such methods include concatenating strings,
extracting a substring from a given string, and replacing a sequence of characters with another
sequence. We discuss just a few important methods of this class to demonstrate its usefulness in
practical situations.

A Few Important Methods
The String class provides a method called substring that is used for extracting a part of a given
string. Both start and end indices may be specified while calling this method, as follows:

public String substring(int beginIndex)
public String substring(int beginIndex, int endIndex)

The beginIndex argument specifies the index in the string where the extraction begins, and
the endIndex argument specifies the ending index up to which the extraction is performed. The
first method, which takes only one argument, extracts until the end of the string.

E

Chapter 21: Utility Classes 587

You can check the presence of a substring within a given string by calling the contains method.
The contains method returns true if the specified character sequence is found in a given string:

public boolean contains(CharSequence s)

You can replace any character in the string with another character by using the replace method.
The replace method replaces all occurrences of a given character with the specified new character.

public String replace(char oldChar, char newChar)

A few more variations of the replace method are available:

public String replace(CharSequence target, CharSequence replacement)
public String replaceAll(String regex, String replacement)
public String replaceFirst(String regex, String replacement)

As the first method indicates, it replaces all occurrences of a given character sequence with
the new character sequence. The replaceAll method replaces the substring that matches the given
regular expression with the replacement string.

TIp
A regular expression is a string of characters that describes a pattern
used to find matches in other character sequences. The java.util.regex
package supports regular expression processing. You are encouraged
to go through the tutorial provided on the Oracle site
(http: //docs.oracle.com/javase/tutorial/essential/regex/) to learn more
about regular expressions.

The replaceFirst method replaces the first occurrence of a substring that matches the regular
expression specified in the first parameter by the replacement string.

In your programming career, you have certainly encountered a situation where you are required
to process a CSV (comma-separated values) file. The split method of the String class helps you
process such a file. The split method separates out the tokens in a given string on the specified
delimiter. There are two variations of the split method:

public String[] split(String regex)
public String[] split(String regex, int limit)

The only difference between the two methods is the limit set in the second method that restricts
the number of tokens separated. Both methods return tokens in a string array.

Finally, the format method of the String class allows you to format a given string using
printf-style formatters.

We will now use a concrete example to demonstrate the use of these methods.

TIp
Look up the String class in javadocs to learn about several more
useful methods you can use in daily practice.

http: //docs.oracle.com/javase/tutorial/essential/regex/

588 Java Programming

practical Demonstration of String Methods
The best way to understand the usefulness of the String class methods is to try them out in a
practical situation. To demonstrate these methods, we will manipulate the following string:

"IBM,09/09/2009,87,100,80,95,1567823"

This string represents the end-of-day (EOD) quotes for IBM listed on a stock exchange.
Typically, stock exchanges supply the EOD data in this format for all stocks trades during the day.
An application developer needs to parse this string to extract the various fields and use them in his
code. Such comma-delimited strings are very common. A program such as Microsoft Excel (or any
other spreadsheet application) is able to export and import data from CSV files. In this section, you
learn how to parse such a string into its individual tokens using the various methods available in
the String class.

In the given string, the various fields are separated with a comma delimiter. In practice, you
may use any other character as a delimiter, but the comma is the most popular character used as
a delimiter. The first field in the preceding string represents the stock symbol; the second field
specifies the trade date (which is not really required if this line represents an EOD quote). The
next four fields indicate opening, high, low, and closing prices, respectively, on the specified
trade date. The last field specifies the total trade volume for the day. We will now apply various
methods of the String class on this input string to understand their purpose. The program in
Listing 21-1 demonstrates the use of several methods of the String class.

Listing 21-1 Stocks EOD Parser Based on String Methods

public class StocksEODParser {

 private static String trade = "IBM,09/09/2009,87,100,80,95,1567823";

 public static void main(String[] args) {

 // retrieving a substring
 String dateField = trade.substring(4, 14);
 System.out.println("Substring field date equals " + dateField);

 // locating a character sequence
 if (trade.contains("09/09/2009")) {
 System.out.println("This is a trade on 09/09/2009");
 }

 // replacing a character
 String str = trade.replace(',', ':');
 System.out.println("After replacing delimiter: " + str);

 // replacing a character sequence
 str = trade.replace("100", "101");
 System.out.println("After replacing trade price 100: " + str);

 System.out.println("Splitting string into its fields");
 String[] fields = trade.split(",");

Chapter 21: Utility Classes 589

 for (String strFields : fields) {
 System.out.println("\t" + strFields);
 }

 float hilowDifference =
 Float.parseFloat(fields[3]) - Float.parseFloat(fields[4]);
 str = String.valueOf(hilowDifference);
 System.out.println("Difference in Hi to Low price: $" + str);
 System.out.println(String.format(
 "Formatted HiLow Difference: $%.02f", hilowDifference));
 }
}

First of all, in the main method, we use the substring method to extract the date field from our
IBM trade string:

String dateField = trade.substring(4, 14);

The substring method extracts the character sequence starting at index 4 and ending at index
14. This sequence represents the date field, which is then printed to the user console. Refer to the
program output at the end of this section while studying the effect of these methods.

The contains method checks whether our input string contains a substring specified in its
parameter. In our case, we check whether the trade string contains the substring 09/09/2009.
This should return true.

if (trade.contains("09/09/2009"))

Next, we replace the field delimiter (comma) with a colon character by calling the replace
method and then assign it to a new variable, str:

String str = trade.replace(',', ':');

We change the closing price of the stock from 100 to 101 by using the following statement:

str = trade.replace("100", "101");

The replace method in this statement replaces a given character sequence with a new sequence.
We separate out the tokens in the input string by calling the split method and then print their

values to the console in a for-each loop:

String[] fields = trade.split(",");
for (String strFields : fields) {
 System.out.println("\t" + strFields);
}

Next, we compute the difference between the high and low prices. To do this, we need to
convert the field values into their corresponding float types. This is done by using the parseFloat
method of the Float class:

float hilowDifference = Float.parseFloat(fields[3])
 - Float.parseFloat(fields[4]);

590 Java Programming

Note that fields[3] represents the high price and fields[4] represents the low price. To convert
the difference to a String type, we use the valueOf method of the String class:

str = String.valueOf(hilowDifference);
System.out.println("Difference in Hi to Low price: $" + str);

TIp
To print the value of a float, you could simply append it to another
string ("" + hilowDifference) and output the resultant string.

We use the static format method to format a given float number to add a trailing zero:

System.out.println(String.format(
 "Formatted HiLow Difference: $%.02f", hilowDifference));

When you run the program, you will get the following output:

Substring field date equals 09/09/2009
This is a trade on 09/09/2009
After replacing delimiter: IBM:09/09/2009:87:100:80:95:1567823
After replacing trade price 100: IBM,09/09/2009,87,101,80,95,1567823
Splitting string into its fields
 IBM
 09/09/2009
 87
 100
 80
 95
 1567823
Difference in Hi to Low price: $20.0
Formatted HiLow Difference: $20.00

Comparing Strings
It is interesting to know what happens when you compare two strings for equality. Generally, to
compare two objects, you would use the comparison operator (==). In this case, we look at what
happens when you use a comparator operator for comparing two strings. Consider the program
given in Listing 21-2.

Listing 21-2 Program to Compare Two String Objects

public class StringComparator {

 public static void main(String[] args) {
 String str1 = "This is a test string";
 String str2 = new String(str1);
 String str3 = "This is a test string";

 System.out.println("str1.equals(str2) returns " + str1.equals(str2));
 System.out.println("str1==str2 returns " + (str1 == str2));

Chapter 21: Utility Classes 591

 System.out.println("str1.equals(str3) returns " + str1.equals(str3));
 System.out.println("str1==str3 returns " + (str1 == str3));
 }
}

The program output is shown here:

str1.equals(str2) returns true
str1==str2 returns false
str1.equals(str3) returns true
str1==str3 returns true

Now let’s analyze the output. The first comparison statement uses the equals method to
compare str1 to str2. In the case of a String class, the equals method compares the contents of the
two operands. Because str1 and str2 both contain the same character sequence, this comparison
returns true. The next comparison uses the equality operator. Because str1 and str2 are two
distinct objects, the comparison returns false, although the object contents are identical. Note that
str2 is an object created by calling the String class constructor. The third comparison, again, uses
the equals method. As you would expect, this returns true because the contents of both str1 and
str3 are identical. Now, what about the last comparison statement? Should this not return false?
The two variables str1 and str3 are distinct and are individually initialized. Although this is the
case, the compiler creates only one object for the variables str1 and str3 because both objects
contain the same character sequence.

CAuTIOn
If you wish to compare the contents of two string objects, always use
the equals method. Do not use the equality operator for comparison.

Creating Formatted Output
J2SE 5.0 introduced printf-style formatting in Java. This is done through the introduction of the
Formatter class in the java.util package. The format method of this class allows you to specify the
formatting for your output string. The following code snippet demonstrates how to use the formatter:

StringBuilder stringBuilder = new StringBuilder();
Formatter formatter = new Formatter(stringBuilder);
formatter.format("Max float value: %10e\n", Float.MAX_VALUE);
System.out.println(stringBuilder);

This results in printing the following output message to the console:

Max float value: 3.402823e+38

nOTe
The StringBuilder class was introduced in J2SE 5.0 and represents
a mutable sequence of characters. The use of this class for creating
mutable strings is recommended over the earlier StringBuffer class
due to its performance.

592 Java Programming

The format specifier %10e used in the preceding string is identical to the specifiers used in the
printf statement in the C language. Therefore, you can use familiar specifiers such as %d, %f, and
%6.02f while formatting your output string. However, this specifier offers more facilities than its
counterpart in C. The general form is as follows:

% [argument_index$] [flags] [width] [.precision] conversion

The first optional parameter indicates the index in the argument list. Therefore, you will be
able to use arguments in any order in your formatted string. The optional flags is a set of characters
that modify the output format. This set depends on the applied conversion. The width specifies the
minimum number of characters to be written as output. The precision restricts the number of
nonzero characters. The conversion describes the type of object being formatted. Common types
are f for float, t for time, o for octal, and so on. We discuss this format specifier form further via a
programming example later in this section.

Rather than using the Formatter class, you can use the newly added printf method in the
java.io.printStream, java.io.printWriter, and java.lang.String classes. The overloaded printf
method in these classes also allows you to specify the locale used while formatting the output.
We will now look at how to use this formatting feature through a program example. The program
in Listing 21-3 produces some formatted output.

Listing 21-3 Demonstrating the New Formatter Class

import java.util.*;

public class StringFormatter {

 public static void main(String[] args) {
 float rate = 12.5f;
 int quantity = 100;
 float total = 1250;

 System.out.printf("Rate: %1$.2f Quantity:%2$d Total:%3$.2f\n",
 rate, quantity, total);
 System.out.printf("Total: %3$.2f Quantity:%2$d Rate:%1$.2f\n\n",
 rate, quantity, total);

 float f = (float) 123456789.98;
 System.out.printf("US - Price: %,.2f\n", f);
 System.out.printf(Locale.FRANCE, "France - Price: %,.2f\n", f);
 System.out.printf(Locale.GERMANY, "German - Price: %,.2f\n", f);
 System.out.printf(Locale.CHINA, "China - Price: %,.2f\n\n", f);

 Calendar calendar = Calendar.getInstance();
 System.out.printf("The current local time is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);
 System.out.printf(Locale.FRANCE, "The current local time is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);
 System.out.printf(Locale.GERMANY, "The current local time is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);

Chapter 21: Utility Classes 593

 System.out.printf(Locale.CHINA, "The current local time is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);
 }
}

Before we examine the code, let’s look at the program output:

Rate: 12.50 Quantity:100 Total:1250.00
Total: 1250.00 Quantity:100 Rate:12.50

US - Price: 123,456,792.00
France - Price: 123 456 792,00
German - Price: 123.456.792,00
China - Price: 123,456,792.00

The current local time is 03:28:58 PM on Monday, June 13, 2011.
The current local time is 03:28:58 PM on lundi, juin 13, 2011.
The current local time is 03:28:58 PM on Montag, Juni 13, 2011.
The current local time is 03:28:58 下午 on 星期一, 六月 13, 2011.

Now, study the first two formatting statements. Each uses three arguments. The arguments in
the string to be formatted are specified as numbers (1, 2, and 3). The first statement uses the
arguments in the specified ascending order. The second statement uses the third argument in the
first placeholder and the first argument in the last placeholder. Observe how the output changes
when we change the index order of the arguments.

Next, we print a floating-point number in different locales. The default is U.S. and is therefore
not mentioned in the first printf statement. The subsequent printf statements state the desired
locale in the first argument. Study the output to see how the number formatting changes depending
on the set locale.

Finally, we print the current time and date in different locales. The statement
Calendar.getInstance() returns a Calendar object that represents the current system time.
The Calendar class is discussed in the next section. Look at the format string used for formatting
the time and date fields:

%tr on %<tA, %<tB %<te, %<tY.%n

The t in the preceding string indicates the type as time. The conversion character r indicates that
the time is formatted using the 12-hour clock format hh:mm:ss am/pm. The character A indicates
the use of the locale-specific full name of the day of the week. The B indicates the locale-specific
full month name. The e indicates the day of the month, formatted as two digits (that is, 1–31).
The Y indicates the year formatted as at least four digits, with leading zeros as necessary.

TIp
For a complete list of conversion characters, which is very exhaustive,
refer to the JDK documentation.

Observe how the date and time fields vary depending on the locale used.
In the next section, we discuss another important class that provides the time and date

functionality in Java.

594 Java Programming

The Calendar Class
Java provides a rich set of functionality for time and date manipulations. The most important class
in this category is GregorianCalendar, which is defined in the java.util package:

public class GregorianCalendar extends Calendar

This class supports both Julian and Gregorian calendar systems. It provides several constructors
and useful methods for time representation and arithmetic. A few important methods of this class
are discussed in this section.

The GregorianCalendar Methods
The various constructors for this class are listed here:

public GregorianCalendar();
public GregorianCalendar(TimeZone zone)
public GregorianCalendar(Locale aLocale)
public GregorianCalendar(TimeZone zone, Locale aLocale)
public GregorianCalendar(int year, int month, int dayOfMonth)
public GregorianCalendar(int year, int month, int dayOfMonth,
 int hourOfDay, int minute, int second)

The no-argument class constructor constructs a Calendar object using the current time in the
default time zone with the default locale. The other variations allow you to specify the time zone
and/or locale at the time of construction. The last two methods allow you to specify the various
date and time parameters so that a calendar instance can be created for any date other than the
current instance of time.

The add method of this class takes two parameters: The first parameter specifies the field of
the Calendar class to which the amount of time specified by the second parameter is added:

public void add(int field, int amount)

To understand this method, look at the following code snippet:

Calendar calendar = Calendar.getInstance();
System.out.printf("The current local time is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);
calendar.add(Calendar.MONTH, -5);
System.out.printf("The time 5 months ago is %tr on "
 + "%<tA, %<tB %<te, %<tY.%n", calendar);

Running this code generates the following output:

The current local time is 04:25:00 PM on Monday, June 13, 2011.
The time 5 months ago is 04:25:00 PM on Thursday, January 13, 2011.

The code creates a Calendar instance with the current system time, default time zone, and
locale. We now subtract five months from this time by specifying the field Calendar.MOnTH in
the add method. The new time shows the month as January versus the original month in the
current instance of June, so this is correct. When such additions are performed, the add method
applies the rules of the calendar on which it is operating. The preceding output also reflects that

Chapter 21: Utility Classes 595

the day on January 13 is Thursday, whereas the day in the original time is Monday. Thus, the add
method has performed the correct date and time computations.

Several methods in the Calendar class allow for date comparison. For example, the after and
before methods allow a direct comparison with another time object to determine whether the
time specified by the current object occurs after or before the other time:

public boolean after(Object when)
public boolean before(Object when)

The compareTo method provides a comparison between two time objects:

public int compareTo(Calendar anotherCalendar)

There are get and set methods for getting and setting the time zone of the current object. Because
the best way to learn the use of this class is through a practical example, we will now discuss the
construction of an application called Local Time Converter to illustrate the power of Calendar.

The Local Time Converter Application
The Local Time Converter application tells you what the time is anywhere in the world, corresponding
to the current time at your location. The application displays a huge list of locations, which is
predefined in the Java libraries. Converting the time from one zone to another is a very simple
task, thanks to excellent facilities provided in the Calendar class. Let’s look at the application
code given in Listing 21-4.

Listing 21-4 Local Time Converter

import java.awt.*;
import java.awt.event.*;
import java.text.SimpleDateFormat;
import java.util.*;
import java.util.List;
import javax.swing.*;

public class LocalTimeConverter extends JFrame {

 private final String TIME_FORMAT_NOW = "HH:mm 'on' dd MMM yyyy";
 private final SimpleDateFormat sdf = new SimpleDateFormat(TIME_FORMAT_NOW);

 public static void main(String[] args) {
 LocalTimeConverter app = new LocalTimeConverter();
 app.setTitle("Local Time Converter");
 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 app.init();
 app.setBounds(100, 100, 700, 500);
 app.setVisible(true);
 }

 private void init() {
 final JPopupMenu popup = new JPopupMenu();

596 Java Programming

 final JMenuItem menuItem = new JMenuItem();
 popup.add(menuItem);

 menuItem.setBackground(Color.yellow);
 menuItem.setForeground(Color.blue);

 final JLabel localTime = new JLabel(getTimeNowAsString(), JLabel.CENTER);
 localTime.setHorizontalTextPosition(JLabel.CENTER);
 localTime.setFont(new Font("Tahoma", Font.PLAIN, 24));
 localTime.setForeground(new Color(0, 0, 255));
 add(localTime, BorderLayout.PAGE_START);

 List<String> zoneList = new ArrayList<String>();
 zoneList.addAll(Arrays.asList(TimeZone.getAvailableIDs()));
 Collections.sort(zoneList);

 final JList listOfZones = new JList(zoneList.toArray());
 listOfZones.setSelectionMode(
 ListSelectionModel.SINGLE_INTERVAL_SELECTION);
 listOfZones.setLayoutOrientation(JList.HORIZONTAL_WRAP);
 listOfZones.setVisibleRowCount(-1);
 listOfZones.addMouseListener(new MouseAdapter() {

 private Calendar calendar;
 private String selectedZone;

 @Override
 public void mouseClicked(MouseEvent e) {
 localTime.setText(getTimeNowAsString());
 int index = listOfZones.locationToIndex(e.getPoint());
 if (index > -1 && !(listOfZones.isSelectionEmpty())) {

 selectedZone = (String) listOfZones.getSelectedValue();
 computeTimeAtSelectedZone();

 // display time for remote zone in the popup
 String timezoneName = TimeZone.getTimeZone(selectedZone).
 getDisplayName();
 menuItem.setText("Local time @ " + selectedZone + " "
 + sdf.format(calendar.getTime()) + " "
 + timezoneName);

 popup.show(e.getComponent(),
 e.getX(), e.getY() + 10);
 }
 }

 private void computeTimeAtSelectedZone() {
 // reset calendar to local timezone
 calendar = new GregorianCalendar();
 long currentTime = calendar.getTimeInMillis();

Chapter 21: Utility Classes 597

 // get time offset of local timezone wrt GMT
 int localOffset = calendar.getTimeZone().
 getOffset(Calendar.ZONE_OFFSET);

 // get time offset of remote timezone wrt GMT
 calendar.setTimeZone(TimeZone.getTimeZone(selectedZone));
 int remoteOffset = calendar.getTimeZone().
 getOffset(Calendar.ZONE_OFFSET);

 // difference in two timezones
 int totalOffset = -remoteOffset + localOffset;

 // add offset to current local time
 currentTime -= totalOffset;

 // set time in remote zone
 calendar.setTimeInMillis(currentTime);
 }
 });

 JScrollPane listScroller = new JScrollPane(listOfZones);
 add(listScroller, BorderLayout.CENTER);
 }

 private String getTimeNowAsString() {
 Calendar calendar = new GregorianCalendar();
 String strLocalTime = "Local Time-"
 + sdf.format(calendar.getTime()) + " "
 + calendar.getTimeZone().getDisplayName();
 return strLocalTime;
 }
}

The Local Time Converter is a Swing-based application. The application class
LocalTimeConverter derives from JFrame. We first define a few constants:

final String TIME_FORMAT_NOW = "HH:mm 'on' dd MMM yyyy";
final SimpleDateFormat sdf = new SimpleDateFormat(TIME_FORMAT_NOW);

In the main method, we create an application instance and make the application frame visible
to the user. The application’s init method provides its full functionality. In init, we create a popup
and a menuItem:

final JPopupMenu popup = new JPopupMenu();
final JMenuItem menuItem = new JMenuItem();

These identifiers are declared final because they will be used within a mouse-event-listener
inner class. Remember the inner class cannot access variables defined outside its scope unless
they are declared final. When the user clicks the desired zone in the application-displayed list,
we will pop up this menu showing the time in the selected zone.

Next, we create a JLabel and add it to the top of our display container:

final JLabel localTime = new JLabel(now(), JLabel.CENTER);

598 Java Programming

We will display the local time in this label. We then collect the list of time zones. The
TimeZone.getAvailableIDs method returns an array of all predefined time zones in its library:

List<String> zoneList = new ArrayList<String>();
zoneList.addAll(Arrays.asList(TimeZone.getAvailableIDs()));
Collections.sort(zoneList);

We add this sorted list of zone names to a JList control:

final JList listOfZones = new JList(zoneList.toArray());

Now comes the important part. We add a mouse listener to the JList control:

listOfZones.addMouseListener(new MouseAdapter() {

We declared an anonymous inner class because this class may not be usable elsewhere. We
override the mouseClicked event handler. Every time the user clicks the mouse on an item in the
zones list, we first obtain and display the current time:

localTime.setText(now());

The now method, which is defined in the outer class, uses the format method of the
SimpleDateFormat class to format the date and time.

We obtain the index in the list at the clicked point by using the locationToIndex method:

int index = listOfZones.locationToIndex(e.getPoint());

The time at the selected zone corresponding to the current time in local zone is computed
in the ComputeTimeAtSelectedZone method, which is discussed later on. This method sets the
calendar object to the remote zone, which we use for displaying the time in the popup menu.
This is done in the following code:

String timezoneName = TimeZone.getTimeZone(selectedZone).getDisplayName();
menuItem.setText("Local time @ " + selectedZone + " "
 + sdf.format(calendar.getTime()) + " " + timezoneName);
popup.show(e.getComponent(), e.getX(), e.getY() + 10);

Now, let’s look at the time conversion, which as stated earlier, is done in the
ComputeTimeAtSelectedZone method. The trick for converting the time is to take the difference
in time between the two time zones by using the built-in classes and then add this difference to
the current local time to obtain the time at the new zone. For doing this, we use the built-in
Calendar and Timezone classes to perform the time arithmetic and get a user-readable time-
formatted string.

We first create an instance of GregorianCalendar and obtain the current time in long format:

calendar = new GregorianCalendar();
long currentTime = calendar.getTimeInMillis();

We then obtain the time offset of the local time zone with respect to GMT:

int localOffset = calendar.getTimeZone().getOffset(Calendar.ZONE_OFFSET);

Chapter 21: Utility Classes 599

To get the time offset of the second zone, we need to set our calendar to the new zone:

calendar.setTimeZone(TimeZone.getTimeZone(selectedZone));

The getTimeZone method returns a TimeZone for the time zone string specified in its
parameter. We obtain the time offset at the newly set calendar with the following statement:

int remoteOffset = calendar.getTimeZone().getOffset(Calendar.ZONE_OFFSET);

We compute the time difference in the two time zones and add it to the current time of the
local zone:

int totalOffset = -remoteOffset + localOffset;
currentTime -= totalOffset;

We then set the calendar instance to this new time:

calendar.setTimeInMillis(currentTime);

The date and time corresponding to this calendar are now printed in the popup menu, as
described previously. The program output is shown in Figure 21-1.

Try clicking different time zones and observe the corresponding local time in the selected zone.

FIGure 21-1. Local time converter program output

600 Java Programming

CAuTIOn
If you are still using versions older than Java SE 7, the preceding time
computations may not reflect DST (Daylight Savings Time) at the local
and remote time zones. Refer to www.oracle.com/technetwork/java/
javase/timezones-137583.html#intro for Java’s implementation of time
zones and DST.

Introspection and reflection
Chapter 1 mentioned the dynamic feature of the Java language, which was a buzzword in the list
of initial features of Java. This dynamic nature of Java is implemented in the introspection and
reflection mechanism. Reflection allows a program to examine the internals of any class or object
at runtime. Introspection builds on this facility. Using introspection, running code can ask an
object for its class, ask a class for its methods and constructors, find out the parameters and the
return type each method takes, load an unknown class, create objects and arrays of the discovered
class, and invoke methods on the newly created objects. This is the dynamic nature of Java, where
all these things are done at runtime without the compiler’s knowledge of the class that is loaded at
runtime. To give you a quick look at what introspection and reflection can do, consider the code
in Listing 21-5.

Listing 21-5 Dynamic Method Invoker

public class DynamicInvoker {

 public static void main(String[] args) {
 DynamicInvoker app = new DynamicInvoker();
 app.printGreeting("Jonny", 5);
 System.out.println("\nDynamic invocation of printGreeting method");
 try {
 app.getClass().getMethod("printGreeting", new Class[]{
 Class.forName("java.lang.String"), Integer.TYPE}).
 invoke(app, new Object[]{"Sanjay", new Integer(3)});
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public void printGreeting(String name, int numberOfTimes) {
 for (int i = 0; i < numberOfTimes; i++) {
 System.out.println("Hello " + name);
 }
 }
}

The DynamicInvoker is a very simple application that creates its instance in the main
method and invokes its printGreeting method, which prints a greeting to the person specified
in its first parameter, the number of times specified by the second parameter. This example

http://www.oracle.com/technetwork/java/javase/timezones-137583.html
http://www.oracle.com/technetwork/java/javase/timezones-137583.html

Chapter 21: Utility Classes 601

shows the invocation of the same method by obfuscating its call. This is done in the following
program statement:

app.getClass().getMethod("printGreeting", new Class[]{
 Class.forName("java.lang.String"), Integer.TYPE}).
 invoke(app, new Object[]{"Sanjay", new Integer(3)});

This produces output similar to the earlier call to the printGreeting method on the app object,
except for a name change and the number of times the message is printed.

So, one benefit of this dynamic invocation is the obfuscation and verbosity of the method
calls in your code. Of course, this also comes with a disadvantage of runtime checking versus
the compile-time checking of a method call. Some people may still consider this as an advantage.
Are there any better reasons for using introspection and reflection?

Introspection has a wide variety of applications. You may use it for writing plug-ins—the
application discovers the methods of a plug-in at runtime and invokes them. JUnit uses
introspection to identify the test methods that begin with the word “test” and invokes them in
order. In a Web Services implementation, a client can discover the service’s interface from a
UDDI registry and obtain the service via dynamic coding. You could even develop your own
javadocs-type application by introspecting the classes at runtime.

This feature has been available in the language since its inception, and the Reflection API
became a part of core Java with the release 1.1 of the JDK. In JDK 1.1, new methods were added
to the java.lang.Class class and the new package java.lang.reflect was introduced.

We will now use this feature by constructing an interesting application that discovers any
unknown class at runtime, instantiates it, and invokes methods on it. Before we discuss the
construction of this application, we will look at a very important class, called Class, on which
this entire introspection and reflection mechanism is based.

The Class Class
Java defines a class called Class. Because this is a final class, you cannot extend it in your
programs.

public final class Class<T> extends Object
 implements Serializable, GenericDeclaration, Type, AnnotatedElement

Whenever the Java runtime loads a class in memory, it creates an instance of this class Class to
represent a loaded class or an interface. You can obtain a reference to this object by calling the
getClass method of the Object class from which all the classes in Java are derived. You can also use
the forname method of the class Class to load an unknown class and obtain a reference to its Class
object. The Class class provides several methods to introspect the class that it represents. For example,
you can obtain the class name, its modifiers, constructors, methods, attributes, and so on. Not only
that, but you will be able to create another object of the class that it represents and also an array of
objects. Thus, this provides the dynamic nature of Java we have been talking about so far.

The getname method of this class returns the fully qualified name of the class that this Class
object represents. The getModifiers method returns the Java language modifiers for the represented
class or interface:

public int getModifiers()

These modifiers are encoded in an integer and must be decoded using the methods of the
class Modifier. As you know, the modifiers are public, protected, private, abstract, and so on.

602 Java Programming

The Modifier class defines static fields to represent these various modifiers and provides accessor
methods on them. For example, the isAbstract method tests for the presence of the abstract
modifier, the isFinal method tests whether it is final, and so on.

The getMethods method returns an array of Method objects reflecting all the public methods
of the represented object, including all those inherited from a superclass and superinterface:

public Method[] getMethods() throws SecurityException

Likewise, the getConstructors method returns an array of all public constructors:

public Constructor<?>[] getConstructors() throws SecurityException

Both methods may throw a Securityexception. Let’s look at the conditions under which this
exception is thrown. First, for this exception to be thrown, the security manager must be present.
Second, the invocation of the checkMemberAccess(this, Member.puBLIC) method on it denies
access to methods/constructors within this class. The permission denial in this case indicates that
this method/constructor does not have public access and therefore cannot be invoked with dynamic
discovery. There is one more situation under which the Securityexception is thrown: if the caller’s
class loader is not located in the class hierarchy of the class loader of the current class and invoking
the checkpackageAccess method on the security manager denies access to the package of this class.
In other words, if the loaded class belongs to a package other than the current class, the current
class may not have the package permissions to the loaded class, so in that case a Securityexception
will be thrown.

Several other important methods are available that reveal more information about the class
that the Class class represents. However, two important methods need to be mentioned here for
the class browser application we are going to develop next.

The forname method accepts the class name as its argument and returns a Class object that
represents the specified class:

public static Class<?> forName(String className) throws ClassNotFoundException

Thus, this method is very useful in injecting a compile-time unknown Java class into the runtime
environment for dynamic instantiation. The method will throw the ClassnotFoundexception if the
class cannot be located.

To instantiate the loaded class, you call the newInstance method:

public T newInstance() throws InstantiationException, IllegalAccessException

The newInstance method creates an object that this class Class represents. You will get the
IllegalAccessexception if the class or its no-argument constructor is not accessible. You get the
Instantiationexception exception under the following situations:

The ■■ Class represents one of the following:

An abstract class■■

An interface■■

An array class■■

A primitive type■■

Void■■

Chapter 21: Utility Classes 603

The class has no nullary constructor (that is, a no-argument constructor—either a default ■
constructor provided by the compiler or one defined by the programmer).

The instantiation fails due to some other reason.■■

Besides this, you may also get a Securityexception under exactly the identical conditions
described for the getMethods and getConstructors methods.

Using the forname method allows you to use objects of a type not known at development
time. You will find several useful applications of this feature. The best-known use is to load the
new or latest JDBC drivers dynamically in your code. What’s more, using this feature, you can add
new features to your application, maybe having several installations worldwide, by providing this
dynamic discovery feature in the initial release of your application. For example, a preinstalled
word processing program may use the newly created thesaurus or the new spell-check library.

nOTe
JDBC stands for Java Database Connectivity and is a Java application-
programming interface that allows Java programmers to access a
database management system from Java code.

Once an object of the dynamically discovered class is created, you can invoke the discovered
methods on it to use the object for your purposes. For this, you need to use the Method class,
discussed next.

The Method Class
The Method class is important to us for the dynamic invocation of a method at runtime:

public final class Method extends AccessibleObject
 implements GenericDeclaration, Member

Like the class Class, this is a final class that we cannot extend. It provides several getter methods
to extract all the details of the represented method. We will just discuss a few important methods of
this class relevant in the current context.

The getparameterTypes method returns an array of Class objects representing the formal
parameter types this method takes:

public Class<?>[] getParameterTypes()

From the size of the array, we can determine the number of parameters required for invoking the
method. The type of each parameter is obtained from the Class object that an array element holds.

The method return type is obtained by calling the getreturnType method on the Method object:

public Class<?> getReturnType()

This method returns a Class object from which the type of return value can be ascertained.
Finally, the most important method to us for executing the method at runtime is the invoke method:

public Object invoke(Object obj, Object... args)
 throws IllegalAccessException,
 IllegalArgumentException,
 InvocationTargetException

604 Java Programming

The invoke method invokes the underlying method represented by this Method object. The
first parameter, obj, specifies the object on which the method is invoked. The args parameter
specifies the arguments used for the method call. The return value, if any, is returned as an Object
type after the method completes successfully.

Now that we have covered the basics of introspection and reflection, we will discuss the
construction of a class browser application that demonstrates how to use these classes in
practical terms.

The Class Browser Application
The class browser application is a GUI Swing-based application. To understand the application
functionality, let’s first look at its interface, shown in Figure 21-2. At the top of the application
window, you enter the name of the class you want to introspect. Clicking the Accept button
introspects the specified class and displays its public constructors and methods. This also creates
an instance of the class using its no-argument constructor. The screenshot also shows what

FIGure 21-2. Class browser application GUI

Chapter 21: Utility Classes 605

happens when you invoke a method on this created object. To invoke a method, you select it
from the list presented and click the Invoke button. The method return value and its type are
shown at the bottom of the screen.

Introspecting the String class does not show its instantiation visually. Therefore, to give you
a visual demonstration of the dynamic instantiation of the introspected class, we will create a
test class that is GUI based. We will first discuss the construction of this test application and
then proceed to the explanation of the class browser.

The Introspection Test Application
The test application creates a frame window with the message “Hello” displayed at its center. It
declares a few public methods that allow another object to change the display color, font, and the
text of the message displayed at its center. Our class browser will discover these methods and invoke
them by passing the appropriate number of parameters to each. You will be able to see the effect of
invocation of these methods visually. The introspection test application code is given in Listing 21-6.

Listing 21-6 The Introspection Test Application for the Class Browser

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class IntrospectionTestApplication extends JFrame {

 private String displayString = "Hello";
 private Font textFont = new Font("Arial", Font.PLAIN, 20);
 private Color textColor = new Color(255, 0, 0);
 private JLabel labelDisplay;

 IntrospectionTestApplication() {
 super("Introspection Test");
 setBounds(200, 200, 200, 200);
 setResizable(false);

 labelDisplay = new JLabel("Hello", JLabel.CENTER);
 add(labelDisplay, BorderLayout.CENTER);

 addWindowListener(new WindowAdapter() {

 @Override
 public void windowClosing(WindowEvent evt) {
 dispose();
 }
 });
 setVisible(true);
 }

 public static void main(String args[]) {
 new IntrospectionTestApplication();
 }

606 Java Programming

 public void setDefaultString() {
 displayString = "Hello";
 labelDisplay.setText(displayString);
 }

 public void setDisplayColor(short red, short blue, short green) {
 textColor = new Color(red, blue, green);
 labelDisplay.setForeground(textColor);
 }

 public void setDisplayString(String str) {
 displayString = str;
 labelDisplay.setText(displayString);
 }

 public void setFontSize(int size) {
 textFont = new Font("Arial", Font.PLAIN, size);
 labelDisplay.setFont(textFont);
 }
}

The IntrospectionTestApplication extends its functionality from JFrame. The class declares a
few variables for setting the display message, the font, and the color used for display. The class
constructor sets the window caption and its default size. We create an anonymous adapter to
hide the window when its close button is clicked, and finally we display the window to the user.
The main method simply instantiates the application class.

The class declares several public methods for the purpose of testing our class browser
application. The four setter methods take a different number of parameters and perform the task
suggested by their name. What is important to us is understanding how the class browser detects
how many parameters a method requires, the type of each parameter, and how these parameters
are constructed with real values and then passed to the dynamic invocation. You will understand
all this when we discuss the class browser, next.

The Class Browser
The full source of the class browser application is given in Listing 21-7.

Listing 21-7 Program Demonstrating Introspection and Reflection

import java.awt.*;

import java.awt.event.*;

import java.lang.reflect.*;

import javax.swing.*;

public class ClassBrowser extends JFrame implements ActionListener {

 private JButton buttonAccept = new JButton("Accept");

 private JButton buttonInvoke = new JButton("Invoke");

 private JLabel returnType = new JLabel();

 private JLabel returnValue = new JLabel();

 private DefaultListModel constructors = new DefaultListModel();

Chapter 21: Utility Classes 607

 private DefaultListModel methods = new DefaultListModel();

 private JList listConstructors = new JList(constructors);

 private JList listMethods = new JList(methods);

 private JScrollPane jScrollPane1 = new JScrollPane();

 private JScrollPane jScrollPane2 = new JScrollPane();

 private JTextField textClassName =

 new JTextField("IntrospectionTestApplication");

 private String strClassName;

 private Class theClass;

 private Object obj;

 private String argumentValue;

 public ClassBrowser() {

 initComponents();

 }

 public void setArgumentValue(String argumentValue) {

 this.argumentValue = argumentValue;

 }

 private void initComponents() {

 setTitle("Class Browser");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setResizable(false);

 getContentPane().setLayout(new java.awt.GridBagLayout());

 GridBagConstraints gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 0;

 gridBagConstraints.gridwidth = 7;

 gridBagConstraints.insets = new java.awt.Insets(11, 23, 0, 0);

 getContentPane().add(new JLabel(

 "Enter name of class file to be loaded & press accept"),

 gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 7;

 gridBagConstraints.gridy = 1;

 gridBagConstraints.gridwidth = 9;

 gridBagConstraints.gridheight = 2;

 gridBagConstraints.insets = new java.awt.Insets(18, 18, 0, 20);

 buttonAccept.addActionListener(this);

 getContentPane().add(buttonAccept, gridBagConstraints);

 jScrollPane1.setViewportView(listConstructors);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 4;

 gridBagConstraints.gridwidth = 16;

 gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;

 gridBagConstraints.ipadx = 257;

 gridBagConstraints.ipady = 71;

 gridBagConstraints.weightx = 1.0;

 gridBagConstraints.weighty = 1.0;

608 Java Programming

 gridBagConstraints.insets = new java.awt.Insets(6, 10, 0, 20);

 getContentPane().add(jScrollPane1, gridBagConstraints);

 jScrollPane2.setViewportView(listMethods);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 6;

 gridBagConstraints.gridwidth = 16;

 gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;

 gridBagConstraints.ipadx = 257;

 gridBagConstraints.ipady = 81;

 gridBagConstraints.weightx = 1.0;

 gridBagConstraints.weighty = 1.0;

 gridBagConstraints.insets = new java.awt.Insets(6, 10, 0, 20);

 getContentPane().add(jScrollPane2, gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 8;

 gridBagConstraints.gridy = 7;

 gridBagConstraints.gridwidth = 8;

 gridBagConstraints.insets = new java.awt.Insets(18, 17, 0, 0);

 buttonInvoke.addActionListener(this);

 getContentPane().add(buttonInvoke, gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 5;

 gridBagConstraints.insets = new java.awt.Insets(11, 10, 0, 0);

 getContentPane().add(new JLabel("Methods"), gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 3;

 gridBagConstraints.insets = new java.awt.Insets(1, 10, 0, 0);

 getContentPane().add(new JLabel("Constructors"), gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 1;

 gridBagConstraints.gridwidth = 6;

 gridBagConstraints.ipadx = 183;

 gridBagConstraints.insets = new java.awt.Insets(19, 10, 0, 0);

 getContentPane().add(textClassName, gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 8;

 gridBagConstraints.gridwidth = 2;

 gridBagConstraints.insets = new java.awt.Insets(29, 10, 0, 0);

 getContentPane().add(new JLabel("Return Type"), gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 0;

 gridBagConstraints.gridy = 9;

 gridBagConstraints.gridwidth = 3;

 gridBagConstraints.insets = new java.awt.Insets(6, 10, 11, 0);

 getContentPane().add(new JLabel("Return Value"), gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 3;

Chapter 21: Utility Classes 609

 gridBagConstraints.gridy = 8;

 gridBagConstraints.gridwidth = 2;

 gridBagConstraints.ipadx = 48;

 gridBagConstraints.insets = new java.awt.Insets(29, 16, 0, 0);

 getContentPane().add(returnType, gridBagConstraints);

 gridBagConstraints = new java.awt.GridBagConstraints();

 gridBagConstraints.gridx = 3;

 gridBagConstraints.gridy = 9;

 gridBagConstraints.insets = new java.awt.Insets(6, 18, 11, 0);

 getContentPane().add(returnValue, gridBagConstraints);

 pack();

 }

 public static void main(String args[]) {

 try {

// UIManager.setLookAndFeel("javax.swing.plaf.nimbus.NimbusLookAndFeel");

 ClassBrowser app = new ClassBrowser();

 app.setBounds(220, 30, 470, 600);

 app.setVisible(true);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 @Override

 public void actionPerformed(ActionEvent aevt) {

 Object source = aevt.getSource();

 if (source == buttonAccept) {

 strClassName = textClassName.getText();

 if (strClassName.equals("")) {

 return;

 }

 constructors.clear();

 methods.clear();

 returnValue.setText("");

 returnType.setText("");

 try {

 theClass = Class.forName(strClassName);

 } catch (Throwable exp) {

 constructors.addElement(

 "You have entered the class name incorrectly");

 constructors.addElement("Please input a new class name");

 textClassName.requestFocus();

 return;

 }

 try {

 obj = theClass.newInstance();

 } catch (Exception e) {

 constructors.addElement(e.toString());

 }

610 Java Programming

 displayMethods();

 } else if (source == buttonInvoke) {

 invokeSelectedMethod();

 }

 }

 private void displayMethods() {

 Method methodList[] = theClass.getDeclaredMethods();

 Constructor constructorList[] = theClass.getDeclaredConstructors();

 for (int count = 0; count < constructorList.length; count++) {

 constructors.addElement(constructorList[count].toString());

 }

 for (int count = 0; count < methodList.length; count++) {

 methods.addElement(methodList[count].toString());

 }

 listMethods.requestFocus();

 }

 private void invokeSelectedMethod() {

 returnType.setText("");

 returnValue.setText("");

 int index = listMethods.getSelectedIndex();

 Method classMethods[] = theClass.getDeclaredMethods();

 Class inputParameters[] = classMethods[index].getParameterTypes();

 Object[] params = new Object[inputParameters.length];

 for (int i = 0; i < inputParameters.length; i++) {

 (new InputFrame(this, inputParameters[i].getName(),

 true)).setVisible(true);

 if (inputParameters[i].isAssignableFrom(

 java.lang.Short.TYPE)) {

 params[i] = new Short(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Boolean.TYPE)) {

 params[i] = Boolean.valueOf(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Character.TYPE)) {

 params[i] = new Character(argumentValue.charAt(0));

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Byte.TYPE)) {

 params[i] = new Byte(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Integer.TYPE)) {

 params[i] = new Integer(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Long.TYPE)) {

 params[i] = new Long(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Float.TYPE)) {

Chapter 21: Utility Classes 611

 params[i] = new Float(argumentValue);

 } else if (inputParameters[i].isAssignableFrom(

 java.lang.Double.TYPE)) {

 params[i] = new Double(argumentValue);

 } else {

 params[i] = argumentValue;

 }

 }

 try {

 Object returnObject = classMethods[index].invoke(obj, params);

 returnValue.setText(returnObject.toString());

 returnType.setText(returnObject.getClass().getName());

 } catch (java.lang.IllegalAccessException iae) {

 System.out.println("Invalid operation");

 } catch (Exception e) {

 returnValue.setText(e.toString());

 }

 }

}

class InputFrame extends JDialog implements ActionListener {

 private ClassBrowser app;

 private JTextField inputText = new JTextField(15);

 private JButton buttonOK = new JButton("OK");

 InputFrame(ClassBrowser app, String name, boolean model) {

 super(app, model);

 setTitle(name);

 this.app = app;

 init();

 }

 private void init() {

 setBounds(50, 50, 200, 100);

 setLayout(new FlowLayout());

 add(inputText);

 add(buttonOK);

 buttonOK.addActionListener(this);

 }

 @Override

 public void actionPerformed(ActionEvent evt) {

 if (evt.getSource() == buttonOK) {

 app.setArgumentValue(inputText.getText());

 dispose();

 }

 }

}

612 Java Programming

The ClassBrowser class that extends a JFrame constructs its GUI in the initComponents
method. Here, we use NetBeans to create the layout and then copy the IDE-generated code
(which was trimmed to save space). Therefore, you may find this initialization to be a little longer
than the GUI applications we have discussed so far in the book. This is one of the reasons to
hand-code the GUI rather than using an IDE—to save on the number of lines of code.

The main method sets the application’s look and feel, creates an application instance, sets
the window size, and then makes it visible. We have also reduced the number of exceptions the
setLookAndFeel method requires us to catch to the more-generic exception type.

Most of the action that interests us occurs in the actionperformed method, which is called
when either the Accept or Invoke button is clicked.

When the user clicks the Accept button, we read the class name entered by the user:

if (source == buttonAccept) {
 strClassName = textClassName.getText();

After checking that the entered name is not null, we clear the two list boxes:

constructors.clear();
methods.clear();

Now we try to load the class by calling the forname method of the class Class. The method
receives the class name as its parameter:

theClass = Class.forName(strClassName);

If the class is loaded successfully, we instantiate it by calling the newInstance method on the
Class object:

obj = theClass.newInstance();

Now, to display the list of constructors and methods, we call displayMethods (which is
discussed later):

displayMethods();

If the user has clicked the Invoke button, we call the invokeSelectedMethod (which also is
discussed later):

else if (source == buttonInvoke) {
 invokeSelectedMethod();
}

Now, let’s look at the implementation of the displayMethods. Here, we first obtain the list of
methods by calling the getDeclaredMethods on the Class object:

Method methodList[] = theClass.getDeclaredMethods();

The list of methods is returned as an array of Method objects. Likewise, we get the list of all
the constructors by calling the getDeclaredConstructors method:

Constructor constructorList[] = theClass.getDeclaredConstructors();

Chapter 21: Utility Classes 613

The list of constructors is returned in an array of Constructors. We add the list of constructors
and methods in their respective list boxes.

Now, let’s look at what happens when a method is dynamically invoked. The dynamic
invocation takes place in the invokeSelectedMethod. First, we get the index of the selected
method in the list box:

int index = listMethods.getSelectedIndex();

To obtain the list of input parameters on the selected method, we call the getparameterTypes
method on the Method object:

Class inputParameters[] = classMethods[index].getParameterTypes();

The method returns an array of Class objects. To read the method parameters from the user,
we first construct an Object array to store the input parameter values:

Object[] params = new Object[inputParameters.length];

The size of the array is set to the length of the inputparameters array. For each input parameter,
we construct a frame and ask the user to input the parameter value:

for (int i = 0; i < inputParameters.length; i++) {
 (new InputFrame(this, inputParameters[i].getName(),
 true)).setVisible(true);

To construct a frame for inputting the parameter value, we instantiate the InputFrame class,
discussed later. The second parameter to the InputFrame constructor is set to the parameter type,
which will be displayed as the frame title.

We now set up a big if-elseif ladder to validate the input type with all known data types while
copying the parameter value into the params array:

if (inputParameters[i].isAssignableFrom(java.lang.Short.TYPE)) {
 params[i] = new Short(argumentValue);
} else if (inputParameters[i].isAssignableFrom (java.lang.Boolean.TYPE)) {
 params[i] = Boolean.valueOf(argumentValue);
} else if (inputParameters[i].isAssignableFrom (java.lang.Character.TYPE)) {
...

Once all the parameters are read, we invoke the method by calling invoke on the Method object:

Object returnObject = classMethods[index].invoke(obj, params);

The first parameter to the invoke method specifies the object on which the method is invoked,
and the second parameter specifies the list of parameters that the method takes. This call causes
the method to execute on the specified object.

Finally, let’s look at the InputFrame class, which is dialog box based:

class InputFrame extends JDialog implements ActionListener {

The init method constructs the GUI and sets up the action listener for the button. In the action
event handler, we simply read and assign the user input and eventually dispose of the dialog box.

614 Java Programming

Try running the application. In the class name field, enter IntrospectionTestApplication and
click the Accept button. The test application window appears with a default “Hello” message
displayed at its center. You will also notice the list of constructors and methods being displayed
in the main application window. Now, select the setDisplayString method and click the Invoke
button. An instance of our InputFrame class pops up. Enter some string in the displayed dialog
box and click the OK button. The text in the test application window immediately changes to
the newly entered value. Likewise, you can try invoking the setFontSize and setDisplayColor
methods. The first method accepts only one parameter that specifies the font size. The second
method accepts three parameters. Therefore, when you invoke it, you will find the InputFrame
instance popping up three times on your screen. Each time you will input a desired number in
the range of 0 to 255, corresponding to the component value in RGB. Finally, you can try
invoking one more method—setDefaultString. This method does not take any parameters and
changes the displayed string in the test application to its default value.

Now, test the application with other predefined classes in the Java libraries. For example, try
the java.lang.String class. When you click the Accept button, the class will call its no-argument
constructor and create a String object that is empty. Select the length() method in the list and
invoke it. At the bottom of the screen, you will see the return type as java.lang.Integer and the
return value of 0. Try another method, such as isempty. The return type will now be java.lang
.Boolean and the value is true. Now, try the charAt(int) method. The InputFrame appears,
asking you to enter an int-type parameter. Enter some value and click OK. You will see the
exception java.lang.reflect.InvocationTargetexception printed in the output. You may now try
other methods to understand how the dynamic invocation really works.

CAuTIOn
The class browser application constructs an instance of the specified
class using its no-argument constructor, provided one is available.
As an exercise, modify the preceding code so that the user can select
the type of constructor while instantiating the class. You will need
to detect the number and types of parameters that the constructor
requires and accept those inputs from the user using InputFrame.

Disadvantages
You have so far seen the power and flexibility provided by the introspection and reflection
mechanism. However, all this power does not come without a cost. The introspection and reflection
method calls have substantial performance overhead. The reflection makes the code much more
complex and harder to understand as compared to direct method calls. The type-safety in the code
is also compromised to some extent. Therefore, use this mechanism with care and only when it is
absolutely needed.

What’s next?
What you learned in this book is just the tip of the iceberg when it comes to Java programming.
Java offers a whole lot more. What you have gained to this point will give you a head start in
learning those new APIs. So let’s look at what else is available.

Figure 21-3 illustrates the various packages available in Java SE 7.

Chapter 21: Utility Classes 615

In this book, you studied AWT and Swing to develop GUI-based applications. If you want
to do advanced 2D graphics and imaging, use the set of classes provided in Java 2D. To make
your applications accessible to persons with disabilities, use the Java Accessibility API. This
provides support for assistive technologies such as screen readers, speech-recognition systems,
and refreshable Braille displays. Java provides excellent support for internationalizing your
Java applications that can be adapted to various languages and regions without engineering
changes.

To integrate your Java application with legacy and other applications, Java provides several
integration libraries. The JDBC libraries allow you to access many different kinds of database
engines. RMI allows you to create distributed Java technology–based applications that use JRMP
(Java Remote Method Protocol). RMI-IIOP allows your existing Java client applications access to
CORBA (Common Object Request Broker Architecture) servers that use the widely accepted IIOP
(Internet InterORB Protocol).

Beginning in Java SE 6, a new framework is available that permits Java applications to host
script engines and access them through your Java code, just the way you use JDBC drivers to
access databases. Many web-based applications use scripting languages such as JavaScript and
can now benefit from all the advantages provided by the Java platform. The XML JAXP libraries
provide good support for processing XML (Extensible Markup Language), which has been widely
accepted as the language of data exchange in standalone, distributed, and mobile platforms.

The list is endless. Keep studying—and welcome to the world of Java programming.

Summary
In this chapter you studied several utility classes provided in the Java libraries. The String class
provides several methods for manipulating strings. You used the substring method to extract a
sequence of characters from a given string. The contains method allows you to check the
presence of a substring in a given string. You used the replace method to replace a character or a
character sequence with another one in the specified string object. The format method allows
you to create a formatted output in a string. To compare two strings, use the equals method. This
will cause the comparison of the string contents. Do not use the equality operator to compare two
strings for equality. The newly added Formatter class allows you to include C-style formatting in
your Java applications.

FIGure 21-3. List of Java SE APIs (courtesy of Oracle Corporation)

616 Java Programming

Java provides time and date representation through a Calendar class. The GregorianCalendar
is a concrete implementation of Calendar that provides several methods for representation of time
and date. You used this class in a practical application that finds the time at several worldwide
locations, corresponding to the current time instance at your location.

The introspection and reflection mechanism is a powerful feature of the Java language that
provides its dynamic nature. The java.lang package provides a class called Class that represents a
class loaded in memory. You use an instance of this class to get the details of the loaded class.
Such details are very exhaustive and include the class modifiers, the public methods, the public
constructors, and more. The forname method of this class allows you to inject any compile-time
unknown class in the runtime system. Once a class is available at runtime, you can create objects
of its type by calling the newInstance method on it. The getDeclaredMethods method returns the
list of public methods in an array of Method objects. The invoke method of the Method class
permits the dynamic invocation of a method.

The chapter concluded with a list of other APIs available in Java SE 7 that you should learn as
you continue your studies.

Symbols
< > (angle brackets)

indicating optional parameters with, 204
replacing type argument with empty, 313

@Deprecated annotation, 273–275
@Documented annotation, 286
@Inherited annotation, 286–289
@interface keyword, 277, 289
@Override annotation, 275–276
@Retention annotation, 281–286
@SuppressWarnings annotation, 276–277, 310
@Target annotation, 280–281
* (asterisk), 64
, (comma), 145
== (comparison operator), 590
{ } (curly braces), 31
. . . (ellipsis), 219
– (minus), 69
+ (plus), 69
; (semicolon), 47
[] (square brackets), 19

A
abstract classes

implementing interface methods with,
138, 149–151

interfaces vs., 151
abstract keyword, 149
Abstract Windowing Toolkit (AWT).

See java.awt
access modifiers. See private modifiers;

protected modifiers; public modifiers

accessor methods, 55
ActionListener interface, 328, 329, 332
Adapter classes, 338–339, 341, 342
addresses

representing with InetAddress class,
574, 583

resolving with DNS, 574–575
support for multihoming, 582
web page URL, 546, 547

algorithms
about, 412, 430
binary searching of arrays with, 431
generating and sorting random number

arrays, 430–431
using built-in collection, 430–433
writing custom, 433

angle brackets (< >)
optional parameters indicated

with, 204
replacing type argument with empty, 313

annotations
@Documented, 286
@Inherited, 286–289
@Override, 275–276
@Retention, 281–286
@Target, 280–281
SuppressWarnings, 276–277, 310
about, 273, 289
built-in, 273–277
custom, 279
declaring with @interface keyword,

277–280, 289
marker, 277
multivalue, 278
return types for, 280

Index

617

618 Java Programming

annotations (cont.)
rules for defining, 279–280
runtime discovery of, 281–286
setting default values for data members

in, 278–279
single–value, 277–278
using meta-annotations, 280

annual sales turnover calculator, 513–515
anonymous classes, 165–168

compiled, 167
creating, 167, 338, 339, 342
defined, 165, 168
examples of, 165–166
guidelines for, 168
restrictions on use of, 167
tips on, 166

APIs
listing of J2SE 7, 615
Reflection, 601
2D, 12
using security, 248

Applet class, 379, 407
applets

about, 378–379
about Applet and JAppletclasses, 379, 407
adding GUI components to, 407
connecting to server sockets from,

382–383
creating, 379–380
defined, 10
displaying coordinates of clicked

points, 385
generating popup menus, 390–395
HTML code for running, 380–381
life-cycle methods for, 382–383, 407
line-drawing, 386–390
processing mouse events, 383–390
refreshing screen on click events,

384–385
running in AppletViewer, 381–382

AppletViewer, 381–382
applications. See also GUI; programming

examples; and specific applications
converting from AWT to Swing, 378
creating multiple public classes in, 76
deadlocks in, 467–468
errors in, 170–171
executing asynchronous threads on

single-core CPUs, 457, 474
file storage server, 566–573
improving with parallelism, 474–475
multithreading in, 8, 436, 437, 466
requiring concurrent tasks, 510

secure command–line login for, 240–241
using GUI event-driven programs, 318, 342

Arithmetic Exception class, 175, 191
array literals

initialization by, 23–26
initializing single-dimensional and

rectangular arrays with, 35
two–dimensional arrays initialized with,

30–32
ArrayBlockingQueue class, 477, 481
ArrayIndexOutOfBounds exception

about, 21
information found in, 173
uses for, 175

ArrayList class
adding thread–safety for, 540
allowing resizable arrays with, 417–418
TreeSet class vs., 424
working with collections in, 411

arrays, 18–40. See also array literals
about, 18–19, 35, 40
accessing and modifying elements in,

20–22
algorithms managing, 430–433
available classes with List interface,

417–418
cloning, 37–38
creating, 20
declaring, 19–20
finding class of, 38–39
initializing, 22–26
iterating with for–each loop, 26–27
length of, 35–37
memory map of integer, 21, 22, 24
multidimensional, 28–33
N–dimensional, 33
nonrectangular, 33–34
restrictions on generic, 314–315
specifying size of, 24

Asset class, 69–72
asset management application

multilevel inheritance in, 74–80
using heterogeneous collections in,

81–88, 91
asynchronous exceptions, 196–197
attributes

defined, 42, 43
fields and, 46

autoboxing/unboxing
about, 254, 289
using, 271–273

await method, 491
AWT. See java.awt

Index 619

B
Ball Game program

modified listing for, 127–130
using static fields in, 123–126

bank teller scenario, 487–490
barriers

about, 507
cyclic, 490–493

base classes, 95, 97
big-endian notation, 228
binary mode

opening byte-oriented classes in, 202
when to use, 214

binary streams. See also InputStream class;
OutputStream class

based on InputStream and OutputStream
classes, 224

character vs., 214–215
determining file length using, 202–206
implementing with OutputStream class,

207–210
binding, 80
blank final variables, 108, 109, 110–111
blocked threads, 438
blocking queues, 475–486

about, 475–476
characteristics of, 476–477
classes implementing, 477–479
creating concurrency with

BlockingQueue interface, 477
generating lucky numbers with

LinkedTransferQueue class, 484–486
using in stock–trading system, 479–484

BlockingDeque collection, 413
BlockingQueue interface, 477–479
BorderLayout manager

adjusting gaps between components
with, 354

creating photo frame application with,
347–348

function of, 344
placing components with, 346–354, 375

bounded types, 304–305
bounded wildcards, 308–310
BoxLayout manager

FlowLayout vs., 345, 367
illustrated, 367
program demonstrating, 368–372

broadcasting messages, 575–581
client for multicast stock trades, 579–580
developing applications for, 575–576
running server and client, 581
SCTP support for, 582–583
writing stock quotes server for, 576–579

Bucket Ball Game
implementing locks in, 469–470
synchronizing threads in, 458–461

BufferedReader class, 214, 236
BufferedWriter class, 214
buffers

character stream, 213–214
exchanging between thread, 505–507
java.io classes providing, 209
reading ahead in, 231–232, 253
saving contents of OutputStream class, 231
StringBuffer class, 591

built-in Java features
annotations, 273–277
collection algorithms, 430–433
generic types, 295–297

buttons
adding to photo frame application,

352, 353
serving as event source, 321, 322
using Swing components for, 326–330

byte-oriented stream classes
InputStream derived classes, 201–202
opening in binary mode, 202
program illustrating, 228–231
working with, 227–228

byte streams
classes oriented to, 226–231
defined, 201

ByteArrayInputStream class, 227, 228
ByteArrayOutputStream class, 227, 228
bytecode, 3, 5–6

C
C++ language

defining methods outside class
declarations, 51

Java–compatible programming interface
in, 135

Java vs., 5–6
OBJ code vs. Java bytecode, 3–4
pointer arithmetic in, 7
similarities with Java, 3
terminating class definitions in, 47

calculator interface, 362–365
Calendar class, 594–599

about, 594
GregorianCalendar methods for,

594–595, 616
Local Time Converter application using,

595–600
time and date representation with, 616

call mechanism, 107
call method, 511

620 Java Programming

Callable interface
effect on threads, 510–511
parallelizing large tasks with callables,

512–518
Runnable vs., 511
using, 511–512

Canvas class, 395
CardLayout manager

creating tabbed dialog box with, 360,
372–375

function of, 345, 356
illustrated, 356–357
program demonstrating, 357–359

case sensitivity of HTML tags, 381
casting types, 312–313
catch blocks

example of try–catch blocks, 176
matching at runtime, 180
structure in try/catch/finally block,

181, 183
use in try–catch statements, 175–176

chaining streams, 216–218
Character class, 265
character mode, 202, 214–215
character–oriented stream classes

about, 239, 253
CharArrayReader/Writer, 239, 253
Console, 239–241, 253
opening and using in character mode,

202, 214–215
Reader and Writer, 201

character streams
binary vs., 214–215
buffering characters in, 213–214
class hierarchy for, 210–211
classes oriented toward, 201, 239, 253

characters
encoding, 213, 238
list of conversion, 593
replacing in string, 587
supplemental, 270
wrapping, 269–270

CharArrayReader/Writer classes, 239, 253
checked exceptions

about, 184–185, 198
wrapping exception in RunTimeException

object, 194–195
class browser application

demonstrating introspection and
reflection, 606–614

illustrated, 604
introspection test application for, 605–606
using no–argument constructor for class

instantiation, 614

Class class
associating objects with, 284
introspection and reflection using,

601–603
retrieving for object and methods, 284
security and instantiation exceptions for,

602–603
class members, 130
classes, 42–66. See also constructors;

inheritance; and specific classes and
class types

@Deprecated annotation in, 273–275
about, 65–66
abstract, 138, 149–151
accessibility rules for, 112
accessing/modifying fields in, 48
accessing static members of, 133
anonymous, 165–168
base, 95, 97
Collections framework implementation

by, 414
constructors for, 57–61, 94–95
copy constructors used by, 104–105
creating threads, 442–443
declaring, 46–47
declaring with final, 106, 120
defined, 45
defining, 45–46
dumping content with wildcards, 305–308
example code for, 48–49
exception hierarchy for, 175–179
final variables of class type, 109–110
finding array’s, 38–39
found in java.io package, 200, 224
fully qualified names for, 46
hierarchy within, 44
implementing interface methods, 138,

149–151
importing external, 63–64
improvements with J2SE 1.2, 11–12
inheritance for, 43–44, 72
instantiating, 47
interfaces vs., 149
invoking superclasses, 88
J2EE, 13
javadocs information on, 21, 207
loading in namespace, 111
local, 162–168
looking up constructors for, 204
member, 46, 162
memory allocation of objects in, 51–52
method declarations in, 49–51
method overloading for, 102–104, 120
multilevel inheritance for, 73–74

Index 621
multiple interfaces implemented by,

145–148, 151
multiple public, 76
nested, 154–168
objects as instance of, 42
OOP, 43
overriding class fields, 91
parent, 79
private and public methods for, 56
public and private fields for, 77
single-level inheritance by, 72–73
static fields in, 122–126
subclassing of, 69–72, 90–91, 443, 471
synchronized, 8
using as template, 47
wrapping primitive data types,

264–268, 289
ClassLoader class, 111
CLASSPATH, 76
click events

delegation event model and, 321–322
processing mouse, 383–385

clients
connecting to remote servers, 545–547
echoing message back from server,

556–559
examples with socket programming, 573
requesting data from cloud storage

server, 566
running stock trade server and, 581
serving multiple, 560–561
simultaneous service to multiple,

561–563
testing EchoMultiServer application,

564–566
uploading/downloading files to cloud

server, 570–572
writing stock quotes, 579–580

clone method, 37–38
closing

socket connections, 549, 558
windows, 335

cloud storage server
client requests for, 566
testing upload/download utility, 573
uploading/downloading files to, 570–572
writing, 566–570

code reuse in OOP, 42, 68
collections

generics ensuring types passed to,
297–298, 316

iterating through elements of, 293
thread–safe, 540–541

Collections class, 411
Collections framework

algorithms of, 412, 430–433
benefits of, 411
building distinct sets with HashSet class,

418–420
classes allowing duplicate elements in,

414–418
classes in, 410–411, 414
as example of generics, 292–293
implementations for, 411
interfaces of, 411, 412–414
List data structure, 414–418
Map data structure, 427–430
optional operations for List interface,

417–418
Queue data structure, 424–427
Set interface and data structures,

418–424
single-elements only in Set interface, 418
sorting objects with TreeSet, 420–424
writing custom algorithms for, 433

comma-separated values (CVS) files, 587,
588–590

commas (,), 145
comments

placement in source file, 62
using, 61, 62, 286, 287

Common Object Request Broker Architecture
(CORBA), 12, 615

compareTo method, 260
comparison operator (==), 590
compilers

calling constructors with super or this
keywords, 97, 98, 120

compiling interfaces, 149
early and late binding by, 80
executing polymorphism, 81, 91
generics with, 293–295
handling exceptions, 184–185
providing default constructors, 60–61, 66
replacing generics with real types at

precompilation, 300–301
using super with or without arguments, 101

components. See also Swing components
adding GUI components to applets, 407
adjusting layout gaps between, 354
array, 18
placing with BorderLayout, 346–354, 375

composition, 136
concatenating

files, 218–219
input streams, 234–238

622 Java Programming

Concurrency framework
application requirements for concurrent

tasks, 510
creating concurrency with

BlockingQueue interface, 477
thread handling in, 475
ThreadLocalRandom class, 541
using thread–safe collections, 540–541

ConcurrentHashMap class, 540
ConcurrentLinkedDeque class, 540
ConcurrentLinkedQueue class, 540
ConcurrentSkipListMap class, 540
ConcurrentSkipListSet class, 540
Console class, 239–241, 253
constants

accessing interface-defined, 149
attaching methods to enums, 260–263
creating for global variables, 125–126
final variables treated as, 25, 108, 110
listing with enums, 257–258
serializing enumeration of, 264

constraints object, 365
constructors

arguments of Socket, 546
avoiding compile–time errors for, 60
calling, 58–60, 66
chaining, 97
copy, 104–105
default, 58, 60–61
defined, 57–58
defining for enum class, 258
initializing blank final variables, 109
invoking, 105
method overloading defining,

102–104, 120
no–argument, 58, 101, 102, 105, 614
not inherited, 95
researching in javadocs, 204
rules for defining, 61
super method called with, 97, 98–101, 120
superclass, 99–102
this method called with, 97, 98, 103, 120
Thread class, 449
unavailable in wrapper class, 268
using static initializers, 132–135

constructs. See for-each loop
ContactsDatabase application, 368–372
contains method, 615
conversion characters, 593
Converter enumeration, 261–263
cookies

handling, 552
spy utility for, 553–556

copy constructors, 104–105
CORBA (Common Object Request Broker

Architecture), 12, 615
countdown latches, 493–497
counting

lines in files, 216–218
words and numbers, 242

CPUs
executing asynchronous threads,

457, 474
handling thread priorities, 439
prevalence of multiple-core, 436
running processes and threads

on, 437
thread scheduling strategies for, 440

createData method, 230
credit card data encryption, 244–248
curly braces ({ }), 31
cursors, 389
custom annotations, 279
CVS (comma-separated values) files, 587,

588–590
CyclicBarrier class, 490–492

D
daemon threads

creating, 447
marking before running, 448
non–daemon vs., 442
setting property for, 450

data
default values for annotated, 278–279
methods for storing large amounts

of, 24
socket streams for input and output, 546

data structures of Collections framework,
414–418

List, 414–418
Map, 427–430
Queue, 424–427
Set interface and, 418–424

data types
replacing generics with real, 300–301
returned for annotation methods, 280
wrapping primitive, 264–268, 289

DatagramSocket class
binding instance to port, 578
constructors creating SocketException, 579
using UDP with, 575

DataInputStream class, 227
DataOutputStream class, 227
date classes. See Calendar class

Index 623
DaysOfTheWeek enumeration, 257–258
deadlocks

about, 467–468
avoiding with lock ordering, 468
detecting, 470–471
improper synchronization leading to, 466
lock timeouts to avoid, 468–469

declarations
array, 19–20
class, 46–47
generic interface, 314
interface, 140–142

deep vs. shallow copies, 38
default constructors

defined, 58, 60–61
rules for defining, 61

default modifiers
accessing entities with, 112, 120
visibility rules using, 117–119

default values for annotated data members,
278–279

delay time for ScheduledExecutorService class,
524–525

DelayedQueue class, 478
delegation event model, 321–325

button control events in, 326–330
event listeners, 321, 322–323
event processing sequence in, 323
event source, 321–322
illustrated, 321
multiple event types in, 324–325
text field events in, 330–335

delete method, 51
Deque collection, 413
destroy method, 383, 407
destructors, 61
digital signatures, 11
Directory Listing program, 220–221
divide–and–conquer algorithm, 533, 534
DNS resolution application, 574–575
Dolphin SDK, 15–16
drag–and–drop feature, 12
Dynamic Method Invoker program, 600–601
dynamic typing, 298

E
early binding, 80
echo server application

echoing message back from server,
556–559

serving multiple clients, 560–561
testing, 559

EchoMultiServer application
running, 563
testing, 564–566

elements
Collections classes allowing duplicate,

414–417
duplicates not permitted in Set interface

collection, 418
modifying value of array, 21–22
specifying annotation targets for, 280–281
typecasting in Iterator interface,

294–295
ellipsis (. . .), 219
embedded systems, 2, 4–5
encapsulation, 43, 56–57
encrypting credit card information, 244–248
end-of-day (EOD) quotes, 588–590
enum class

defining constructors for, 258
Java’s, 257
serializing, 263–264, 289

enumerations
about, 289
adding custom properties to, 258–259
attaching methods to, 260–263
creating integer patterns for, 256–257
Java’s enum type, 257
listing constants with, 257–258
ordinal and compareTo methods used

with, 260
serializing enum types, 263–264, 289

equals method, 591, 615
Error class, about, 175
errors. See also exception handling

avoiding by type casting, 312–313
inner class method compile-time, 164
requiring exception handling, 171–172

event-driven programs. See also GUI
building GUI, 318, 325, 342
delegation event model for, 321–325
using multiple event types in, 324–325

event handlers
inner anonymous classes defining,

339, 342
providing in hierarchical event model, 320
setting, 337, 340

event listeners
about, 321, 322–323
adding for button controls, 329
implementing for JList control, 338–339
providing implementations using Adapter

classes, 338–339, 341, 342
registering on multiple event sources, 324

624 Java Programming

event sources
about, 322
defining for all events, 321–322
event listeners registering on multiple, 324
registered listeners for, 322–323

events. See also delegation event model; event
handlers; event listeners; event sources

closing windows, 335
defining event source and listeners for all,

321–322
keyboard, 403–407
processing sequence for, 323
program demonstrating button, 327–330
propagating up container hierarchy,

319–320
transmitting to registered listeners,

322–323
using multiple types of, 324–325

Exception class
hierarchy of, 175–176
passing Exception object to exception

handler, 174, 175
uses of, 175

exception handling, 170–198. See also
exceptions; throw statement; throws clause

centralizing code for, 187–188
classifying exceptions, 175–179
combining exception handlers, 179–180
error types requiring, 171–172
finally statement in, 180–183, 198
matching catch blocks at runtime, 180
non-fatal errors, 172–174
overview of, 170–171, 198
throwing superclass and subclass

methods, 194
try-catch statements, 174–175
try-with-resources statements for, 183–184
using final with catch block, 192
using multiple exception handlers,

177–179
Exception object, 174, 175, 204
exceptions

asynchronous, 196–197
checked/unchecked, 184–188
checking printed stack trace for,

195–196, 198
classifying, 175–179
combining exception handlers for,

179–180
concurrency and throwing, 540
corrective actions for, 172
declaring in overridden methods, 192–195
defined, 171, 172
guidelines for, 197

IOException not thrown by
ByteArrayInputStream methods, 228

occurring in finally blocks, 183
re-throwing, 190–191
rules for calling, 170, 197
runtime handling of, 180
security and instantiation exceptions for

Class class, 602–603
stock trader client, 579
throw statement, 190, 198
throw vs. throws keyword, 192, 198
throws clause for handling, 185–188,

190, 198
user-defined, 188–190

exchange method, 501, 502
exchangers, 501–507
ExecutorCompletionService class, 529–533
executors, 523–533

classes and methods for, 523–524
creating thread pool for scheduled

executions, 524
obtaining computation results using

looping, 528–529
using ExecutorCompletionService class,

529–533
virus scanners using fixed delays,

525–528
waiting until assigned tasks

completed, 522
Executors class, 523–524
ExecutorService class, 534
ExecutorService object, 523, 541
expressions. See also strings

specifying array size in, 24
strings as regular, 587

extends keyword
extending another interface with, 140,

142–145
using for subclassing, 72, 91

Externalizable interface
program illustrating, 244–248
Serializable vs., 244

F
fields

accessing/modifying in classes, 48
class attributes and, 46
designating public and private class, 77
entering text in GUI, 330–335
overriding class, 91
setting value of, 54, 65
static, 122–126

Index 625
File class, 220, 224
File Concatenation program, 218–219
File Length program, 202–206
file storage server application, 566–573

client for uploading/downloading files,
570–572

client requests for cloud storage server, 566
testing client upload/download utility, 573
writing cloud storage server, 566–570

File Viewer utility, 211–213
FileCopy class, 207–208
FileInputStream class, 204
FileMerger application, 234–238
FilenameFilter class, 222
FilenameFilter interface, 166
FileOutputStream class, 207, 209, 210
files

concatenating, 218–219
copying, 207–210
counting lines in, 216–218
determining length of, 202–206
filtering directory listings, 221–222
listing directory’s, 220–221
merge utility for, 234–238
processing CVS, 587, 588–590
tokenizing input stream for, 241–243, 253
viewing, 211–213

filtering directory listings, 221–222
final keyword, 105–111

accessing inner classes declared final,
164, 597

creating constants with, 25
declaring classes with, 106, 120
preventing overriding of methods with,

106–107, 120
preventing subclassing with, 90, 91
public class variables marked with, 125
uses of, 105–106
using with catch block, 192
using with variables, 108–111, 120

finally statement
about, 180
cleaning up try block errors with, 182
guidelines for, 182–183
structure in try/catch/finally block,

181, 198
syntax flaws in, 183

fixed delays, 525–528
Float class, 265
Floating-point numbers

declaring array of, 18, 19
parallel merging of, 535–540
printing value of, 590
sorting large arrays of, 535–540

FlowLayout manager
BoxLayout vs., 367
function of, 344, 354
program demonstrating, 354–356

for-each loop
iterating arrays with, 26–27
looping through two–dimensional

arrays, 33
Fork/Join framework, 533–540

about, 510
divide-and-conquer algorithm of,

533, 534
ForkJoinPool class of, 534–535
ForkJoinTask class, 535
processing algorithm in, 533
sorting large arrays of floats, 535–540

ForkJoinPool class, 534–535
ForkJoinTask class, 535
form–based used interface, 368–372
format method, 615
formatted output using String class, 591–593
Formatter class, 591–593, 615
fully qualified class names

about, 46
accessing static nested classes with, 156
using for package statements in source

file, 65
fully qualified path, 65
Future interface

effect on threads, 510–511
implementing both Runnable and, 518
Runnable vs., 511
using, 511–512

FutureTask class, 511, 518

G
generics, 292–316

array restrictions in, 314–315
bounded types for, 304–305
built-in types of, 295–297
casting types, 312–313
comparing and assigning generic

types, 313
copying elements using iterator class,

416–417
declaring generic interfaces, 314
defined, 292–293
dumping content of class with wildcards,

305–308
ensuring type safety with, 297–298
examining how compiler replaces,

300–301

626 Java Programming

generics (cont.)
function of, 293–295
generic methods, 314
HashMap class with two generic

parameters, 310–312
introduction of, 316
raw types for, 310, 316
static keyword restrictions for, 315–316
syntax for parameterized stack type,

298–299
type parameter restrictions for, 315
writing custom algorithms for, 433

getCause method, 191
getClass method, 284
getter methods, 55, 65
global variables, 125–126
graphical user interface. See GUI
Graphics class, 380
GRE word list, 427–430
green thread model, 440–441
GregorianCalendar methods

instantiating, 598
using, 594–595, 616

GridBagLayout manager
adjusting components in cells, 365–367
function of, 345, 361–362
illustrated, 362
program demonstrating, 362–365

GridLayout manager
creating grid with, 333
function of, 345, 360
illustrated, 360
program demonstrating, 361

GroupLayout manager, 375, 376
GUI (graphical user interface), 318–342.

See also events; layout managers; Swing
components

adding components to applet, 407
adjusting component sizes, 346, 375
applications using, 318, 342
applying layout manager to, 345–346
building, 325, 342
class browser application, 604
controlling layout orientation, 346
creating using NetBeans, 347–348, 354
delegation event model, 321–325
deprecated hierarchical event model,

319–320
entering text in fields of, 330–335
event listeners, 322–323, 325
event processing model for, 319–321
event processing sequence, 323
event source for, 321–322

implementing list box controls, 335–342
JButton controls in, 326–330
listening to multiple event sources, 324
using panels with, 340–341, 342
window for, 326

H
HashMap class

about, 411, 427
adding thread–safety for, 540
building GRE word list with, 427–430
two generic parameters for, 310–312, 429

HashSet class, 418–420
Hashtable class, 410, 540
heterogeneous collections, 81–88, 91
hierarchical event model, 319–320
hierarchies

character stream class, 210–211
class, 44
Collections framework interface, 412–414
exception class, 175–179
I/O class, 201
illustrating bounded wildcards, 308

horse–racing simulation program, 498–501
HTML

case sensitivity of tags in, 381
running applet in, 380

HttpCookie class, 552

I
I/O classes, 199–253

about, 200, 224
binary vs. character streams, 214–215
buffering characters in character streams,

213–214
byte–oriented stream classes, 226–231
character–oriented stream classes, 239, 253
CharArrayReader/Writer classes, 239, 253
Console class, 239–241, 253
determining file length, 202–206
hierarchy of, 201, 210–211, 226
implementing binary streams, 207–210
input stream, 201–202
Java input and output streams, 200–201
maintaining object versions, 250–253
nested objects serialization for,

248–250, 253
OutputStream class, 207
PrintStream class, 238, 253
PushbackInputStream class, 231–232, 253

Index 627
read method of InputStream class, 206
reading/writing from and to streams,

222–224
SequenceInputStream class, 234, 238,

253
skip method of InputStream class, 207
StreamTokenizer class, 241–243, 253
using Externalizable interface for,

244–248
implements keyword, 138, 151
import statements

about Java, 63–64, 66
structure in source files, 61–62

importing
java.io package, 203
Swing classes to program, 328

InetAddress class, 574–575, 583
information hiding, 52–56
inheritance, 68–91. See also inheritance

hierarchy
about, 43–44, 68–69, 91
detecting object type in inheritance

hierarchy, 88–89
example of class, 69–72
interfaces vs. multiple, 136, 151
multilevel, 73–80
preventing method overriding, 90,

106–107, 110, 120
preventing subclassing of, 90–91
single–level, 72–73
static fields, 125
subclass access, 119–120
using @Inherited annotations, 286–289

inheritance hierarchy
detecting object type in, 88–89
object–creation process and, 95–98
preventing method overriding, 90
typecasting rules on, 90

init method, 382, 383, 407
initCause method, 191
initializing

arrays, 22–26
single–dimensional and rectangular

arrays, 35
using aggregate initialization, 23

inlining, 107
inner classes. See also anonymous classes;

local classes
about, 154, 168
accessing, 159–160
compile–time errors for methods in, 164
declaring rules for, 158
defining event handlers with anonymous

classes, 339, 342

member classes, 162
method scope definitions for, 163–164, 168
overview of, 162, 168
use of, 156–159
using variables outside scope with final,

164, 597
input stream

chaining classes in, 215–216
class hierarchy for, 226
defined, 200
parsing into tokens, 241–243, 253

InputStream class
hierarchy of, 201–202, 226
read method of, 206
significant methods for, 207
skip method of, 207

instance variables of objects, 47
instanceof operator, 88–89, 91
instantiating

classes, 47
Console class, 239, 240
exceptions for Class instantiations,

602–603
generic type parameters restricted, 315
new keyword for class instances, 47, 66
objects as instant of class, 42
subclasses, 94–95

Integer class, 265, 266–267, 268
integers

declaring array of, 18, 19
declaring enums for patterns of, 256–257
NumberFormatException errors for, 267

interface keyword
about, 140
declaring annotations with, 277, 289

interfaces. See also GUI; and specific interfaces
about, 149
abstract classes vs., 151
class implementation of multiple,

145–148, 151
Collections framework, 411, 412–414
combining, 149
creating threads, 442–443
declaring and implementing, 140–142
defined, 135–136
example of, 137–139
extending another interface, 140, 142–145
Externalizable, 244–248, 253
generic, 314
implementing methods in abstract classes,

138, 149–151
implementing vs. extending, 145, 151
inner classes as, 162
JDBC, 603

628 Java Programming

interfaces (cont.)
marker, 137
methods in, 137
multiple inheritance vs., 136, 151
Serializable, 137, 222–223
syntax for, 139–140
values for Modifiers, 140

Internet Protocol. See IP
interrupt method, 452, 457
interrupted method, 452–453
InterruptedException method, 452
interrupting threads, 452–457
introspection and reflection

based on Class class, 601–603
class browser application using, 604–614
disadvantages of, 614
introspection for Dynamic Method

Invoker, 600–601
Java’s use of, 281–282
Method class for dynamic method

invocation, 603–604
process of retrieving Class for object and

methods, 284
utility classes supporting, 600–614, 616

IOException class, 185
IP (Internet Protocol)

about, 574
adding known IP addresses to Socket

objects, 548
addresses used by, 545
representing addresses with InetAddress

class, 574–575, 583
URL addresses of web page in, 546, 547

isInterrupted method, 453
isMulticastAddress method, 574
Iterator interface

about, 411, 412, 414
concurrency and weakly consistent

iterators, 540
iterating through collection elements, 293
typecasting elements in, 294–295
using iterators with inner classes, 158

J
J2EE server-side components, 13
J2SE 1.2 features, 11–13
J2SE 1.3 features, 13
J2SE 1.4 features, 13–14
J2SE 5.0

features of, 14–15
formatted output in, 591
generics introduced in, 316
wrapper classes added in, 268–271

J2SE 6.0 features, 15
J2SE 7.0

features of, 15–16
packages available in, 614–615
replacing type argument with empty set of

type parameters, 313
time zones and DST computations for, 600
using final re–throws in, 192

JApplet class, 379, 407
JAR file format, 10–11
Java. See also introspection and reflection;

network programming; programming
examples

about, 2, 16
about bytecode, 3, 5–6
big-endian notation for numbers, 228
Collections framework in, 410–411
compiled and interpreted language, 5–6
destructors not used in, 61
directory layout and packages in, 64–65
dynamic nature of, 8–9, 600–601, 603–604
effect of nonpreemptive OS on threads,

448, 471
evolution of, 9–16
features of, 4–9
import statements in, 63–64, 66
introduction of generics in, 316
introspection and reflection in, 281–282
Java Virtual Machine, 3–4
multithreading in, 8, 436, 437, 466
obtaining stack trace for, 196
package statements in source files, 62–63
packages available in J2SE 7, 614–615
platform independence of, 6, 7
programming interfaces compatible

with, 135
programming solutions with, 2
pseudo notation in, 45
robust and secure programming with, 6–8
scope of, 3
source file layout for, 61–62, 66
support for encoding standards, 238, 239
vargas feature, 218, 219

Java Database Connectivity (JDBC), 603
Java Development Kit. See JDK
Java Language Specification. See JLS
Java Remote Method Protocol (JRMP), 615
Java Virtual Machine. See JVM
java.awt (Abstract Windowing Toolkit), 9, 11

converting AWT–based applications to
Swing, 378

enhancements to, 11
replaced by Swing components, 325, 342
user interface in early, 9

Index 629
JavaBeans, 10
javadocs

comments tagged by, 286, 287
finding class constructors in, 204
learning about classes with, 21, 207

java.io package
class hierarchy of, 226
classes in, 200, 224
classes providing buffering, 209
File class in, 220, 224
importing in source program, 203

java.lang package
Class class in, 616
java.lang.Enum class, 289

java.math package, 305
java.nio package

Path class in, 220, 224
solving blocked calls with, 206

java.util.concurrent package, 540–541
java.util.regex package, 587
javax package, 328
JButton control, 326–330
JDBC (Java Database Connectivity), 603
JDK (Java Development Kit)

J2SE 1.2 features, 11–13
J2SE 1.4 features, 13–14
J2SE 5.0 features, 14–15, 268–271
J2SE 6.0 features, 15
J2SE 7.0 features, 15–16, 313
JDK 1.0 features, 9
JDK 1.1 enhancements, 10–11, 601

JFrame class
about, 326
adding form to project, 348–349
default layout manager for, 329, 330
extending class from, 328
extending constructs for class browser

application, 612
JLabel class, 327, 328, 330
JList control, 335–342

building GUI panels with, 340–341, 342
illustrated, 335
implementing listeners for, 338–339
program using, 336–337
removing items from, 341
setting data model for, 339

JLS (Java Language Specification)
allowed values for Modifiers, 140
defining classes in, 45, 46

joining threads, 457
JRMP (Java Remote Method Protocol), 615
JTabbedPane class

CardLayout for constructing tabbed
dialogs, 360, 372–375

working with GridBagLayout manager, 345

JTextField control, 330–335
JVM (Java Virtual Machine)

function of, 3–4
providing platform independence, 6, 7
thread scheduling and implementation,

440–442, 471

K
Kestrel SDK, 13
keyboard events, 403–407

implementing KeyListener interface for,
403–404

processing text from, 404–407
KeyListener interface, 403–404
KeyPressed method, 404
KeyReleased method, 404
KeyTyped method, 404
killing non–daemon threads, 448

L
late binding, 80
layout managers, 344–376

about LayoutManager interface, 344, 375
advanced Java, 375
applying to application window, 345–346
creating grid, 333
creating tabbed dialog box, 372–375
function of, 344
panel, 342
placing components with BorderLayout,

346–354, 375
tasks performed by, 235
types of, 344–345
using, 329, 330

LayoutManager interface, 344, 375
length field for arrays, 35–37
lexing, 241
life cycle

applet life-cycle methods, 382–383, 407
thread, 437, 438–440, 446

Line Count program, 216–218
line-drawing applet

changing cursor to crosshair, 389
customizing drawing color in, 395–403
mouse motion events for, 386–390
processing keyboard events, 403–407
scroll bar and canvas listing for, 396–403
selecting line color from popup menu,

390–395
using, 390

LinkedBlockingQueue class, 478, 481, 484
LinkedList class, 415–418

630 Java Programming

LinkedTransferQueue class, 484–486
Linux thread model, 442
List collection, 412
List interface, 417–418
listeners. See event listeners; and specific listeners
ListIterator interface, 411, 412
lists

building searchable word, 427–430
linking and printing team member, 415–418
removing disqualified members in

merged, 417
local classes

about, 168
anonymous classes, 165–168
declaring within constructor of enclosing

class, 163
defined, 162
overview of, 164–165
restricted modifiers for, 165, 167

Local Time Converter application, 595–600
locking objects

lock ordering, 468
lock timeouts, 468–469
with synchronized keyword, 465–466, 471

loops
closing sockets with infinite, 558
iterating arrays with for–each, 26–27, 33
looping through two–dimensional arrays, 33
obtaining execution results using, 528–529
putting threads to sleep using while, 446

M
Map collection interface

about, 412, 413
data structures of, 427–430
implementing with HashMap, 427

marker annotations, 277
marker interfaces, 137
member classes

about, 46
features of, 162
local classes, 162–163, 164–165

members. See also visibility
access inheritance by, 119–120
class, 130
defined, 43
visibility rules for, 111–112

memory allocation
memory map of integer arrays, 21, 22, 24
nonrectangular arrays, 33–34
object, 51–52
static and nonstatic field, 122–123, 124

merging
files, 234–238
lists, 415–418

Merlin SDK, 13–14
meta–annotations

@Documented annotations, 286
@Inherited annotations, 286–289
@Target annotations, 280–281
about, 280

Method class, 603–604
method overloading

creating copy constructors, 104–105
defined, 102
defining constructors with, 102–104, 120
rules for, 104

methods. See also method overloading;
overriding methods; and specific methods

about, 42
annotation, 279
attaching to enums, 260–263
binding call to body of, 80
blocking queue, 476
calling with runtime polymorphism,

87–88
class declarations of, 49–51
constructor, 57–60
defined, 43
defining inner class within, 163–164, 168
dynamic invocation with Method class,

603–604
enumerations using ordinal and

compareTo, 260
exceptions in overridden, 192–195
final, 106–107, 120
generic, 314
getClass, 284
getter or accessor, 55
GregorianCalendar, 594–595, 616
implementing with conversion with

performConversion abstract, 263
inline, 107
inserting code with call mechanism, 107
interface, 137
interrupting threads, 452–457
invoking static and nonstatic, 78
OutputStream, 210
polymorphic, 80–81
preventing overriding of, 90, 106–107,

110, 120
private and public, 56
static, 126–132, 151
String class, 586–587
Thread class static, 449–450

Index 631
MFC (Microsoft Foundation Classes), 4, 5
MileageEfficiency interface, 140–145
minus (–), 69
mobile phone keypad interface, 360–361
Modifier class, 601–602
modifiers. See also private modifiers; protected

modifiers; public modifiers
restricted for local classes, 165, 167
using default, 112, 117–119, 120
values for Modifiers control, 140

mouse events, 383–390
classifications of, 325
handling motion events, 385–386
multiple types of, 324–325
processing click events, 383–385
setting up listener for, 384

MouseListener interface, 383–384, 407
MouseMotionListener interface, 385–390, 407
mouseMoved and mouseDragged methods,

385–386
multicast applications

checking for multicast addresses, 574
developing client for, 579–580

multidimensional arrays, 28–33
multihoming, 582
multilevel inheritance, 73–80
multiple interfaces, 145–148, 151
multiple static blocks, 133–134
multithreading

Java, 8, 436, 437, 466
processing sales matrix with, 512–513

multivalue annotations, 278
Mustang SDK, 15
mutator methods, 54, 65

N
N-dimensional arrays, 33
namespaces, 111
NaN (Not-a-Number) field, 269
natural logarithm calculator, 491–493
NavigableMap collection, 413–414
NavigableSet collection, 413
NEGATIVE_INFINITY field, 269
nested classes, 154–168. See also inner classes

accessing inner classes, 159–160
accessing shadowed variables,

160–161
classifications of, 155–156
declaring, 154
static, 156
uses for, 155
uses of inner classes, 156–159

NetBeans
creating GUIs using, 347–348, 354
Java Desktop Application template

available in, 333
setting Swing control properties, 349, 350
starting AppletViewer from, 381
updating console when thread

interrupted, 453
network programming, 544–583. See also

clients; servers; sockets
about, 544, 583
accessing web resources with URL

class, 550
broadcasting messages, 575–581
concepts in, 544–545
connecting to remote server sockets,

545–547
creating URL-based web page reader,

551–552
handling cookies in, 552
listing cookies sent to machine by

websites, 553–556
reading home page of website, 547–550
running stock trade server and client, 581
stock quotes client, 579–580
stock quotes server, 576–579
testing echo server application, 559
using InetAddress class for, 574–576
writing file storage server application,

566–573
writing server applications, 556–559

new keyword
allocating space for arrays with, 20
instantiating classes with, 47, 66

no-argument constructors, 58, 101, 102,
105, 614

node streams, 200
non-daemon threads

creating, 447–449
daemon vs., 442
marking before running, 448

non–fatal errors, 172–174
defined, 171
handling with try-catch statements,

175–176
program bugs as, 172

nonrectangular arrays, 33–34
nonstatic fields, 126
nonstatic methods

implementing static and, 127–130
invoking, 78

nonstatic variables, 123, 124
Not–a–Number (NaN) field, 269

632 Java Programming

NullPointerException error, 171
numbers

counting words and, 242
generating and sorting random, 430–431
generating prime, 447–448
lucky number generators, 484–486
sorting large arrays of floats, 535–540
user interruptions while generating prime,

453–457
nval field, 242

O
Oak SDK, 9
object–creation process

calling super constructors, 97,
98–101, 120

creating copy constructors, 104–105
extending classes with final, 105–111
inheritance hierarchy and, 95–98
instantiating subclasses, 94–95
method overloading in, 102–104, 120
sample listing for, 96–97

object–oriented programming (OOP)
code reuse in, 42, 68
composition and, 136
concepts in, 42–43
encapsulation in, 43, 56–57
information hiding, 52–56
inheritance in, 43–44
migrating from procedure–oriented to, 5
polymorphism in, 44–45, 80–81

object-oriented streams, 244–248
object types, 88–89, 90, 91
Object Windowing Library (OWL), 4–5
Objective-C, 135
objects. See also visibility

accessing static fields, 124
accessing super class fields and methods

from subclass, 79
associating with Class class, 284
attributes, operations, and methods of, 42
clearing contents of class, 51
comparing string, 590–591
creating subclass and parent class, 79
declaring static fields, 123–124
detecting type in inheritance hierarchy,

88–89
exchanging threads with, 501–507
FutureTask class wrapping Callable or

Runnable, 518
heterogeneous collections of, 81–88, 91

hiding implementation details with
interface, 137

as instance of class, 42
instance variables of, 47
locking with synchronized, 465–466
maintaining versions of, 250–253
memory allocation of, 51–52
reading/writing from and to streams,

222–224
references to final variable, 109–110
serializing nested, 248–250, 253
string, 106
threads waiting on readiness of, 452
volatile for synchronizing, 466, 467
wrapping RunTimeException into,

194–195
obj.wait() method, 452
online Syntax Reference chapters, 18
OOP. See object-oriented programming
operating systems. See OS
operations, 42
ordinal method, 260
orientation of layout, 346
OS (operating systems)

green thread model for, 440–441
handling thread priorities, 439
implementing thread states, 438–439
Linux threading model, 442
nonpreemptive OS processes on threads,

448, 471
Solaris threading model, 441
thread scheduling strategies for, 440
user and system levels in, 441
Windows threading model, 441
working with threads, 437–440

outer classes
name of compiled, 162
rules for declaring, 158

OutOfMemoryError error, 171
output

formatting with Formatter class, 591–593
Local Time Converter, 599
socket streams for input and, 546

output stream
chaining classes in, 216
class hierarchy for, 226

OutputStream class
about, 207
hierarchy for, 226
methods for, 210
streams in Java, 200–201

overloaded methods of List interface, 417
overriding class fields, 91

Index 633
overriding methods, 80–81, 91

with @Override annotation, 275–276
declaring exceptions when, 192–195
in line drawing applet, 389
overriding static methods, 131–132
preventing, 90, 106–107, 110, 120
runtime polymorphism and, 88

OWL (Object Windowing Library), 4–5

P
package statements

about, 62–63, 66
accessing and referencing classes with, 65
directory layout and, 64–65
visibility and, 63, 111, 112

packages. See also package statements; and
specific packages

accessibility rules for, 112
accessing public members via other,

114, 115
contents of, 9
defining namespaces in, 111
Java, 64–65, 614–615

paint method
invoking with repaint, 385
using in applets, 382, 407
using with Sine Wave Animator, 446

panels
defining size of Swing component,

345–346
FlowLayout manager for, 344, 354–356
using with GUI, 340–341, 342

panning photos, 352
parallelism

benefits of, 535
implementing with Fork/Join framework,

533–534
improving applications with, 474–475
using parallel programming, 436–437

parameterized stack type, 298–299
parameters

HashMap class with two generic,
310–312, 429

indicating optional, 204
restrictions instantiating type, 315

Pascal language, 5–6
paths

listing files in specified, 220–222
organizing public classes in

CLASSPATH, 76
Path class, 220, 224
referencing fully qualified, 65

performConversion abstract method,
261–263

permits for Semaphore class, 487, 488
phasers, 497–501
photo frame application

buttons and components added to,
352, 353

panning, running, and closing, 352–354
setting up project for, 348–351
source code for, 351–352

Playground SDK, 11–13
plus (+), 69
Point class

calling constructor for, 58–60
declaring, 46–47
method declarations for, 49–51
using in program, 48–49

point–to–point communication, 545
pointers, 7
polymorphism

about, 44–45
compile–time, 81, 91
defined, 80
runtime, 81, 91

popup menus, 390–395
portability, 2, 6–7
portfolio management system. See also Stock

Exchange programs
heterogeneous collections in, 81–88, 91
listing for, 81–86

ports
connecting to servers with, 545, 546
designating for incoming data, 557–558
receiving multiple client requests, 560

POSITIVE_INFINITY field, 269
preventing

method overriding, 90, 106–107, 120
subclassing, 90–91

prime number generator, 447–448
primitive data types

using operators on, 265
wrapping, 264–268, 289

Print Calculator, 232–233
printf method, 591, 592, 593
printing

and analyzing stack trace, 195–196, 198
data values, 238
linked team member lists, 415–418
value of floats, 590

PrintStream class, 238, 253
PrintWriter class, 212, 213
priorities for threading, 425–427, 439–440, 452
PriorityBlockingQueue class, 478

634 Java Programming

PriorityQueue class
about, 424, 425
building threaded scheduler using,

426–427
private methods, 107
private modifiers

accessing entities with, 111, 112, 120
restricting object visibility with, 114,

116, 120
setting access with, 54, 55, 56, 65

Producer/Consumer scenario
problem inherent in, 461–465
using exchange method to implement,

502–507
Product class

implementing serialization with, 252–253
modifying, 251
serializing, 250–251

ProductReader class, 251
programming examples

@Deprecated annotation uses, 273–275
@Override annotation uses, 275–276
accepting keyboard text, 404–407
allowing public visibility, 113–114,

115, 120
annual sales turnover calculator, 513–515
applets, 379–380
asset management application, 74–80
attaching methods to enum constant,

260–263
autoboxing/unboxing, 271–273
bank teller scenario with semaphores,

487–490
basic file storage server application,

566–570
blocking queues, 479–484
browser demonstrating introspection and

reflection, 606–614
Bucket Ball Game application, 458–461
building GUI with button control,

327–330
built–in collection algorithms, 430–433
built–in generic types in, 295–297
calculator interface, 362–365
calling class constructor, 58–60, 66
calling custom superclass constructors,

99–102
cancelling stock orders, 518–523
CardLayout manager uses, 357–359
centralizing exception–handling code,

187–188
comparing two string objects, 590–591
concatenating files, 218–219
constructing forms with BoxLayout

manager, 368–372

countdown latch in enhanced Stock
Exchange program, 494–497

counting lines in files, 216–218
counting words and numbers, 242
creating URL–based web page reader,

551–552
custom exceptions, 188–190
customizing annotations, 279
customizing properties for enums,

258–259
customizing scroll bar and canvas,

396–403
Data Streaming program, 228–231
declaring and implementing interfaces,

140–142
declaring local classes, 163
defining inner class within method,

163–164
demonstrating cyclic barrier, 491–493
demonstrating FlowLayout manager,

354–356
demonstrating threaded scheduler,

426–427
determining file length, 202–206
Directory Listing, 220–221
DNS resolution application, 574–575
Dynamic Method Invoker program,

600–601
Dynamic Odds Generator, 157–159
edit controls in GUI, 330–335
EOD parser based on methods of,

588–590
example code for classes, 48–49
exchange server broadcasting trades,

576–579
extending interfaces, 140, 142–145
Externalizable interface uses, 244–248
file copy utility, 207–210
file merge utility, 234–238
file viewer utility, 211–213
final class type variables, 109–110
formatting output with Formatter class,

592–593
generic Stack class in, 299–300
handling errors opening URL class,

176–179
HashMap class with two generic

parameters, 310–312, 429
home page reader using sockets, 547–550
horse–racing simulation, 498–501
illustrating arrays, 25
implementing FilenameFilter interface

with anonymous class, 166
implementing list box controls, 335–342
information hiding, 52–56

Index 635
inheriting annotations, 286–289
inner class visibility, 159–160
interrupt threads in prime number

generator, 453–457
Java source file layout, 61–62, 66
line–drawing applet, 396–403
listing constants with enums, 257–258
listing files in directory, 220–221
Local Time Converter application,

595–600
lucky number generator, 484–486
maintaining versions of objects, 250–253
method declarations in classes, 49–51
mobile phone keypad interface, 360–361
modified Ball Game program, 127–130
modifying Bucket Ball Game using locks,

469–470
mouse events for line-drawing applet,

386–390
multiple interfaces, 145–148, 151
non–fatal error in Visitor Roster, 172–173
object–creation process, 96–97
object serialization, 222–224
overriding static methods, 131–132
parallel merge sort using Fork/Join

framework, 536–540
photo frame application, 351–354
popup menu applet, 390–395
portfolio management system, 81–86
prime number generator, 447–448
reading ahead in buffer, 231–232, 253
restricting access with static methods,

130–131
running applet in HTML, 380
runtime discovery of annotations,

281–286
searchable GRE word list, 427–430
secure login feature, 240–241
serializing enum constants, 264
serializing nested objects, 248–250, 253
server application echoing client

message, 556–559
shadowed variables in inner classes, 161
showing cookies sent by websites,

553–556
Sine Wave Animator, 443–447
Soccer Team Builder application, 415–418,

421–424
sorting names based on TreeSet, 421–424
static fields in Ball Game, 123–126
subclassing, 71–72
tabbed dialog boxes, 372–375
testing echo server application, 559
testing introspection for class browser,

605–606

testing Stack class, 301–304
threaded server application for multiple

clients, 561–563
threading in Producer/Consumer scenario,

461–465, 502–507
try–with–resources statements, 183–184
understanding distributed exception

handlers, 185–186
virus scanners using fixed delays, 525–528
wildcards, 305–308
working with two-dimensional arrays, 31
wrappers for primitive data types, 267–268
wrapping characters, 269–270
wrapping RunTimeException into objects,

194–195
writing copy constructors, 104–105

properties added to enums, 258–259
protected modifiers

accessing entities with, 111, 112, 120
visibility of members with, 115–117,

118, 120
protocols. See also IP

care in using for sockets, 572
IP, 574
JRMP, 615
SCTP, 582–583
SDP, 582
TCP, 575, 583
UDP, 575

proxy servers, 548
pseudo notation, 45
public modifiers

accessing entities with, 112, 120
allowing object visibility with, 113–114,

115, 120
declaring public class variables, 125
setting access with, 54, 55, 56, 65

PushbackInputStream class, 226, 231–232, 253
PushbackReader class, 234

Q
Queue collection, 413
Queue data structure, 424–427
queues

ready-to-run thread, 438, 443
synchronizing threads with blocking,

475–486
thread priority, 439–440

R
radio buttons, serving as event source, 322
radix, 266, 267

636 Java Programming

random numbers
generating and sorting with algorithms,

430–431
generating for data points, 538
using ThreadLocalRandom class for

parallel, 541
RandomAccess interface, 412, 414
raw types, 310, 316
re–throwing exceptions, 190–191
read method of InputStream class, 205, 206
readData method, 230
Reader classes, 201, 211
readLine method, 236
readPassword, 241
ready-to-run thread queues, 438, 443
rectangular arrays, 35
Reflection API, 601
regular expressions, 587
Remote Method Invocation (RMI), 10
remote server connections. See servers
removing disqualified list members, 417
repaint method

applet use of, 382
invoking paint method with, 385
Sine Wave Animator use of, 446

replace method, 615
resume method, 451
return statements, 183
return types for annotations, 280
RMI (Remote Method Invocation), 10
run method, 445
Runnable interface

Callable and Future interfaces vs., 511, 512
disadvantages of, 510
implementing both Future and, 518
implementing Thread class vs.

implementing, 449
thread implementation with, 442, 443,

450–451, 471
using, 511–512

runtime
array initialization at, 22–23
discovering annotations at, 282–286
handling exceptions at, 180
initializing two-dimensional arrays at,

29–30, 34–35
user–defined exceptions undetected

at, 190
runtime polymorphism

compiler execution of, 81, 91
deciding which method to call with,

87–88
RuntimeException class, 185, 194–195

S
saving buffer content of OutputStream

class, 231
ScheduledExecutorService class

executing schedules tasks, 524–525
implementing, 524

scheduling threads, 440
scroll bars, 395–396
SCTP (Stream Control Transport Protocol),

582–583
SDP (Session Description Protocol), 582
secure login feature, 240–241
security

enhancements in J2SE 1.2, 12
exceptions for Class class, 602–603
J2SE 1.2 enhancements to, 12
using security API, 248

semaphores, 486–490
about, 507
function of, 486–487, 507
situations implementing, 487–490

SequenceInputStream class, 234, 238, 253
Serializable interface

defining and using, 222–223
Externalizable vs., 244
implementing with java.lang.Enum

class, 289
without methods, 137

serializing
enum types, 263–264, 289
fields, 244
maintaining object versions when,

252–253
nested objects, 248–250, 253
product versions, 250–253

serialversionUID, 252, 253
server–side Java, 13
server sockets, 547, 556
servers. See also cloud storage server

creating application echoing client
message, 556–559

creating server sockets, 547, 556
designating ports for incoming data,

557–558
example focus on socket programming,

573
making socket connection to remote,

545–547
ports for connecting to, 545, 546
proxy, 548
running EchoMultiServer application, 563
running with stock trade client, 581

Index 637
serving multiple clients, 560–561
simultaneous service to multiple clients,

561–563
writing cloud storage, 566–570

ServerSocket class, 556
Session Description Protocol (SDP), 582
Set collection, 413
Set interface and data structures, 418–424
setter methods, 54, 65
shadowed variables, 91
shallow vs. deep copies, 38
Sine Wave Animator, 443–447
single-dimensional arrays, 35
single-level inheritance, 72–73
single-value annotations, 277–278
sink stream, 200
skip method of InputStream class, 207
sleep

putting threads to and interrupting,
455–457

in thread life cycle, 438, 446
while loops causing threads to, 446

Soccer Team Builder application
linking and printing lists of team members

in, 415–418
sorting team based on TreeSet, 421–424

Socket class, 583
Socket objects

adding IP address of known domain
to, 548

closing connections with, 549
connecting to remote server, 545–547
data input and output streams for, 546
home page reader using, 547–550
making applet connections to other

servers with, 382–383
server, 556

SocketException subclass, 558–559, 579
sockets

closing connections to, 549, 558
connecting clients to servers with,

545–547
defined, 546
examples focused on programming, 573
exceptions when closing URL

connections, 180–182
home page reader using, 547–550
making applet connections to servers

with, 382–383
protocols and handshaking between, 572
using multicast, 580

Solaris OS, threading model in, 441
SortedMap collection, 413

SortedSet collection, 413
source files

layout of Java, 61–62, 66
package statements, 62–63

source stream, 200
sources. See event sources
SpringLayout manager, 375, 376
square brackets ([]), 19
Stack class

declaring parameterized type in, 298–299
replacing generics with real types at

precompilation, 300–301
testing, 301–304
using generics with, 299–300

stacks
dumping content with wildcards,

305–308
printing and analyzing stack trace,

195–196, 198
restrictions instantiating generic

parameters for, 315
start method

starting applets with, 382, 383, 407
starting threads, 445, 455

starvation, 377
static blocks

accessing only static class members, 133
defining private static methods vs., 134
handling exceptions in, 135
multiple, 133–134

static fields, 122–126
static initializers, 132–135
static keyword. See also static methods

restrictions for generic classes, 315–316
using static initializers, 132–135
using with static fields, 122–126

static methods
access restrictions with static methods,

130–131
implementing nonstatic and, 127–130
invoking, 78
overriding, 131–132
preventing overriding of, 107
Thread class, 449–450
uses for, 126–127
wrappers, 268

static nested inner classes, 156, 162
static typing, 298
Stock Exchange programs

cancelling stock orders, 518–523
countdown latch in, 494–497
developing client for multicast stock

trades, 579–580

638 Java Programming

Stock Exchange programs (cont.)
EOD parser based on methods of, 588–590
exchange server broadcasting trades,

576–579
using blocking queues in, 479–484
using Data Streaming program in, 228–231

stop method
deprecation of, 451
using in applets, 382–383, 407

Stream Control Transport Protocol (SCTP),
582–583

streams. See also binary streams; byte streams;
character streams

about Java, 200–201
binary vs. character, 214–215
chaining, 215–218
input, 200, 215–216, 241–243, 253
output, 216, 226
reading without blocking, 206
reading/writing objects from and to,

222–224
support for multiple SCTP, 582–583

StreamTokenizer class, 241–243, 253
String class, 586–593

about, 106
comparing two string objects, 590–591
EOD parser based on methods of,

588–590
formatted output using, 591–593
important methods of, 586–587
substring method for, 586, 615

StringBuffer class, 591
StringBuilder class, 591
strings. See also String class

processing CVS files, 587
regular expressions as, 587
specifying radix while parsing, 266
storing in Unicode, 239
string objects, 106

subclasses
access inheritance by, 119–120
accessing superclass fields and methods

from objects in, 79
defined, 70
example of, 71–72
exception handling for superclass

methods and, 194
extends keyword with, 72, 91
handling subclass exceptions before

superclass exceptions, 176
implicit and explicit typecasting for, 90, 91
inheritance by, 69–72, 79
instantiating, 94–95
OutputStream, 207

preventing, 90–91
Thread class, 443, 471
typecasting rules in, 90, 91
unable to extend final class with, 110

subscripts, 18, 21
substring method, 586, 615
super keyword

accessing fields and methods from
subclass object with, 79

accessing superclass variables with, 91
calling constructor with, 97, 98–101, 120
calling with or without arguments,

101, 102
invoking methods from subclass or

superclass with, 88
unable to use in this constructors, 103
unavailable for static methods, 130, 132

superclasses
accessing fields and methods of, 79
calling constructors for, 99–102
exception handling for methods of, 194
invoking, 88
typecasting rules in, 90, 91

supplemental characters, 270
suspend method, 451
sval field, 241–242
Swing components. See also layout managers

about Swing, 11
adding from NetBeans palette, 348–349
converting AWT–based applications

to, 378
defining size of, 345–346, 375
entering text in fields with, 330–335
implementing list box controls, 335–342
importing Swing classes to program, 328
layout managers for, 329, 330, 333, 342
placement of with FlowLayout, 355–356
placing in grid cells, 361–367
placing with BorderLayout, 346–354, 375
replacing java.awt with, 325, 342
setting properties of, 349, 350
using button controls, 326–330

synchronized keyword
locking objects with, 465–466, 471
thread synchronization with, 457–458
using, 461
using with classes, 8
volatile vs., 466, 467

synchronizing threads, 457–467. See also
synchronized keyword

barriers for, 490–493
blocking queues for, 475–486
Bucket Ball Game application

demonstrating, 458–461

Index 639
countdown latches for, 493–497
deadlocks when, 466, 467–468
detecting deadlocks, 470–471
exchangers for, 501–507
lock ordering when, 468
locking objects with synchronized

keyword, 465–466, 471
performance penalty of, 466
phasers for, 497–501
Producer/Consumer scenario requiring,

461–465
semaphores for, 486–490, 507
setting timeout on locks, 468–469
when to synchronize, 466

SynchronousQueue class, 478
syntax

conventions for final variables, 108
declaring arrays, 19–20
interface, 139–140
location of comment in source file, 62
parameterized stack type, 298–299
two–dimensional array, 28–29
URL, 550

System.in object, 236
System.out object, 238, 239

T
tabbed dialog box

creating, 372–375
using CardLayout manager to create,

360, 372
tasks

applications requiring concurrent, 510
callables for running parallelized,

512–518
cancellable, 518–523
executors waiting until completed, 522
repeating after fixed delay, 525–528
retrieving results from multiple, 529–533

TCP/IP socket connections, 546
TCP (Transmission Control Protocol), 575, 583
testing

annotated methods, 286
EchoMultiServer application, 564–566
introspection and reflection in class

browser application, 605–606, 614
Stack class, 301–304
upload/download utility, 573

text
entering in GUI, 330–335
example code for accepting keyboard,

404–407

this keyword
calling constructor with, 97, 98, 120
placing in constructors, 103
unable to use with static block, 134
unavailable for static methods, 130, 132

Thread class
constructors of, 449
creating instance of, 442
static methods of, 449–450
subclassing, 443, 471

thread pools
creating and managing, 513
creating with Executors class, 523–524
repeating virus scanning with fixed

delays, 525–528
reusing threads from, 516
scheduled executions using, 524
using ThreadLocalRandom class in, 541

thread-safety
blocking queues and, 477
thread–safe collections, 540–541

Thread Scheduler, 426–427
Thread.currentThread method, 449
ThreadGroup class, 443, 449
ThreadLocalRandom class, 541
threads, 436–541. See also synchronizing

threads; thread pools; thread-safety; wait
state

asynchronous exceptions in, 196–197
blocking queues for synchronizing,

475–486
Callable and Future interfaces for,

510–512
classes/interfaces creating, 442–443
constructors of Thread class, 449
daemon, 442, 448
deadlocks when synchronizing, 467–468
defined, 437
detecting deadlocks, 470–471
developing Sine Wave Animator using,

443–447
effects of nonpreemptive OS processes

on, 448, 471
example of threaded server application,

561–563
exchanging objects between, 501–507
executors and thread pools, 523–533
getting stack trace for running, 196
green thread model, 440–441
handling Producer/Consumer problem

with, 461–465, 502–507
implementing with Runnable interface,

442, 443, 450–451, 471, 518

640 Java Programming

threads (cont.)
interrupting, 452–457, 504
joining with other, 457
Linux model for, 442
monitoring tasks with

ExecutorCompletionService, 529–533
non-daemon, 442, 447–449
obtaining reference to running, 449
parallelizing large tasks with callables,

512–518
priorities for, 425–427, 439–440, 452
processing divide-and-conquer

algorithms, 533–534
putting to sleep and interrupting, 455–457
reasons for using, 436–437, 471
reusing, 516
run method for, 450–451
running, 445–446
scheduling, 440
semaphores for, 487–490
serving multiple clients using, 560–561
setting daemon property for, 450
Solaris model for, 441
starting, 445, 450–451, 455
states for, 438–439
static methods of Thread class, 449–450
stopping, suspending, and resuming, 451
synchronizing, 457–467
thread groups, 443
thread-safe collections, 540–541
uses of multithreading, 8, 436, 437, 466
using Runnable and Future interfaces, 518
volatile for synchronizing, 466, 467
waiting for objects, 452
waking, 456–457
Windows implementation of, 441
working with cancellable tasks, 518–523
yielding control to waiting, 451–452

throw statement
throw vs. throws keyword, 192, 198
throws clause vs., 190, 198

Throwable class, 175
throws clause

centralizing error handling with,
185–188, 198

throw statement vs., 190, 198
throw vs. throws keyword, 192, 198
throwing multiple exceptions, 188
unacceptable in annotation methods, 279

Tiger SDK, 14–15
time. See also Calendar class

adjusting time zones with Calendar class,
595–600

timeouts
designating for locks, 468–469
specifying for making socket

connection, 560
tokenizing

CSV files with string methods, 588–590
input stream for files, 241–243, 253

toString method, 105
TransferQueue class, 479
transient keyword

nested objects marked with, 248
serializing fields using, 244

Transmission Control Protocol (TCP), 575, 583
TreeSet class

ArrayList vs., 424
sorting objects in ascending order,

420–424
try blocks

finally statements in, 182, 183
structure of try/catch/finally block, 181,

183, 198
try-with-resources statements with,

183–184
try-catch blocks

exception handling with, 175–176
guidelines for, 197
incompatible with static blocks, 135
re-throwing exceptions with, 190–191

try/catch/finally block, 181, 183, 198
try-with-resources statements, 183–184
two-dimensional arrays

initializing at runtime, 29–30
looping through, 33
program illustrating, 31
using, 28–29
using array literals to initialize, 30–32

2D API, 12
type parameters

about, 293
HashMap class with two generic,

310–312, 429
replacing type argument with empty set

of, 313
restrictions instantiating generic, 315

typecasting
avoiding errors by correct, 312–313
elements in Iterator interface, 294–295
rules for superclass, 90, 91

types
bounded, 304–305
built-in generic, 295–297
casting, 312–313
comparing and assigning generic, 313

Index 641
ensuring types passed to collections,

297–298, 316
replacing generics at precompilation with

real, 300–301
syntax of parameterized stack, 298–299
using raw, 310, 316

typing, static vs. dynamic, 298

U
UDP (User Datagram Protocol), 575
UML (Unified Modeling Language) notation, 69
unboxing

about, 254, 289
using, 271–273

unchecked exceptions, 184–185, 198
Unicode

storing strings in, 239
wrapper class extended support for, 270

Unified Modeling Language (UML) notation, 69
URL class

accessing web resources with, 550
creating URL-based web page reader

with, 551–552
handling errors opening, 176–179

URLConnection class
creating URL-based web page reader

with, 551–552
representing communication links

with, 550
URLs. See also URL class; URLConnection class

including in Socket constructor, 546
syntax for, 550
web page addresses for, 546, 547

user and system levels in OS, 441
User Datagram Protocol (UDP), 575
user-defined exceptions, 188–190
utility classes

Calendar, 594–599
String, 106, 586–593
supporting introspection and reflection

mechanism, 600–614, 616
time and date representation with

Calendar, 594–595, 616

V
vargas (variable arguments) feature, 218, 219
variables

accessing shadowed, 160–161
blank final, 108, 109, 110–111
creating global, 125

declaring public class, 125
final, 108–109, 120
static, 125–126

Vector class, 410, 540
Vector interface, about, 412
visibility, 111–120

accessing inner classes from outside,
159–160

allowing public, 113–114, 115, 120
indicating in UML notation, 69
member rules for, 111–112
package statement and, 63, 111, 112
restricting to own class with private,

114, 120
rules using default modifier, 117–119
setting for annotation with @Retention,

281–286
using protected keyword, 115–117,

118, 120
values defining, 111–112

Visitor Roster application, 172–173
void data type, 271
volatile keyword, 466, 467

W
wait state

barrier-type synchronization of waiting
threads, 490–491

duplicating customer wait times at bank,
487–490

placing threads in queue for execution,
424–427

programming scheduler time to complete
pending orders, 522

releasing threads with countdown latch,
493–497

starvation of waiting threads, 477
thread’s, 438
yielding control to threads in, 451–452

warning errors. See also exception handling
adding for deprecated code elements, 275
raw type declarations suppressing, 310
suppressing, 276–277, 310

web pages
accessing with URL class, 550
creating URL-based reader for,

551–552
handling cookies for, 552
home page reader using sockets,

547–550
spy utility for cookies, 553–556
URL addresses of, 546, 547

642 Java Programming

while loops, 446
wildcards

bounded, 308–310
dumping class content with, 305–308

WindowListener interface, 332, 333, 334
windows

applying layout manager to, 345–346
closing photo frame application, 352
creating user interface for applications, 326
defining size of Swing components,

345, 346
events closing, 335
using BorderLayout manager, for, 344

Windows OS threading model, 441
words

building searchable list of, 427–430
building set of distinct, 418–419
counting, 242
sorting names based on TreeSet, 421–424

wrapper classes
added in J2SE 5.0, 268–271
benefits of using, 264–265
CharWrapper, 269–270
example with primitive data types,

267–268

extended support for Unicode code
point, 270

features of, 268
made redundant by autoboxing, 271,

273, 289
NaN , POSITIVE_INFINITY, and

NEGATIVE_INFINITY fields, 269
RunTimeException into objects,

194–195
types of, 265

wrappers
primitive data types, 264–268, 289
synchronization, 540
using with input stream classes,

215–216
void data type, 271

write methods, 210
Writer class

character-orientation of, 201
hierarchy for, 211

Y
yield method, 451–452

	Cover Page
	About the Author
	Title Page
	Copyright
	Contents at a Glance
	Contents
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Java
	Why Java?
	So What Is Java?
	Java Virtual Machine
	Features of Java
	Small
	Simple
	Object Oriented
	Compiled and Interpreted
	Platform Independent
	Robust and Secure
	Multithreaded
	Dynamic

	Java’s Evolution
	JDK 1.0 (January 23, 1996): Codename Oak
	JDK 1.1 (February 19, 1997)
	Java Beans
	Remote Method Invocation
	The JAR File Format
	Digital Signatures
	AWT Enhancements
	Other Changes

	J2SE 1.2 (December 8, 1998): Codename Playground
	The Introduction of Swing
	The 2D API
	Drag-and-Drop
	Audio Enhancements
	Java IDL
	Security Enhancements
	Other Enhancements

	J2SE 1.3 (May 8, 2000): Codename Kestrel
	J2SE 1.4 (Feb 6, 2002): Codename Merlin
	J2SE 5.0 (Sept 30, 2004): Codename Tiger
	Java SE 6 (Dec 11, 2006): Codename Mustang
	Java SE 7 (July 7, 2011): Codename Dolphin

	Summary

	Chapter 2: Arrays
	Arrays
	Declaring Arrays
	Creating Arrays
	Accessing and Modifying Array Elements

	Initializing Arrays
	Initializing at Runtime
	Initializing Using Array Literals

	The for-each Loop
	Multidimensional Arrays
	Two-dimensional Arrays
	Initializing Two-dimensional Arrays
	Initializing at Runtime
	Initializing Using Array Literals

	Looping Using the for-each Construct

	N-dimensional Arrays
	Nonrectangular Arrays
	Runtime Initialization
	Initialization Using Array Literals

	A Few Goodies
	Determining the Array Length
	Cloning an Array
	Finding Out the Class of an Array

	Summary

	Chapter 3: Classes
	Object-Oriented Programming (OOP) Concepts
	OOP Features
	Encapsulation
	Inheritance
	Polymorphism

	OOP Benefits

	The Class
	Defining a Class
	Declaring a Point Class
	Using Classes
	Accessing/Modifying Fields
	The Class Example Program
	Declaring Methods
	Memory Representation of Objects

	Information Hiding
	Encapsulation
	Declaring Constructors
	Default Constructor
	Rules for Defining a Constructor

	Source File Layout
	The package Statement
	The import Statement

	Directory Layout and Packages
	Summary

	Chapter 4: Inheritance
	Why Inheritance?
	What Is Inheritance?
	Defining Single-level Inheritance
	Capturing Multilevel Inheritance
	Writing a Multilevel Inheritance Program

	Polymorphism
	Creating a Heterogeneous Collection of Objects
	A Program That Demonstrates a Heterogeneous Collection
	Detecting the Object Type
	Typecasting Rules on Inheritance Hierarchies
	Preventing Method Overriding
	Preventing Subclassing

	Summary

	Chapter 5: Object Creation and Member Visibility
	Instantiating a Subclass
	The Object-Creation Process
	Calling the super Constructor
	Method Overloading
	Rules of Method Overloading

	Creating a Copy Constructor
	Invoking Constructors: Summary

	The final Keyword
	The final Classes
	The final Methods
	The final Variables
	The final Variables of the Class Type
	Important Points Related to the final Keyword

	Understanding Member Visibility Rules
	The public Modifier
	The private Modifier
	The protected Modifier
	The Default Modifier
	A Few Rules on Inheriting

	Summary

	Chapter 6: Static Modifier and Interfaces
	The static Keyword
	The Static Fields
	Accessing Static Fields Through Object References
	Inheriting Static Fields
	Creating a Truly Global Variable
	Creating Application Constants
	Some Important Notes on Static Fields

	The Static Methods
	Access Restrictions in Static Methods
	Some Important Notes on Static Methods

	The Static Initializers
	Advantages of a Static Initializer
	Multiple Static Blocks
	An Alternative to a Static Initializer
	Some Important Notes on Static Initializers

	Interfaces
	A Real-life Example of an Interface
	Understanding Interface Syntax
	Understanding Interfaces Through an Example
	Extending Interfaces
	Implementing Multiple Interfaces
	Combining Interfaces
	A Few Important Points on Interfaces

	Abstract Classes
	Summary

	Chapter 7: Nested Classes
	Nested Classes
	Why Use Nested Classes?
	Classifications of Nested Classes
	Demonstrating the Use of Inner Classes
	Accessing an Inner Class from the Outside
	Accessing Shadowed Variables
	Important Points to Note

	Member Classes
	Local Classes
	Defining an Inner Class within Method Scope
	A Few Important Points on Local Classes

	Anonymous Classes
	Creating Anonymous Classes
	Restrictions on the Use of Anonymous Classes
	Compiled Anonymous Classes
	Guidelines on Using Anonymous Classes

	Summary

	Chapter 8: Exception Handling
	What Is an Exception?
	Error Types
	The Non-fatal Errors
	The try-catch Statements
	Classifying Exceptions
	Combining Exception Handlers
	How Runtime Matches catch Blocks

	The finally Statement
	Guidelines on the Use of the finally Block
	Rules for Using the try/catch/finally Block
	The try-with-resources Statement

	Checked/Unchecked Exceptions
	The throws Construct
	Throwing Multiple Exceptions

	User-defined Exceptions
	The throw Statement
	Re-throwing Exceptions
	Difference Between the throw and throws Keywords
	The final Re-throw in Java SE 7

	Declaring Exceptions in Overridden Methods
	Printing a Stack Trace
	Asynchronous Exceptions
	Guidelines for Using Exceptions
	Summary

	Chapter 9: Java I/O
	Input/Output Streams
	The I/O Class Hierarchy
	The Byte Streams
	Determining File Length
	The InputStream Methods
	The OutputStream Class
	File Copy Utility
	The OutputStream Methods

	Character Streams
	File Viewer Utility
	Buffered Readers/Writers
	The BufferedReader Class
	The BufferedWriter Class

	Binary Versus Character Streams
	Chaining Streams
	The Line Count Program
	File Concatenation

	Accessing the Host File System
	The Directory Listing Program
	Filtering the Directory Listing

	Reading/Writing Objects
	Summary

	Chapter 10: Advanced I/O
	The Byte-Oriented Stream Classes
	The PushbackInputStream Class
	The SequenceInputStream Class
	The PrintStream Class

	The Character-Oriented Stream Classes
	The CharArray Reader/Writer Classes
	The Console Class
	The StreamTokenizer Class

	The Object-Oriented Streams
	The Externalizable Interface
	Nested Objects Serialization
	Versioning Objects

	Summary

	Chapter 11: Enums, Autoboxing, and Annotations
	Typesafe Enumerations
	Creating Integer Patterns for Enumerations
	The enum Type
	Listing Enumeration Constants
	Adding Properties to an Enumeration
	The ordinal and compareTo Methods
	Attaching Methods to Enumerations

	Serializing enum Types

	Autoboxing
	Wrapper Classes
	A Few Additions in J2SE 5.0
	Additional Functionality
	Extended Support for Unicode Code Point
	The Void Wrapper

	Autoboxing/Unboxing

	Annotations
	Built-in Annotations
	The @Override Annotation
	The @SuppressWarnings Annotation

	Declaring Annotations
	Marker Annotations
	Multivalue Annotations
	Custom Annotation Program
	Rules for Defining Annotation Types

	Annotating an Annotation
	The Target Annotation
	The Retention Annotation
	Annotations at Runtime
	The Documented Annotation
	The Inherited Annotation

	Summary

	Chapter 12: Generics
	Generics
	What Are Generics?
	Why Do We Need Generics?
	A Sample Generics Program
	Type Safety

	Creating a Parameterized Stack Type
	Declaration Syntax
	A Generic Stack Class
	Examining Intermediate Code
	Testing the Stack Class

	Bounded Types
	Using Wildcards
	Bounded Wildcards
	Raw Types

	More on Generic Types
	Class with Two Generic Parameters
	Casting Types
	Comparing and Assigning Generic Types
	Generic Methods
	Declaring Generic Interfaces

	Restrictions in Generics
	Creating Arrays
	Instantiating Type Parameters
	Use of the static Keyword

	Summary

	Chapter 13: Event Processing and GUI Building
	Event Processing Model
	Delegation Event Model
	The Event Source
	The Event Listener
	Event Processing Sequence
	Registering on Multiple Event Sources
	Multiple Event Types

	Building a GUI
	Creating the User Interface
	Demonstrating the Button Control
	Demonstrating the Edit Control
	Demonstrating the List Box Control

	Summary

	Chapter 14: Creating Layouts
	Layout Managers
	Types of Layout Managers
	Building the GUI
	How Do Layout Managers Work?

	Using Layout Managers
	BorderLayout
	Using NetBeans to Build the GUI
	FlowLayout
	CardLayout
	GridLayout
	GridBagLayout
	BoxLayout

	Tabbed Dialog Box
	Advanced Layout Managers
	Summary

	Chapter 15: Graphics and User Gestures Processing
	What Is an Applet?
	Creating Your First Applet
	Running the Applet
	Using AppletViewer

	Understanding Applet Life-cycle Methods
	Processing Mouse Events
	Mouse Clicks
	Mouse Motion Events

	Creating Popup Menus
	Customizing the Drawing Color
	Processing Keyboard Events

	Summary

	Chapter 16: Collections
	What Is the Java Collections Framework?
	Benefits of the Collections Framework
	What the Collections Framework Offers
	The Collections Framework Interfaces
	The Collections Framework Classes
	List
	Optional Operations of the List Interface
	Set
	HashSet
	TreeSet

	Queue
	Map

	Algorithms
	Summary

	Chapter 17: Threads
	Processes and Threads
	Thread States
	Thread Priorities
	Thread Scheduling

	JVM Threading Implementations
	Green Threads
	Windows Implementation
	Solaris Implementation
	Linux Implementation

	Daemon Versus Non-Daemon Threads

	Creating Threads
	Creating Your First Threaded Application
	Creating Non-Daemon Threads
	Thread Class Constructors
	Static Methods of Thread
	Some Essential Operations on Thread
	Setting the Daemon Property
	Starting the Thread
	Stop, Suspend, and Resume Operations
	Yielding Control
	Setting the Priority
	Waiting on Other Objects
	Interrupting Threads
	Joining

	Thread Synchronization
	Bucket Transfers
	Producer/Consumer Problem
	Object Locks
	When to Synchronize
	The Deadlock
	Solutions to Deadlock
	Lock Ordering
	Lock Timeout
	Deadlock Detection

	Summary

	Chapter 18: Blocking Queues and Synchronizers
	Blocking Queues
	Characteristics of Blocking Queues
	The BlockingQueue Interface
	Implementations of the BlockingQueue Interface
	ArrayBlockingQueue
	LinkedBlockingQueue
	PriorityBlockingQueue
	DelayedQueue
	SynchronousQueue
	TransferQueue

	Stock-trading System
	The LinkedTransferQueue Example

	Synchronizers
	Semaphores
	Barriers
	Countdown Latches
	Phaser
	Exchangers

	Summary

	Chapter 19: Callables, Futures, Executors, and Fork/Join
	Callables and Futures
	The Callable Interface
	The Future Interface
	How Callable and Future Work
	Using Callables in Parallelizing Large Tasks
	The FutureTask Class
	Creating Cancellable Tasks

	Executors
	Creating a Thread Pool for Scheduled Executions
	The ScheduledExecutorService Class
	Demonstrating Scheduled Task Execution
	Obtaining the Results of the First Completed Execution
	Demonstrating the ExecutorCompletionService Class

	Fork/Join Framework
	The ForkJoinPool Class
	The ForkJoinTask Class
	Sorting an Enormous Array of Floats

	Thread-safe Collections
	The ThreadLocalRandom Class
	Summary

	Chapter 20: Network Programming
	Networking
	Simple Home Page Reader
	The URL Class
	The URLConnection Class
	Webpage Reader
	The HttpCookie Class
	Spying for Cookies

	Echo Server Application
	Testing the Echo Server Application

	Serving Multiple Clients
	Serving Simultaneous Clients
	Running the EchoMultiServer Application
	Testing the EchoMultiServer Application

	Writing a File Storage Server Application
	A Cloud Storage Server
	A Cloud Store Client
	Testing the File Upload/Download Utility

	The InetAddress Class
	Broadcasting Messages
	Writing a Stock Quotes Server
	Writing the Stock Trader Client
	Running the Server and Client
	Support for SCTP

	Summary

	Chapter 21: Utility Classes
	The String Class
	A Few Important Methods
	Practical Demonstration of String Methods
	Comparing Strings
	Creating Formatted Output

	The Calendar Class
	The GregorianCalendar Methods
	The Local Time Converter Application

	Introspection and Reflection
	The Class Class
	The Method Class
	The Class Browser Application
	The Introspection Test Application
	The Class Browser
	Disadvantages

	What’s Next?
	Summary

	Index

